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Microtubule dynamics is modulated by many cellular factors including stathmin family proteins. Vertebrate stathmins sequester two ab-tubulin heterodimers into a tight complex that cannot be incorporated in microtubules. Stathmins are regulated at the expression level during development and among tissues; they are also regulated by phosphorylation. Here, we study the dissociation kinetics of tubulin:stathmin assemblies in presence of different tubulin-binding proteins and identify a critical role of the Cterminus of the stathmin partner. Destabilizing this C-terminal region may represent an additional regulatory mechanism of the interaction with tubulin of stathmin proteins.

later identified as a microtubule destabilizing factor [START_REF] Belmont | Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules[END_REF], forming a tight complex with two protofilament-like tubulin molecules which become incompetent for microtubule assembly [START_REF] Jourdain | Stathmin: a tubulin-sequestering protein which forms a ternary T2S complex with two tubulin molecules[END_REF][START_REF] Steinmetz | Op18/stathmin caps a kinked protofilament-like tubulin tetramer[END_REF]. Although a direct microtubule destabilizing effect of stathmin has been proposed [START_REF] Howell | Dissociation of the tubulin-sequestering and microtubule catastrophe-promoting activities of oncoprotein 18/stathmin[END_REF][START_REF] Gupta | Mechanism for the catastrophe-promoting activity of the microtubule destabilizer Op18/stathmin[END_REF], its intracellular concentration (up to 10 µM [START_REF] Larsson | Op18/stathmin mediates multiple region-specific tubulin and microtubule-regulating activities[END_REF]) as compared to that of tubulin (about 24 µM [START_REF] Gard | Microtubule assembly in cytoplasmic extracts of Xenopus oocytes and eggs[END_REF]) is compatible with a pure tubulin-sequestering activity [START_REF] Jourdain | Stathmin: a tubulin-sequestering protein which forms a ternary T2S complex with two tubulin molecules[END_REF][START_REF] Amayed | The effect of stathmin phosphorylation on microtubule assembly depends on tubulin critical concentration[END_REF]. Whereas stathmin is present in many cells, its expression is highly variable during development and among tissues [START_REF] Koppel | Developmental tissue expression and phylogenetic conservation of stathmin, a phosphoprotein associated with cell regulations[END_REF], constituting a first level of regulation. It is also regulated by phosphorylation on four serine residues, which lowers the affinity for tubulin [START_REF] Amayed | The effect of stathmin phosphorylation on microtubule assembly depends on tubulin critical concentration[END_REF][START_REF] Curmi | The stathmin/tubulin interaction in vitro[END_REF][START_REF] Honnappa | Control of intrinsically disordered stathmin by multisite phosphorylation[END_REF] hence favors microtubule assembly. This ability to bind tubulin is shared by the other stathmin family members, all comprising a Cterminal semi-conserved stathmin-like domain (SLD) [START_REF] Charbaut | Stathmin family proteins display specific molecular and tubulin binding properties[END_REF][START_REF] Gigant | The 4 Å X-ray structure of a tubulin:stathmin-like domain complex[END_REF]. In addition, they have palmitoylated N-terminal extensions, which target them to membranes [START_REF] Chauvin | Palmitoylation of stathmin family proteins domain A controls Golgi versus mitochondrial subcellular targeting[END_REF], whereas stathmin is cytosolic. Another difference with stathmin is that the other family members are found solely in the nervous system [START_REF] Charbaut | Stathmin family proteins display specific molecular and tubulin binding properties[END_REF][START_REF] Ozon | The stathmin family -molecular and biological characterization of novel mammalian proteins expressed in the nervous system[END_REF]. The SLD can be subdivided into an N-terminal b-hairpin motif, which caps a-tubulin at one end of the complex, and a long C-terminal a-helix interacting with the two tubulin molecules of the tubulin:SLD 2:1 ternary complex (T2SLD), both elements being connected by a more variable linker [START_REF] Ravelli | Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain[END_REF]. The stability of T2SLD complexes however varies [START_REF] Charbaut | Stathmin family proteins display specific molecular and tubulin binding properties[END_REF], and their regulation by phosphorylation displays both similarities and specificities [START_REF] Charbaut | Stathmin family proteins display specific molecular and tubulin binding properties[END_REF][START_REF] Yip | Differences in c-Jun N-terminal kinase recognition and phosphorylation of closely related stathmin-family members[END_REF]. CPAP is a centrosomal protein which controls the length of centrioles [START_REF] Kohlmaier | Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP[END_REF][START_REF] Schmidt | Control of centriole length by CPAP and CP110[END_REF][START_REF] Tang | CPAP is a cell-cycle regulated protein that controls centriole length[END_REF]. It comprises a microtubule-destabilizing domain, named PN2-3 and containing the 311 to 422 CPAP residues [START_REF] Hung | Identification of a novel microtubule-destabilizing motif in CPAP that binds to tubulin heterodimers and inhibits microtubule assembly[END_REF]. It has been observed in a surface plasmon resonance experiment that PN2-3 enhances the release of tubulin bound to immobilized SLD [START_REF] Cormier | The PN2-3 domain of centrosomal P4.1-associated protein implements a novel mechanism for tubulin sequestration[END_REF]. Here, we show that PN2-3 greatly accelerates the dissociation of tubulin:SLD complexes in solution. Taking advantage of the recently determined tubulin:PN2-3 structure [START_REF] Campanacci | Structural convergence for tubulin binding of CPAP and vinca domain microtubule inhibitors[END_REF], we propose that this remarkable behavior results from the interference of PN2-3 with the SLD C-terminus, a model that we then tested experimentally using proteins targeting different tubulin surfaces. This mechanism may represent an efficient and rapid way for the cell to disrupt T2SLD complexes, hence to modulate microtubule assembly, in addition to a phosphorylation-based regulation.

