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Medium levels of transcription 
and replication related 
chromosomal instability are 
associated with poor clinical 
outcome
Ataaillah Benhaddou1, Laetitia Gaston2, Gaëlle Pérot1,3, Nelly Desplat4, Laura Leroy1,5, 
Sophie Le Guellec1,5, Mohamed Ben Haddou6, Philippe Rochaix1,5, Thibaud Valentin1,7, 
Gwenaël Ferron1,8, Christine Chevreau7, Binh Bui9, Eberhard Stoeckle10, Axel Le Cesne11, 
Sophie Piperno‑Neumann12, Françoise Collin13, Nelly Firmin14, Gonzague De Pinieux15, 
Jean‑Michel Coindre16, Jean‑Yves Blay17,18 & Frédéric Chibon1,5,19*

Genomic instability (GI) influences treatment efficacy and resistance, and an accurate measure of it is 
lacking. Current measures of GI are based on counts of specific structural variation (SV) and mutational 
signatures. Here, we present a holistic approach to measuring GI based on the quantification of the 
steady-state equilibrium between DNA damage and repair as assessed by the residual breakpoints 
(BP) remaining after repair, irrespective of SV type. We use the notion of Hscore, a BP “hotspotness” 
magnitude scale, to measure the propensity of genomic structural or functional DNA elements to 
break more than expected by chance. We then derived new measures of transcription- and replication-
associated GI that we call iTRAC (transcription-associated chromosomal instability index) and iRACIN 
(replication-associated chromosomal instability index). We show that iTRAC and iRACIN are predictive 
of metastatic relapse in Leiomyosarcoma (LMS) and that they may be combined to form a new 
classifier called MAGIC (mixed transcription- and replication-associated genomic instability classifier). 
MAGIC outperforms the gold standards FNCLCC and CINSARC in stratifying metastatic risk in LMS. 
Furthermore, iTRAC stratifies chemotherapeutic response in LMS. We finally show that this approach 
is applicable to other cancers.

Genome instability (GI) is a hallmark of cancer1 and may arise due to deleterious mutations in components of 
DNA repair pathways or to abnormally high levels of genotoxic stress from cellular processes such as transcription 
and replication that overwhelm high-fidelity DNA repair2. Replication stress is a threat to genome stability and 
has been implicated in tumorigenesis3–5. Notably, common fragile sites in cancer colocalize with chromosomal 

OPEN

1OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France. 2Department of 
Medical Genetics, CHU de Bordeaux, 33000 Bordeaux, France. 3Centre Hospitalier Universitaire (CHU) de Toulouse, 
IUCT-Oncopole, 31000  Toulouse, France. 4INSERM UMR1218, ACTION, Institut Bergonié, 33000  Bordeaux, 
France. 5Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France. 6Mentis 
Consulting, 1000  Brussels, Belgique. 7Department of Oncology, Institut Claudius Régaud, IUCT-Oncopole, 
31000  Toulouse, France. 8Department of Surgical Oncology, Institut Claudius Régaud, IUCT-Oncopole, 
31000  Toulouse, France. 9Department of Oncology, Institut Bergonié, 33000  Bordeaux, France. 10Department 
of Surgery, Institut Bergonié, 33000  Bordeaux, France. 11Department of Oncology, Institut Gustave Roussy, 
94800 Villejuif, France. 12Department of Medical Oncology, Institut Curie, 75005  Paris, France. 13Department of 
Pathology, Centre Georges-François Leclerc, 21000 Dijon, France. 14Department of Oncology, Institut Régional du 
Cancer de Montpellier, 34000  Montpellier, France. 15Department of Pathology, Hôpital Universitaire Trousseau, 
37170 Tours, France. 16Department of Pathology, Institut Bergonié, 33000  Bordeaux, France. 17Department of 
Medical Oncology, Centre Léon Bérard, 69000  Lyon, France. 18Centre Léon Bérard, Université Claude Bernard 
Lyon 1, INSERM U1052, CNRS 5286, 69000 Lyon, France. 19Cancer Research Center in Toulouse (CRCT), 2 Avenue 
Hubert Curien, 31037 Toulouse, France. *email: Frederic.chibon@inserm.fr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-02787-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23429  | https://doi.org/10.1038/s41598-021-02787-x

www.nature.com/scientificreports/

regions that are particularly prone to breakage following mild replication stress6–8. Transcription also creates con-
ditions for mutations and recombination as well as DNA breaks, either by transcription-associated processes or by 
its ability to become a barrier to DNA replication9–13. Indeed, co-transcriptional R-loops constitute a barrier for 
replication fork progression and lead to fork stalling and collapse. This is thought to be a major mechanism of GI 
that involves transcription-replication collisions14–17. Finally, obstacles on the template DNA, such as non-B DNA 
(NBD) structures, DNA repeats, DNA-bound non-histone proteins and transcription complexes, can impede 
replication fork progression18–21. Cahill et al.22 proposed that GI might contribute to oncogenesis only if it does 
not exceed a certain threshold above which it is likely to generate cells with unviable karyotypes. Interestingy, 
Radiation therapy as well as many of chemotherapeutic drugs have been shown to induce GI in vitro resulting 
in the acquisition of additional SV beyond a threshold that would be compatible with cell survival23–25. Indeed, 
the efficacy of some cancer treatments that induce GI, such as paclitaxel and radiation therapy, is improved in 
cells with a higher basal rate of GI23, 26, 27. Concordantly, high burden of somatic copy number alterations and 
greater levels of intratumor heterogeneity before treatment are both associated with better survival outcomes, 
while tumors with lower levels of tumor heterogeneity are associated with a poor clinical outcome28, 29.

Leiomyosarcoma (LMS) with smooth muscle cell (SMC) differentiation is one of the most frequent soft tissue 
sarcomas (STS), a group of tumors that arise from connective tissue cells30. LMS develops due to frequent p53 
and RB1 pathway alterations31, 32 and a highly rearranged genome with a high number of chromosomal rear-
rangements. This leads to many copy number variations (CNV) and BP that are associated with poor outcome33. 
The stratification of LMS has long been based on histological measures like the Fédération Nationale de Centre 
de lutte contre le Cancer (FNCLCC) grading34 and is currently challenged by expression-based signatures31. 
Next-generation sequencing (NGS) has recently demonstrated the ability to identify clinically actionable genetic 
variants across many genes35. Current approaches in cancer genomics often use exome-seq to build a catalogue 
of mutations in multiple cancer types by sequencing hundreds of tumor samples in order to find diagnostic, 
prognostic, and therapeutic targets36. While this approach remains relevant in most cancer types, it is rapidly 
becoming insufficient in highly rearranged cancer types like LMS, where recurrent driver gene mutations are 
very rare37 and it is more likely that their rearranged genome is actually the driving force of oncogenesis38. Here 
we used whole genome sequencing (WGS) of LMS tumor samples to identify SV across all tumor genomes and 
to infer the mechanisms of GI at the genome level.