Results and Discussion

We previously observed that the detachment of tubulin bound to immobilized RB3SLD (i.e. the SLD of stathmin 4, also known as RB3) is accelerated in presence of PN2-3 [START_REF] Cormier | The PN2-3 domain of centrosomal P4.1-associated protein implements a novel mechanism for tubulin sequestration[END_REF]. Unfortunately, in part because high resolution structural data on tubulin:PN2-3 were not available, these surface plasmon resonance results did not lead to a mechanistic model. To achieve this goal, we first investigated the effect of PN2-3 on the tubulin:RB3SLD 2:1 complex (T2R) in solution.

We produced an acrylodan-labeled RB3SLD derivative and a fluorescent signal slowly developed upon addition of tubulin to this protein (Fig. 1). Adding excess unlabeled RB3SLD to fluorescent T2R led to a slow decrease of the signal, from which a kobs of (1.1 ± 0. 2) x 10 -3 s -1 (mean ± s.d., here and throughout) can be extracted. This value is an estimate of the dissociation rate constant (koff) and is in good agreement with previous results [START_REF] Krouglova | Fluorescence correlation spectroscopy analysis of the dynamics of tubulin interaction with RB3, a stathmin family protein[END_REF]. By contrast, upon addition of excess PN2-3 (or of shorter 316-397 or 321-397 CPAP fragments), the fluorescence signal went back to the basal value within the mixing time of the solution (estimated to be 10 seconds at most), indicating an active dissociation of T2R by PN2-3 (Fig. 1). Therefore, this experiment emphasizes the slow kinetics of association and dissociation of the tubulin:RB3SLD interaction, as also found by fluorescence correlation spectroscopy [START_REF] Krouglova | Fluorescence correlation spectroscopy analysis of the dynamics of tubulin interaction with RB3, a stathmin family protein[END_REF], and highlights the strong destabilization of the resulting T2R complex by PN2-3. A first possibility to explain this last feature would be that PN2-3 stabilizes a tubulin conformation which would be less favorable for SLD binding. However, the structure of tubulin bound to PN2-3 based constructs does not support this hypothesis [START_REF] Campanacci | Structural convergence for tubulin binding of CPAP and vinca domain microtubule inhibitors[END_REF]. Indeed, superposing the a and b tubulin subunits in these complexes (e.g. pdb id 7Q1F) to those of T2R (pdb id 3RYC) led to root mean square deviations of 0.82 Å (a-tubulin, 427 Cas compared) and 0.42 Å (b- tubulin, 429 Cas compared), respectively, indicating highly similar conformations. In addition, the angle between aand b-tubulin in the different tubulin:CPAP structures we determined varies between 11.6° and 14.3° [START_REF] Campanacci | Structural convergence for tubulin binding of CPAP and vinca domain microtubule inhibitors[END_REF], within the values observed in crystal structures of tubulin complexes [START_REF] Campanacci | Selection and characterization of artificial proteins targeting the tubulin α subunit[END_REF], including T2R [START_REF] Ravelli | Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain[END_REF], as well as in soluble, isolated tubulin [START_REF] Wagstaff | Diverse cytomotive actins and tubulins share a polymerization switch mechanism conferring robust dynamics[END_REF]. We conclude that PN2-3 based fragments do not destabilize T2R by inducing a conformational change in tubulin.