We therefore sought to evaluate whether transcription complexes, as well as NBD and DNA repeats, play 
any role in LMS GI. To do so, we used WGS data to compare LMS structural variations (SV) BP to known sites 
of transcription complexes, NBD and DNA repeats, and evaluated whether these BP are enriched more than 
expected. We present Hscore, a new Hotspotness magnitude scale. Hscore measures the propensity of a given 
DNA element to break more than expected with a random breakage model. By using this approach, we have 
developed a combination of both transcription-associated and replication-associated markers of GI and tested 
whether both measures are prognostic of metastatic risk in LMS. Furthermore, we assessed whether the transcrip-
tion- and replication-associated markers are predictive of chemotherapeutic response in LMS.

Results
Since the LMS genome is highly rearranged, the question arises whether DNA breakages occur randomly or are 
due to mechanisms associated with structural and/or functional DNA elements and are thus specific to certain 
regions of the genome. To address this question, we tested the “hotspotness” of three different types of genomic 
DNA structure: regulatory DNA elements, and NBD and DNA repeats. We propose that Hscore may be used 
to assess the propensity of DNA elements to break more than expected by chance under the random breakage 
model (RBM) (Fig. 1A). Hscore for a given type of DNA element is defined as the − log10 of the probability of 
having more BP than those observed in those elements, given the total number of BP, the cumulative size of the 
DNA elements and the readable genome size (“Materials and methods” section). Hscore is very intuitive: the 
higher it is, the more significantly a given DNA element is more broken than expected. To determine whether 
a given genomic feature is a hotspot, we computed Hscore in sliding windows upstream and downstream and 
made profile plots (Fig. 1A; see “Materials and methods” section). Two significantly broken structures emerged: 
hotspots and hot regions. We define the characteristics of hotspots as follows: (1) DNA elements are significantly 
more broken than expected by chance (Hscore ≥ 3) while the immediate surrounding regions are not (Hscore < 3); 
(2) if the DNA elements and the immediate surrounding regions have a Hscore ≥ 3, a DNA element is considered 
as a hotspot if its Hscore is at least 1.5 times the Hscore of both surrounding regions. A hot region is inferred if 
an Hscore ≥ 3 is observed for both the DNA element and its surrounding regions, provided that Hscore of the 
DNA element is less than 1.5 times the Hscore of the surrounding regions.

Whole genome sequencing of 112 LMS (Supplemental Tables S1, S2) with our homemade SV detection 
pipeline (see “Materials and methods” section) allowed us to identify 24,870 BP forming 12,435 SV. Each SV 
is formed by 2 BP. Of all BP, 67.4% (16,764 BP) are implicated in intra-chromosomal SV (BPSVintra) and 
32.6% (8106 BP) in inter-chromosomal SV (BPSVinter). While most BP occur inside regulatory DNA elements 
(13,377/24,870 = 53.79%), some affect NBD (4902/24,870 = 19.71%) and others (3574/24,870 = 14.37% of BP) 
arise in DNA repeats. Taken together, a total of 66.4% (16,510/24,870) of LMS BP were identified in the DNA 
elements in this study.

The total BP count per LMS (TBPc) was highly skewed (ranging from 26 to 1200; mean = 222.1, median = 181; 
Supplemental Fig. S1A) and did not fit a normal distribution (Shapiro–Wilk test P = 1.4 × 10–12; Supplemental 
Fig. S1A), but TBPc follows a log-normal distribution (Shapiro–Wilk test P = 0.81; Supplemental Fig. S1B). This is 
not surprising since log-normal distributions are common in nature and reflect forces acting independently and 
whose interactions result in multiplicative effects39. In cancer, these forces may include genetic, environmental, 
physiological, immune, sub-cellular and supra-cellular constraints.
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NBD and DNA repeats are hotspots for DNA breakage in LMS.  NBD are DNA elements that adopt 
non-canonical DNA structures18. Sequences prone to form NBD are widespread in the human genome and are 
associated with GI40. The formation of NBD requires unwinding of the DNA sequence, as occurs during replica-
tion and transcription18. NBD comprise A-Phased Repeats (APR), Direct Repeats (DR), G-Quadruplex (GQ), 
Inverted Repeats (IR), Mirror Repeats (MR), Short Tandem Repeats (STR), Z DNA (Z) and RLoops Forming 
Sequences (RLFS). We found that all NBD except APR are hotspots (Fig. 1B), especially GQ which are so highly 
broken so that Hscore tends to infinity (P = 0).

The DNA repeats investigated in this study comprise high-copy repeats: MicroSatellite (MS), Low Complexity 
(LC), simple repeats (SR); and low copy repeats like Self Chain Segments (SCS), which we split into self-aligned 
(SCS-S) and gapped (SCS-G), Long Terminal Repeats (LTR) and Retro Transposons (RT). While SR, MS, LC are 
hotspots, the viral origin repeats LTR and RT are not (Fig. 1C). Concordantly, no viral insertion was observed 
in LMS genomes when using HGT tools (Ref.41 and data not shown). Furthermore, while SCS-S were hotspots, 
SCS-G were not.

Genes promoters are hotspots; gene enhancers are hot regions.  The promoters of transcription-
ally active genes have repeatedly been shown to recurrently harbor double-strand breaks (DSB)13. Furthermore, 
DNase Hyper sensitive (DHS) DNA elements as well as active chromatin marks have been shown to colocal-
ize with DSB42. The regulatory DNA elements used in this study comprise CpG islands (CpGi), Cis regulatory 
Modules (CRM), and DHS of promoter type (DHS_prom), of enhancer type (DHS_enh), of dyadic type (both 
enhancer and promoter signatures) (DHS_dyadic), and of other types (DHS_rest)43. We found that promoter-
associated DNA elements (i.e. DHS_prom and CpGi) are hotspots for DNA breakage (Fig. 1D) while DNA ele-
ments associated with enhancer activity (DHS_Enh) are hot regions (Fig. 1D). Furthermore, promoter-associ-
ated regulatory elements (CpGi, DHS_prom) break more significantly than Enhancers (DHS_enh), which break 

Figure 1.   Regulatory elements, non-B DNA (NBD) and DNA repeats are hotspots. (A) Random Breakage 
Model: hotspots are defined as DNA elements containing more BP than expected under RBM and more 
than surrounding regions. Hscore profile for DNA elements and sliding windows upstream and downstream 
for (B) Non-B DNA: R-Loops Forming Sequences (RLFS), a-Phased Repeats (APR), Direct Repeats (DR), 
G-quadruplex (GQ), Inverted Repeats (IR), Mirror Repeats (MR), Short Tandem Repeats (STR), Z-DNA (Z) 
and (C) DNA repeats: MicroSatellites (MS), Low Complexity DNA (LC), Simple Repeats (SR), Self-Chains 
Segements-self-aligned (SCS-S) Self-Chains Segements-Gaped (SCS-G), Long terminal repeats (LTR), 
RetroTransposons (RT), (D) regulatory elements: CpG islands (CpGi), Cis-Regulatory Modules (CRM), Dnase 
Hyper sensitive sites (DHS) of type dyadic (DHS_dyadic), Enhancer (DHS_enh), Promoter (DHS_prom), other 
types (DHS_rest). Horizontal red dashed line corresponds to Hscore threshold of 3 for hotspotness. (A) was 
drawn using LibreOffice Impress 1:6.0.7ubuntu0.18.04.10.
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more significantly than Dyadic regulatory elements (DHS_dyadic) and the rest of DHS (DHS_rest) (Fig. 1D). 
Interestingly, CRM, which comprises overlapping regulatory regions (promoters, enhancers, dyadic)44, is a hot-
spot and has an intermediate Hscore. This further underlines the robustness of our BP hotspotness magnitude 
scale. Finally, DHS which are not labeled to have any gene regulatory function (DNS_rest), are not significantly 
broken more than random (Fig. 1D). Taken together, these results show that DNA breakages are more enriched 
in promoters than in enhancers and dyadic regions. Furthermore, BP are more significantly enriched in open 
chromatin structures (DHS) with attributable gene regulatory functions like enhancers and promoters than 
DHS, with no attributable gene regulatory function, like DHS_res. Therefore, because DHS has an open DNA 
structure both inside and outside genes, we hypothesize that they do not break merely due to the openness of 
their chromatin but rather due to their genic context. We thus refined our analysis by splitting each DNA ele-
ment into two categories: located inside or outside genes.

Regulatory elements are almost exclusively “hot” inside genes and not outside them.  To 
address the impact of the functional genomic context of a DNA element on the BP frequency, we split them into 
those located inside genes from the transcription start site (TSS) to the transcription end site (TES) (including 
DNA elements with at least 1 bp overlapping with genes) and those located outside genes, and then computed 
Hscore for each group in sliding windows. We found that all regulatory elements (Fig. 2) were more significantly 
broken when they were located inside genes than outside, independently of their structure (sequence type like 
CpGi vs DNA–protein complexes) or function (promoter type vs enhancer type). CRM were always broken 
more frequently than by chance when located inside genes, with an Hscore of 67.82 inside genes and less than 3 
outside (Fig. 2A, Supplemental Table S3). Although CpGi located outside genes were slightly significantly bro-
ken (Hscore = 6.41), this significance was much higher when they were located inside the genes (Hscore = 83.30) 
(Fig. 2B), with a ratio of Hscores inside/outside genes (RHscore i/o) of 12.99 (Supplemental Table S3). Similarly, 
all types of DHS regulatory elements were broken more significantly inside genes than outside (Fig.  2C–F). 
These results suggest that the transcriptional and/or epigenetic context of genes strongly modulates the ability 
of DNA regulatory elements to harbor DNA BP. Since regulatory elements have an open DNA structure both 
inside and outside genes when they are active, we rule out the possibility that their propensity to harbor DNA 
BP is merely due to the openness of their chromatin.

NBD and DNA repeats are hotspots both inside and outside genes.  We also split NBD and DNA 
repeats into those located inside genes and those located outside them (Fig. 3). MR, IR, DR, and STR were 
significantly broken to a similar extent inside and outside genes (Ratio Hscore i/o 1.02, 1.12, 1.02, 1.13 respec-
tively) (Fig. 3A–D). While RLFS were highly significantly enriched in BP outside genes (Hscore = 66.24), they 
were even more significantly broken inside them (Fig. 3E) (Hscore = 185.41, RHscore i/o = 2.8) (Supplemental 
Table S3). GQ were also highly significantly enriched in BP outside genes (Hscore = 180.53) and tended to be 
more broken inside them (Hscore = 230.17, RHscore i/o = 1.27) (Fig. 3F). Z DNA tended to be more frequently 
broken outside genes than inside them (RHscore i/o = 0.73) (Fig. 4G). Hscores of DNA repeats located inside 
and outside genes were almost identical except for SCS-S, which were significantly more broken than random 
inside genes (Hscore = 8.94) but not outside them (Hscore = 1.18 < 3), while SCS-G were indistinguishable from 
random (Fig. 4). Together these results suggest that, except for SCS-S, GQ and RLFS, NBD and DNA repeats are 
insensitive to gene context and may cause GI by a mechanism largely independent from transcription and which 
is probably replication-dependent. Interestingly, GQ and RLFS share the properties of the three DNA element 
types: they are sensitive to their genic context as regulatory elements and are breakable when located outside 
genes, as are DNA repeats and NBD.

Not all LMS present BP distributed as hotspots.  The abovementioned results obtained on the whole 
cohort were global so we still did not know what happens in each patient. To evaluate the DNA breakage mecha-
nisms present in each patient, we computed Hscore for regulatory elements, NBD and DNA repeats in each LMS 
tumor sample and made a hierarchical clustering of LMS patients based on these Hscores (Fig. 5, see “Materials 
and methods” section). We found that not all LMS patients had BP distributed as hotspots and that there was a 
gradient of hotspotness. Interestingly, the level of hotspotness does not seem to correlate with total BP counts 
(Fig. 5) showing that Hscore is not a measure of tumor mutational burden, but rather a measure of the pro-
pensity of tumor DNA BP to be concentrated in given DNA elements. Furthermore, each LMS sample had its 
specific profile: while some patients had no detectable hotspots, others had BP hotspots mainly in the regulatory 
regions, and others still had them mainly in NBD and DNA repeats. There were even some patients who had 
them in both (Fig. 5). Interestingly, metastatic and non-metastatic patients were not evenly distributed over the 
gradient of hotspotness, the hotspot side of the heatmap having fewer metastatic events than the opposite side 
(Fig. 5). We therefore address the question of the relation between BP hotspotness and patient prognosis with 
different approaches in the next sections.

The LMS cohort can be stratified into clinically relevant groups.  Because (a) regulatory elements, 
NBD and DNA repeats have been thoroughly documented to impede transcription and replication in both 
a transcription-associated18 and replication-associated3 manner and to cause GI, and (b) GI is predictive of 
poor prognosis45, we hypothesized that there is a link between transcription- and replication-associated DNA-
breakage mechanisms and metastatic clinical outcome in LMS. To test this hypothesis, we sought to quantify the 
overall transcription-associated and replication-associated GI. We used our BP hotspotness magnitude scale and 
derived genomic indexes for both transcription-dependent and transcription-independent DNA-breakage and 
genome instability. As DR, STR, MR, IR, Z DNA, SR, MS and LC are BP-enriched irrespective of their position 
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inside or outside genes, we considered these elements as transcription-independent and thus as replication-
associated chromosomal instability elements (RACINe). Conversely, we considered RLFS, GQ, CpGi, CRM, 
SCS-S and DHS as transcription-associated chromosomal instability elements (TRACe), because they are more 
frequently broken than chance inside genes and not outside them. By consolidating TRACe and RACINe into 
one functional group and computing Hscores (see “Materials and methods” section), we derived a TRAC index 
(iTRAC) and a RACIN index (iRACIN), respectively. iTRAC and iRACIN allow the quantification of the overall 
contribution of RACINe and TRACe to DNA breakage and therefore to GI in each LMS patient. To address the 
relationship between iTRAC, iRACIN and metastatic clinical outcome, we developed a method called Iterative 
multi-threshold PARTioning (iPART) (see “Materials and methods” section).