Because PN2-3 interacts with the longitudinal surface of b-tubulin [START_REF] Campanacci | Structural convergence for tubulin binding of CPAP and vinca domain microtubule inhibitors[END_REF], a second possibility would be that it destabilizes T2R by targeting the b subunit surface engaged in tubulin:tubulin contacts within this complex (17, 20) (Fig. 2A). This hypothesis predicts that PN2-3 will not enhance the dissociation of tubulin:R1, R1 being an artificial SLD engineered to bind one tubulin heterodimer (Fig. 2A) [START_REF] Mignot | Design and characterization of modular scaffolds for tubulin assembly[END_REF]. We actually found the opposite: adding excess PN2-3 to fluorescent tubulin:R1 led to an ~800-fold enhanced dissociation of this complex compared to the addition of unlabeled R1 (Fig. 2B). Fitting the data with a mono-exponential decay function led to a poor fit. It was improved using a double-exponential decay function (Fig. S1), suggesting a scheme according to which PN2-3 binds to tubulin:R1 to form an unstable [PN2-3:tubulin:R1] assembly from which R1 rapidly dissociates. A third possibility would be that PN2-3 proceeds by interfering with the SLD partner of transient [PN2-3:tubulin:SLD] complexes. Indeed, modeling PN2-3 based CPAP fragments on the distal b-tubulin subunit of T2R indicates that there would be steric conflicts with the SLD a-helix C-terminus, which interacts with this distal b subunit (Fig. 3A). A mechanism based on the destabilization of this SLD region would agree with the observation that the SLD of RB3', a splice variant of RB3 in which the last 19 residues are replaced by a shorter stretch of 6 residues [START_REF] Ozon | The stathmin family -molecular and biological characterization of novel mammalian proteins expressed in the nervous system[END_REF], makes a less stable assembly with tubulin as evaluated by size-exclusion chromatography [START_REF] Charbaut | Stathmin family proteins display specific molecular and tubulin binding properties[END_REF]. It would also be consistent with the tight complex R1 makes with tubulin compared to constructs of similar length but which do not include the C-terminal stabilizing motif of RB3SLD present in R1 [START_REF] Mignot | Design and characterization of modular scaffolds for tubulin assembly[END_REF]. This hypothesis predicts that proteins whose binding site on tubulin overlaps with that of the SLD C-terminus should enhance the dissociation of tubulin:SLD complexes, whereas proteins targeting other regions of the SLD binding site on tubulin should not (or if so not by the same mechanism). Proteins of the former category include