First, we used iPART to establish a threshold for iTRAC and iRACIN that splits the LMS cohort into two 
groups with a maximum difference in MFS (Metastasis-Free Survival). Figure 6A,B left panels show that iTRAC 
has several thresholds giving P-values less than 0.05 (red horizontal dashed line), while iRACIN has none of 

Figure 2.   Regulatory elements are exclusively hot inside genes: Hscore for regulatory elements and sliding 
windows either inside (black) or outside genes (red). (A) Cis-Regulatory Modules (CRM). (B) CpG islands 
(CpGi). (C) DNase Hyper Sensitive sites (DHS) of type promoter. (D) DHS of type enhancer. (E) DHS of 
type dyadic. (F) DHS of other types. Horizontal red dashed line corresponds to Hscore threshold of 3 for 
hotspotness.
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Figure 3.   NBD are hotspots both inside and outside genes: Hscore for NBD and sliding windows either inside 
(black) or outside (red) genes. (A) Mirror Repeats (MR). (B) Inverted repeats (IR). (C) Direct Repeats (DR). (D) 
Short Tandem Repeats (STR). (E) R-loops forming sequences (RLFS). (F) G-quadruplex (GQ). (G) Z DNA (Z). 
(H) A-phased Repeats (APR). Horizontal red dashed line corresponds to Hscore threshold of 3 for hotspotness.
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Figure 4.   DNA repeats hotspotness relative to genes is dependent upon their type. High-copy DNA repeats: 
(A–C). (A) Simple Repeats (SR). (B) MiscoSatellites (MS). (C) Low Copy repeats (LCR). Viral orgin DNA 
repeats: (D) Retro-Transposons (RT). (E) Long Terminal Repeats (LTR). Low copy repeats: Selfchains segments 
(SCS) (F,G). (F) Selfchains segments of type self aligned (SCS-S). (G) Selfchains segments of type Gapped (SCS-
G). Horizontal red dashed line corresponds to Hscore threshold of 3 for hotspotness.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23429  | https://doi.org/10.1038/s41598-021-02787-x

www.nature.com/scientificreports/

them. We also noted the presence of several local minima suggesting that there could be more than one threshold 
to split the LMS cohort into groups of different MFS. To test this idea, we applied iPART using all combinations 
of two thresholds from all local minima below 0.10 for iTRAC and 0.3 for iRACIN (blue horizontal dashed 
line) (materials and methods). Accordingly, both iTRAC and iRACIN significantly stratified the LMS cohort 
(P = 3.08 × 10–5 and P = 4.13 × 10–5, respectively) into three groups with distinct outcomes (Fig. 6A,B right panels). 
Strikingly, it was the groups of LMS with medium iTRAC or medium iRACIN which had the most unfavorable 
outcome (Fig. 6A,B right panels).

We also applied iPART on TBPc, nBPSVintra, nBPSVinter. Although TBPc, nBPSVintra and nBPSVinter were 
slightly significant (Supplemental Fig. S2), they were not comparable to the level of significance we obtained by 
iTRAC and iRACIN. Thus, iTRAC and iRACIN have far more added value in the stratification of metastatic risk 
in LMS than mere BP counts, further stressing the relevance our approach.

Mixed transcription and replication‑associated genomic instability classifier (MAGIC).  To 
translate these results into a clinically relevant stratification tool, we sought to integrate both iTRAC and iRA-
CIN into one classifier called the Mixed transcription- and replication-associated genomic instability classifier 
(MAGIC). Given that both indexes have high and comparable statistical significance in stratifying LMS, we con-
sidered at high risk (MAGIC High-risk) any patient classified as medium level by either iTRAC or iRACIN, and 
the rest of patients as low risk (MAGIC Low-risk). MAGIC achieved a very high level of significance in stratify-
ing LMS samples (P = 8.75 × 10–8; Fig. 7A), with a median MFS for the MAGIC High-risk group of 1.8 (CI = [1.52, 
3.61]) which was 5 times lower than for MAGIC Low-risk group (10.5, CI = [5.78, NA]). Then Leave-one-out 
cross-validation procedure (Celisse 2014) validated this data demonstrating that both iTRAC and iRACIN as 
well as the resulting MAGIC predictions are strongly significant (Supplemental Fig. S4).

MAGIC outperforms histologic FNCLCC and molecular CINSARC gradings.  The histological 
FNCLCC grading system predicting patient evolution is the current standard in sarcomas34, 46. Complexity INdex 
in SARComa (CINSARC), which is the best molecular signature of sarcomas, is challenging the histological gold 

Figure 5.   Not all LMS present BP distributed as hotspots. Unsupervised hierarchical clustering of LMS patients 
and DNA elements using Hscores. Used Euclidian distance on Hscores as a distance measure and the complete 
method as clustering method. The subtrees in the resulting dendrogram are sorted based on the average distance 
of subtrees at every merging point. Heatmap was generated using pheatmap_1.0.12 package of R software 
(http://​www.r-​proje​ct.​org/​index.​html).

http://www.r-project.org/index.html
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standard and is currently under clinical investigation for stratification31. Both approaches individually did not 
significantly split the LMS cohort into groups with different metastatic evolution (Fig. 7B,C). This finding pre-
cludes the introduction of either of these grading systems in multivariate analysis, so we conclude that MAGIC 
strongly outperforms both the FNCLCC grading system and CINSARC in LMS metastasis risk stratification.

iPART stratifies a Pan‑Cancer cohort of twelve cancer types significantly into clinically rele‑
vant groups.  The intermediary level of GI resulting in poor clinical outcome compared to low and high 
levels was also reported in a Pan-Cancer study of 12 cancer types (TCGA cohort)47. The authors (Andor et al.) 
used CNV abundance as a measure of GI and found that CNV affecting between 25 and 75% of a tumor’s 
meta-genome was predictive of poor survival. We thus hypothesized that what we observed in LMS might be a 
general mechanism associated with tumor aggressiveness. To tackle this question in a reasonable time scale with 
our computational resources, we used the iPART algorithm directly on CNV abundance from the Pan-Cancer 
study47 as a proxy for iTRAC/iRACIN. Those authors used the arbitrary and commonly used method of split-
ting the data into quartiles based on thresholds of 25%, 50%, and 75% to segment the cohort into four groups 
based on CNV abundance in the tumor meta-genome. Using iPART, we split their cohort into 2, 3, 4, 5, 6, 7 and 
8 groups and evaluated the influence of each split on the risk of mortality using the Log-rank test and hazard 
ratio (Fig. 8, Supplemental Fig. S4). The best data segmentation corresponded to 5 groups split with the log-rank 
test P = 6.9 × 10–10 and maximal HR 4.7 (P = 3.42 × 10–9) (Supplemental Fig. S4). On the other hand, the data seg-
mentation applied by Andor et al. had a log-rank test P = 5 × 10–6 (Fig. 5b from Ref.47) and a maximum HR no 
exceeding 1.9 with P < 0.005 (Fig. 5c from Ref.47). Thus, as Andor et al. showed previously, it is the intermediate 
group (G.3) which is associated with the worst overall survival and presents the highest HR (Fig. 8; HR 4.75, 
P = 3.42e−9).

Figure 6.   Stratification of the LMS cohort into Low, Medium and High levels of TRAC and RACIN using 
iPART. (A) iTRAC. Left, Kaplan–Meier P-values in function of iTRAC single threshold dividing the LMS 
cohort into Low and High groups (black solid line). Red dashed horizontal line corresponds to 0.05 arbitrary 
and commonly accepted significance P-value threshold. Blue dashed horizontal line corresponds to the P-value 
threshold we considered for P-values that will be included in combinatorial double threshold division of the 
LMS cohort into Low, Medium and High groups (“Materials and methods” section for more details). Vertical 
green dashed lines correspond to the best combination of thresholds (tl = 0.99, th = 2.29) spliting the LMS 
cohort into Low, High, Medium groups. Right, Kaplan–Meier plot for iTRAC stratified LMS cohort into Low, 
Medium and High based on the best combination of thresholds tl = 0.99 and th = 2.29. (B) iRACIN. Both plots 
correspond to the same procedure as A. tl and th for iRACIN are 0.74 and 1.30 respectively. tl threshold Low, Th 
threshold High.
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iTRAC stratifies chemotherapeutic response in LMS cohort.  Chemotherapy remains controversial 
in LMS since no clinical trial has ever demonstrated its benefit. The criticism is that candidates, i.e. patients 
with a poor prognosis and responding to chemotherapy, are still not efficiently selected. We therefore sought to 
address this question in the 112 LMS in our cohort: 18 underwent chemotherapy (14 adjuvant, 1 neoadjuvant 
and 3 palliative), 18 patients were not annotated (NA) and 76 patients were not treated with chemotherapy. 
Because the level of GI influences the efficacy of several cancer treatments23, 26, 27, we sought to quantify the 
contribution of TRAC and RACIN to the chemotherapeutic response in LMS. We first split the MAGIC risk 
groups according to their chemotherapeutic treatment status, i.e. Yes (18 pts) or No (76 pts). We found that 
MAGIC did not significantly stratify the chemotherapeutic response in LMS (Fig. 9A) as these patients, although 
similar in their metastatic risk, have rather different underlying GI mechanims. We then split each of the Low, 
Medium, and High groups of iTRAC, iRACIN according to chemotherapeutic treatment status. Interestingly, 
while patients in the Low risk iTRAC group receiving chemotherapy had a poorer prognosis (HR 4.47, CI [1.65, 
12.08], P = 0.0032), no therapeutic benefit was found in the Medium and High risk iTRAC groups (Fig. 9B). In 
the High risk iTRAC group, there was a tendency for chemotherapy to be beneficial, but there was not enough 
statistical power (only three events in the chemotherapeutic arm) to test this hypothesis. Further patient inclu-
sion would be needed to test the relevance of the prediction of the response to chemotherapy. Conversely, none 
of the iRACIN groups was relevant for stratifying chemotherapeutic response, again probably due to the small 
sample of treated patients (Fig. 9C). Interestingly, the ability of iTRAC to stratifiy chemotherapeutic response in 
LMS remains significant using overall survival (OS) as clinical endpoint (Supplemental Fig. S5) further stressing 
the relevance of our approach.

Discussion
This study describes new tools, measures and insights that address the question of the clinical outcome and 
its relationship with genomic rearrangement. By deciphering the mechanisms of GI, we have produced the 
iTRAC and iRACIN indexes which account for transcription- and replication-related GI. We also generated 
the MAGIC classifier and demonstrated its prognostic value for LMS in outperforming both the current gold 
standard histologic and molecular challenger grading systems. Moreover, our indexes are potentially applicable 
to the Pan-Cancer cohort, as shown by the significant prognosis we established in twelve different cancer types 
using iPART and CNV abundance as a proxy for iTRAC/iRACIN.

Application of Hscore on TRACe and RACINe as a holistic approach to measuring GI.  Recent 
studies have used different GI scores and indexes to predict clinical outcome and to define homologous recombi-

Figure 7.   MAGIC outperforms CINSARC and FNCLCC in the stratification of metastatic risk in LMS cohort. 
Metastasis-free survival curves of LMS cohort stratified by (A) MAGIC, (B) CINSARC, (C) FNCLCC.
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nation (HR)-deficient samples48–54. However, most of these studies were merely based on the per patient counts 
of BRCA1/2 mutations, genome SNPs, loss of heterozygosity (LOH), or specific structural variations (CNV, Telo-
meric Allelic Imbalance, etc.). These studies assume that an a priori selection of chosen genomic alteration types 
can recapitulate the dynamics of GI in a tumor that is complex, heterogeneous and subject to selection pressure 
from the tumor micro-environment. Here we present a new measure of GI that is based on the quantification 
of all identified DNA BP in a tumor sample, irrespective of their SV type. We introduce the notion of Hscore, 
which is a BP hotspotness magnitude scale that measures the propensity of a given functional and/or structural 
genomic DNA element to harbor BP more than expected by chance. We also applied Hscore on TRACe and 
RACINe as a holistic approach to measure GI based on measuring the steady-state equilibrium between DNA 
damage and repair. The method quantifies the residual DNA BP remaining after unsuccessful repair, irrespective 
of SV type, and quantifies the relative contribution of two main contributors to GI: TRAC and RACIN. Hscore is 
measured on all tumor BPs without any biological-rational selection bias toward SV types. Values are compara-
ble between different DNA elements in a patient and between patients. The higher the Hscore, the more unlikely 
it is that the observed BPs are due to random events. Therefore, the likelihood is greater that they are due to the 
structural and/or functional properties of those DNA elements.

MAGIC: towards a new standard for LMS grading?  LMS prognostication is still challenging and man-
datory to evaluate which therapeutic strategy can benefit which patient. Since some patients have a poor progno-
sis associated with a transcription stress and others with a replication stress, we produced a simple patient-strat-
ification tool called MAGIC. While neither histologic FNCLCC nor molecular CINSARC grading are suitable 
predictive methods in an LMS cohort, MAGIC achieved a high level of significance, with the high-risk group 
having a median MFS = 1.8 years, i.e. fivefold lower than the low-risk group: 10.5 years. MAGIC could be used to 
spot patients with a high risk of metastasis. Prospective validation of this hypothesis is now mandatory.