CopN from the bacterial pathogen Chlamydia pneumoniae [START_REF] Campanacci | Insight into microtubule nucleation from tubulin-capping proteins[END_REF], whereas the motor domain of kinesins [START_REF] Gigant | Structure of a kinesin-tubulin complex and implications for kinesin motility[END_REF] and the artificial a-tubulin specific iE5 aRep protein [START_REF] Campanacci | Selection and characterization of artificial proteins targeting the tubulin α subunit[END_REF] belong to the second one (Fig. 3B). The effect on T2R stability of these three proteins was evaluated in the fluorescence chase experiment. s -1 (kinesin), (1.3 ± 0.2) x 10 -3 s -1 (aRep) and (10.0 ± 0.8) x 10 -3 s -1 (CopN) can be extracted, compared to (1.1 ± 0.2) x 10 -3 s -1 in the case of RB3SLD. In presence of excess 321-397 CPAP construct (blue), the signal decrease is too fast to be recorded by this method, and the apparent kobs is estimated to be > 0.1 s -1 (Fig. S2A).

The addition of excess kinesin or iE5 aRep to fluorescent T2R led to kinetics similar to the one when unlabeled RB3SLD was added as a competitor (Fig. 3C), showing that these proteins compete with RB3SLD for tubulin binding, as expected (Fig. 3B), but do not substantially destabilize preformed T2R. By contrast, the dissociation of RB3SLD from tubulin was enhanced about 10-fold in presence of CopN, indicating a destabilization of the T2R complex by this protein (Fig. 3C). Interestingly, CopN was less efficient than PN2-3 based fragments, with the ratio between the apparent kobs for T2R dissociation in presence of PN2-3 or of CopN expected to be > 10 (Fig. S2A). Although CopN has a slightly lower affinity for tubulin than CPAP constructs (dissociation constants estimated to be 50 and 15 nM, respectively, [START_REF] Campanacci | Structural convergence for tubulin binding of CPAP and vinca domain microtubule inhibitors[END_REF][START_REF] Campanacci | Insight into microtubule nucleation from tubulin-capping proteins[END_REF]), the concentration used in the chase experiment (4 µM, far above the dissociation constants) ensured that the efficiency difference in destabilizing T2R did not result from the gap in affinity for tubulin. Moreover, the two following experiments suggest that it is not explained either by a difference in affinity for T2R. First, doubling the concentration of CopN in the chase experiment (8 µM instead of 4 µM) did not change the dissociation kinetics of T2R (Fig. S2B). Second, a 321-397 CPAP fragment having the E323R, E324R and I327R substitutions, which decrease about 20-fold the affinity for tubulin [START_REF] Campanacci | Structural convergence for tubulin binding of CPAP and vinca domain microtubule inhibitors[END_REF], hence which presumably also affect the affinity for T2R, behaved as the unmodified construct in our assay (Fig. S2B). Therefore, we conclude that PN2-3 is inherently more effective than CopN to destabilize tubulin:stathmin complexes, possibly because it would be in steric conflict with a longer segment of the SLD C-terminus in transient complexes with tubulin (Fig. 3A,B).