Figure 8.   Application of iPART algorithm to the TCGA Pan-Cancer cohort of 12 cancers of Andor et al.47. 
(A) Kaplan–Meier P-values in function of CNVAbundance single threshold dividing the TCGA Pan-Cancer 
cohort into Low and High groups (black solid line). Green vertical lines correspond to the four thresholds 
giving the best data segmentation (see text and “Materials and methods” section for details) into 5 groups, which 
correspond from left to right to: 0.14, 0.45, 0.67, 0.86. (B) Kaplan–Meier plot showing the stratification of the 
TCGA cohort into 5 clinically relevant groups. (C) Hazard Ratio (HR) with 95% confidence interval of risk of 
mortality of each group relative the reference group (G.1). P-values of each HR are shown above each condition. 
Horizontal dashed line corresponds to a Hazard ratio of 1.
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Prognostic relevance of iTRAC and iRACIN for metastatic risk stratification of other can‑
cers.  Unexpectedly, the risk of metastasis was found to follow a lambda (Λ) shape with the increase in iTRAC 
and iRACIN: both low and high GI levels correspond to a lower metastatic risk, while a medium level indicates 
a higher metastatic risk. Interestingly, similar results were previously reported in a Pan-Cancer analysis of 12 
cancer types47 concerning the abundance of copy number variations (CNV). We improved Andor et al. results 
using iPART and we further highlighted the added value of quantifying transcription- and replication-associated 
GI and iPART algorithm versus a simple SV count. These results strongly suggest that our approach would work 
on different cancer types and and different GI measures on other highly remodeled cancer genomes.

Predictive relevance of iTRAC and iRACIN for chemotherapeutic response in LMS.  The overall 
contribution of curative and adjuvant cytotoxic chemotherapy to 5-year survival in adults was estimated to be 
2.3% in Australia and 2.1% in the USA55. Furthermore, it has been estimated that any class of cancer drugs is 
ineffective in 75% of patients (Personalized Medicine Coalition; The personalized medicine report Opportunity, 
Challenges, and the Future 2017; http://​www.​perso​naliz​edmed​icine​coali​tion.​org/​Userf​iles/​PMC-​Corpo​rate/​file/​
The-​Perso​naliz​ed-​Medic​ine-​Repor​t1.​pdf). Thus, predicting which patients are eligible for which treatment and 
those who are not is the holy grail of precision medicine. Here we show that chemotherapy for patients with a 
low iTRAC would be detrimental for their MFS and should therefore be prohibited. In addition, chemotherapy 
is likely to have no clinical benefit for patients with a medium iTRAC so another therapeutic strategy should 
be used for them. No conclusion can be drawn for patients with a high iTRAC because of the low statistical 
power of the log-rank test due to the low number of patients with a high iTRAC which underwent chemo-
therapy. Nevertheless, high-iTRAC patients would probably benefit from chemotherapy and more inclusions 
are needed to address this question. On the other hand, iRACIN was not predictively relevant for stratifying the 
chemotherapeutic response. Nevertheless, we expect it to be relevant for stratifying targeted therapies based on 
targeting replication and replication-associated repair. We do not consider using MAGIC in this setting as it is 
a combination of groups of patients albeit similar in their metastatic risk occurrence, but who have different GI 
mechanisms. Therefore, iPART/iTRAC/iRACIN could serve as a toolset to tackle the question of the relation of 
GI to therapeutic intervention based on the genomic processes undermining genomic integrity.

Figure 9.   iTRAC stratifies chemotherapeutic response in LMS but not iRACIN. MFS curves in LMS groups of 
(A) MAGIC, (B) iTRAC and (C) iRACIN stratified by chemotherapeutic treatment.

http://www.personalizedmedicinecoalition.org/Userfiles/PMC-Corporate/file/The-Personalized-Medicine-Report1.pdf
http://www.personalizedmedicinecoalition.org/Userfiles/PMC-Corporate/file/The-Personalized-Medicine-Report1.pdf
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Targeted therapy as a therapeutic strategy in LMS.  Our understanding of GI may serve both for 
prognosis and to orient the choice of therapeutic agent. In patients with germline BRCA1 or 2 mutations, PARP 
inhibitors have led to major therapeutic advances in patients with ovarian cancer56 and to a lesser extent, breast 
cancer57 over the past years. Furthermore, it has been proposed that most LMS tumors display hallmarks of 
“BRCAness”, including alterations in homologous recombination DNA repair genes, enrichment of specific 
mutational signatures, and cultured LMS cells sensitive to olaparib and cisplatin58. Thus, PARP1 inhibitors are 
a candidate treatment in LMS. The use of iTRAC/iRACIN in clinical settings would allow the selection of LMS 
patients who potentially would have a significant therapeutic response to PARP1 inhibitors.

Future directions.  Given the far-reaching consequences of GI for treatment success, therapeutic choices 
and clinical care, an accurate measure of GI and its dynamics is paramount in precision medicine. The develop-
ment of robust biomarkers enabling GI dynamics to be captured is crucial if we are to leverage the potential of 
GI for patient stratification purposes and for exploiting this feature for making therapeutic choices. Deriving 
minimally invasive approaches that enable clinicians to assess whether GI is at play within a given tumor sample 
might be crucial for its efficient exploitation in clinical settings. Recent advances in whole genome/whole exome 
sequencing of formalin-fixed, paraffin-embedded (FFPE) tissues allows the application of this approach in rou-
tine clinical settings. Finally, prospective findings now need to be validated by measuring iTRAC/iRACIN in 
circulating tumor DNA (ctDNA) or in circulating tumor cells (CTC) and in subsequent clinical trials.

Materials and methods
Samples.  LMS Samples (112) used in this study were collected as part of the ICGC program (International 
Cancer Genome Consortium; https://​icgc.​org/) with patient consent. Samples were frozen tissues provided 
by pathologists and a blood sample for each included patient provided by medical oncologists. All cases were 
systematically reviewed by expert pathologists of the French Sarcoma Group according to the World Health 
Organization recommendations59.

DNA extraction.  Genomic DNA from frozen samples was isolated using a standard phenol–chloroform 
extraction protocol60. DNA was quantified using a Nanodrop 1000 spectrophotometer according to manufac-
turer’s recommendations (Thermo Scientific, Waltham, MA, USA). Blood material from included patients was 
also available. Genomic DNA from blood samples was extracted using customized automated purification of 
DNA from compromised blood samples on the Autopure LS protocol according to the manufacturer’s recom-
mendations (Qiagen, Hilden, Germany), with increased centrifugation of 10 min for DNA precipitation and 
DNA wash.

Whole genome sequencing and analysis.  To construct short-insert paired-end libraries, a no-PCR 
protocol was used with the TruSeq™DNA Sample Preparation Kit v2 (Illumina Inc., San Diego, CA, USA) and 
the KAPA Library Preparation kit (Kapa Biosystems, Basel, Switzerland). Briefly, 2 µg of genomic DNA were 
sheared on a Covaris™ E220, size-selected and concentrated using AMPure XP beads (Agencourt, Beckman 
Coulter, Brea, CA, USA) in order to reach a fragment size of 220–480 bp. Fragmented DNA was end-repaired, 
adenylated and ligated to Illumina-specific indexed paired-end adapters.

DNA sequencing was performed in paired-end mode in lanes of HiSeq2000 Flowcell v3 (2 × 100 bp) or Flow-
cell v4 (2 × 125 bp) or v4 (2 × 125 bp) or in sequencing lanes of NovaSeq 6000 Flowcell S4 (2 × 150 bp) (Illumina 
Inc., San Diego, CA, USA) to analyze tumor or matched normal blood samples (from the same patient) and to 
reach a minimal yield of 145 or 85 Gb, respectively. Two tumor samples (LMS2T and LMS5T) were sequenced 
in 20 lanes of HiSeq2000 Flowcell v3 to reach a minimal yield of 560 Gb. Image analysis, base calling and qual-
ity scoring of the run were processed using the manufacturer’s software Real Time Analysis (RTA 1.13.48) and 
followed by generation of FASTQ sequence files by CASAVA (Illumina Inc., San Diego, CA, USA).

DNA reads were trimmed of the 5ʹ and 3ʹ low-quality bases (PHRED cut-off 20, maximum trimmed size: 
30 nucleotides (nt)) and sequencing adapters were removed with Sickle2 (Joshi NA, Fass JN. 2011 available at 
https://​github.​com/​najos​hi/​sickle). Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ 
files (Version 1.33) [Software]. Available at https://​github.​com/​najos​hi/​sickle)​and SeqPrep3 (J. St. John, SeqPrep. 
(2011) Available at https://​github.​com/​jstjo​hn/​SeqPr​ep), respectively. Then, DNA curated sequences were aligned 
using bwa v-0.7.1561 with default parameters on the Human Genome version hg3862 (http://​genome.​ucsc.​edu/ or 
https://​www.​ncbi.​nlm.​nih.​gov/​grc/​human). Thus, aligned reads were filtered out if their alignment score was less 
than 20 or if they were duplicated PCR reads, with SAMtools v1.3.163 and PicardTools v2.18.2 (“Picard Toolkit.” 
2019. Broad Institute, GitHub Repository. http://​broad​insti​tute.​github.​io/​picard/; Broad Institute), respectively.

Random breakage model, Hscore, readable genome size.  The readable genome is represented as a 
single interval of length L in base pairs (bp). The uniform probability Pu of any genomic position to carry a BP 
is the total number of BP (n) divided by L: Pu = n/L. For a given genomic interval of size (Li) and number of BP 
(ni), its probability to harbor ni BP under the random breakage model (RBM) is computed by the probability 

mass function of binomial distribution as: f (x) =
(

n
x

)

px
(

1− p
)(n−x)

; where x = ni, n = Li, p = Pu. The proba-

bility of observing more than ni BP under RBM is defined as P(X > ni) = 1 − P(X ≤ ni) = 1 – 
∑n

i=0
f (i) ; where 

n = ni, and X is the random variable accounting for the number of observed BP. For the bed file of each DNA 
element, overlapping intervals were merged (bedtools) and then BP number (ni) and interval size (Li) were 

https://icgc.org/
https://github.com/najoshi/sickle
https://github.com/najoshi/sickle)and
https://github.com/jstjohn/SeqPrep
http://genome.ucsc.edu/
https://www.ncbi.nlm.nih.gov/grc/human
http://broadinstitute.github.io/picard/
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computed as follows: ni was computed as the sum of BP in all the merged intervals and Li was computed as the 
sum of all merged interval sizes. Hscore is then computed as the − log10 of P(X > ni) under RBM.

We define readable genome size as the total ungapped genome length as defined at https://​www.​ncbi.​nlm.​
nih.​gov/​assem​bly/​GCF_​00000​1405.​26/. It is equal to 2,948,611,470 bp.

Breakpoint identification and detection of structural variants.  Structural variants (SV) were 
detected from paired tumor/normal whole genome high-quality sequencing data. Paired-end reads were aligned 
using Bowtie v2.2.1.064, which is a sensitive local option allowing soft-clipped sequences. The algorithm has 
three main steps: (i) identification of potential breakpoints, (ii) characterization of the second side of the break-
points, and (iii) selection of high-confidence breakpoints. All parameters were set to analyze 60× tumor and 30× 
normal sequencing depth. Very conservative filters were used to minimize false positive detection.

	 (i)	 Identification at this step, reads with at least one soft-clipped end were analyzed as singletons. A position 
was considered as a potential breakpoint if it was covered by at least 4 soft-clipped reads, 5 soft-clipped 
bases (with at least two occurrences of two different bases), and if they represented more than 5% of 
the total amount of reads at this position in the tumor sample. We selected potential somatic events by 
discarding positions covered by at least one read and one base in a surrounding 5-nucleotide window 
in the normal sample. We refer to them as the “first side” of the breakpoint.

	 (ii)	 Characterization to determine the genomic positions of the soft-clipped sequence from selected reads, 
we used the UCSC blat server65. If no match was returned, the reverse complement sequence was pulled 
to test. If there was still no match, the BAM file was investigated for some soft-clip somatic position 
around the discordant or oversized-insert read mate (hereafter named abnormal) location from the first 
side of the breakpoint. Because of the small size of the soft-clipped sequence, multiple matches can be 
found. We used soft-clipped abnormal read mates to select matches with the most coherent chromosomic 
locations. We refer to them as the “second side” of the breakpoint.

	 (iii)	 Selection Positions detected from both the first and second sides (in a 5-nucleotide window) were defined 
as the common pool. We considered as artifacts (due to repeat regions for instance) any couples of posi-
tions covered with reads and associated soft-clipped sequences separated by fewer than 15 nucleotides 
and discarded them. We classified the breakpoints in three groups: high-confidence breakpoints, break-
points needing investigation, and unique position breakpoints. If a breakpoint was covered by reads and 
associated soft-clipped sequences having both positions belonging to the common pool, it was classified 
in the first group. If a breakpoint was covered by reads and associated soft-clipped sequences having 
only one of the positions belonging to the common pool, it was classified in the second group. Then the 
missing position was searched among the filtered positions. If it was present in the normal sample, the 
position was discarded and the breakpoint was completed otherwise. Finally, the third group corresponds 
to breakpoints with both sides outside the common pool and considered as unique: these were discarded. 
The sides of breakpoints were sorted according to their chromosomic positions to avoid duplicates.

Data collection.  The following DNA elements were considered in the present analysis: DNA repeats com-
prising MicroSatellite (MS), Simple Repeats (SR), Low Complexity (LC), Self-Chain segments (SCS) which 
were classified into self-aligned inverted chains SCS (SCS-S) and gapped SCS (SCS-G), Long Terminal Repeats 
(LTR), and Retrotransposons (RT); Non-B DNA comprising A-Phased Repeats (APR), Direct Repeats (DR), 
G-quadruplex (GQ), Inverted Repeats (IR), Mirror Repeats (MR), Short Tandem Repeats (STR), Z-DNA (Z) 
and R-Loops Forming Sequences (RLFS); and Regulatory DNA elements comprising CpG islands (CpGi), cis-
regulatory modules (CRM), DNase I hypersensitive site (DHS) of promoter type (DHS_prom), DHS of enhancer 
type (DHS_enh), DHS of dyadic type (both enhancer and promoter signatures) (DHS_dyadic), and DHS of 
other types (DHS_rest).

Data for CpG islands, microsatellites, simple repeats, low complexity, retrotransposons, long terminal repeats, 
self-chains and sequencing gaps were obtained from the UCSC Genome Browser website (http://​genome.​ucsc.​
edu/; genome assembly hg38). All Non-B DNA except RLFS were generated using the non-B DNA research tool 
from the non-B DNA database66. RLFS data were generated using QmRLFS-finder67. CRM data were obtained 
from Remap201844 and data were downloaded from (http://​pedag​ogix-​tagc.​univ-​mrs.​fr/​remap/). DNase I-acces-
sible regulatory regions (with − log10(p) ≥ 2) were downloaded from the roadmap epigenomics project at https://​
perso​nal.​broad​insti​tute.​org/​meule​man/​reg2m​ap/​Honey​Badge​r2_​relea​se/ and coordinates were converted from 
genome assembly hg19 to hg38 using Liftover, the UCSC coordinates conversion tool68.

TRAC index/RACIN index.  The DNA elements were sorted in separate indexes depending on whether 
their enrichment in BP was dependent or not on their presence inside or outside the genes (see “Ingene/outgene 
split” section). DNA elements enriched in BP independently of their position inside or outside the genes were 
sorted as Replication-Associated Chromosomal INstability elements (RACINe). DNA elements enriched in BP 
according to their position inside the genes were sorted as TRanscription-Associated Chromosomal instability 
elements (TRACe). For each TRACe and RACINe element, we pooled all bed files of the corresponding DNA 
elements into one file and sorted them according to interval positions (bedtools) and merged (bedtools) all over-
lapping intervals to obtain the corresponding index iTRAC and iRACIN, each as a single bed file. BP counts and 
interval sizes were computed for each index. These were then used to compute Hscores under RBM.

Sliding windows.  For each DNA element (sliding window 0 in Figs. 3, 4, 5), each genomic feature was 
shifted (bedtools) by 100% its length on the positive (+) DNA strand (sliding window + 1 in Figs. 3, 4, 5) and 

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/
http://genome.ucsc.edu/
http://genome.ucsc.edu/
http://pedagogix-tagc.univ-mrs.fr/remap/
https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2_release/
https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2_release/
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on the negative (−) DNA strand (sliding window − 1 in Figs. 3, 4, 5) and Hscore was computed. This proce-
dure was repeated by shifting each feature ± 2 × 100% (sliding window + 2, sliding window − 2), ± 3 × 100%, 
until ± 8 × 100%.

Heatmap.  Hscore was computed with Holm’s adjusted P-values procedure. Two patients (LMS78T and 
LMS131T) had maximal Hscores of 170.53 and 50.16 while all the other patients had a maximal Hscore less than 
39. Therefore, the heatmap was unexploitable as only these two maximal data points were visible. For the sake of 
clarity, Hscores of patients LMS78T and LMS131T were normalized by dividing them by 170.53 and multiplying 
them by 39.

Ingene/outgene split.  A DNA element was considered as inside a gene if overlapped by at least 1 bp the 
gene interval delimited by its Transcription Start Site (TSS) and Transcription End Site (TES). Gene coordinates 
were taken from curated RefSeq entries from the UCSC table browser page (https://​genome.​ucsc.​edu/​cgi-​bin/​
hgTab​les; group = genes and genes prediction; track = NCBI RefSeq; table = RefSeq Curated). Only genes that had 
expression data in these tumors were considered (for list of genes, see Supplemental Table S4).

SCS‑S/SCS‑G.  Self-chains (SC) were prepared as in Ref.69 except that we split SC segments (SCS) into those 
are self-aligned (SCS-S) and those are gapped (SCS-G) that is having spacing intervals separting each pair of SC. 
SCS are defined as the segment of any paired SCs in the same chromosome and their spacing gap. The paired SCs 
located in different chromosomes and those in the same chromosome but having long spacing intervals (SCS 
size 30 kb) were filtered out to account only for local interactions. In addition, any SCS-S/SCS-G overlapping 
with the human genome gaps and segmental duplications was further filtered out.

Statistical analysis.  All statistical tests and the heatmap were carried out using R (R Core Team (2020); 
R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 
Austria;http://​www.r-​proje​ct.​org/​index.​html).

Leave‑one‑out cross‑validation.  Each time one patient was removed from the cohort of patients, thresholds of 
iTRAC and iRACIN was computed and used to classify the removed patient into Low, Medium, or High.

iPART​.  We consider iPART (Iterative multi-thresholds PARTitioning) to be an unsupervised decision tree 
(UDT). It is a method that combines the properties and objectives of both unsupervised clustering and decision 
trees (DT). Hence, iPART looks for thresholds that maximize the differences in groups instead of computing 
pairwise distances and constructing hierarchical clusters. It resembles DT and regression trees (RT) by using 
thresholds to split groups. It differs from DT in that it is unsupervised. It also differs from RT in that it does 
not attempt to predict quantitative variables. The fundamental difference with both RT and DT is its ability to 
use binary (splitting data into two groups) and ternary (splitting data into three groups) modes, i.e. a crucial 
feature in our method. It also differs from DT and RT in using the Kaplan–Meier (KM) estimate instead of the 
GINI purity index or information gain index and sum of squared residuals for DT and RT, respectively. It also 
resembles unsupervised machine learning like hierarchical clustering and k-means by aiming to find natural 
patterns/groups in data. On the other hand, it differs from them in that it does not compute pairwise distances 
or try to construct groups by minimizing their intra-group variance. Instead, it iterates all possible thresholds, 
find thresholds that maximize the difference between the split groups in terms of the speed at which metastatic 
events occur in the two groups by minimizing the P-value of the KM test. Briefly, it establishes natural frontiers 
that maximize the differences between groups instead of constructing groups that minimize intra-group and 
overall variance.

Ethics declaration.  The ethics of this study was validated by French committee for protection of persons 
(CPP).
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