The experiments with CPAP constructs and with CopN added to T2R support a mechanism based on the destabilization of the C-terminus of the SLD a-helix. Another way to disrupt the SLD C-terminus and its interaction with tubulin would be to shorten it. To this end, we generated a C-terminal truncated RB3SLD by introducing a stop codon at position 139 (illustrated in the top panel of Fig. 3B; numbering is in reference to stathmin [START_REF] Charbaut | Stathmin family proteins display specific molecular and tubulin binding properties[END_REF]). Adding excess RB3SLD as a competitor, we found that the dissociation of tubulin from this RB3 truncated mutant is about 5-fold faster than that from the parental construct (Fig. 4). This feature was further ascertained using kinesin in the chase experiment (Fig. 4). It also agreed with a preliminary and more qualitative characterization based on a size-exclusion chromatography analysis of tubulin:RB3SLD 139Stop complexes [START_REF] Mignot | Design and characterization of modular scaffolds for tubulin assembly[END_REF]. Remarkably, we did not find such a difference upon addition of excess CopN, the apparent kobs for the dissociation of tubulin bound to either full length RB3SLD or the shorter 139Stop construct being similar in this case (Fig. 3C and4). This last result indicates that the destabilizing effects of CopN and of the shortening of the SLD C-terminus are not additive. It suggests that both operate through the same mechanism, i.e. the disruption of the interactions of the SLD C-terminal region with tubulin. acrylodan-labeled RB3SLD 139Stop with 200 nM tubulin), the addition of excess RB3SLD (grey curve) or kinesin (green) leads to a signal decrease which is faster than the one associated with the addition of RB3SLD to fluorescent T2R (pink curve, data taken from Fig. 1). Fitting the experimental data points with a mono-exponential decay function (darker smooth curves) gives a kobs estimate of (5.7 ± 1.2) x 10 -3 s -1 for the tubulin:RB3SLD 139Stop dissociation. The addition of excess CopN (yellow) leads to a kinetics with an apparent kobs of (11.5 ± 1.5) x 10 -3 s -1 , similar to the situation where CopN is added to T2R (Fig. 3C).

Conclusion.

In this report, we show that PN2-3 and related CPAP fragments destabilize tubulin:SLD complexes (Fig. 1, 2B, 3C) and that this property is shared by the bacterial protein CopN (Fig. 3C). Interestingly, both CPAP and CopN directly modulate microtubule dynamics, controlling centriolar microtubule growth [START_REF] Sharma | Centriolar CPAP/SAS-4 imparts slow processive microtubule growth[END_REF] and interfering with microtubule nucleation and plus end elongation [START_REF] Campanacci | Insight into microtubule nucleation from tubulin-capping proteins[END_REF][START_REF] Nawrotek | Biochemical and structural insights into microtubule perturbation by CopN from Chlamydia pneumoniae[END_REF], respectively. Our results indicate that they may also have an indirect effect, favoring the release of tubulin from T2SLD complexes.

The regulation of the tubulin:SLD interaction by phosphorylation has been well documented [START_REF] Amayed | The effect of stathmin phosphorylation on microtubule assembly depends on tubulin critical concentration[END_REF][START_REF] Curmi | The stathmin/tubulin interaction in vitro[END_REF][START_REF] Honnappa | Control of intrinsically disordered stathmin by multisite phosphorylation[END_REF][START_REF] Yip | Differences in c-Jun N-terminal kinase recognition and phosphorylation of closely related stathmin-family members[END_REF], with up to four sites clustered in the N-terminal moiety of the SLD (16) which, when phosphorylated, substantially reduce the affinity for tubulin [START_REF] Amayed | The effect of stathmin phosphorylation on microtubule assembly depends on tubulin critical concentration[END_REF][START_REF] Honnappa | Control of intrinsically disordered stathmin by multisite phosphorylation[END_REF]. It has been proposed that phosphorylation proceeds by destabilizing secondary structural elements of stathmin. In particular an N-terminal segment of its a-helix is disrupted upon Ser63 modification [START_REF] Honnappa | Control of intrinsically disordered stathmin by multisite phosphorylation[END_REF]. Our results lead to a model where proteins interfering with the C-terminus of SLD a-helix, at a distance from the phosphorylation sites, also weaken the stability of tubulin:SLD complexes. As a further consequence of this destabilization, phosphorylation of stathmin proteins could be facilitated because they are expected to be better substrates for protein kinases when they are detached from tubulin.

To summarize, targeting the SLD C-terminus might be an efficient way for the cell to release quickly tubulin bound to an SLD partner and make it available for remodeling the microtubule network, possibly in subcellular compartments [START_REF] Chauvin | Palmitoylation of stathmin family proteins domain A controls Golgi versus mitochondrial subcellular targeting[END_REF], a mechanism which could be hijacked by the C. pneumoniae CopN effector. It potentially represents another regulatory mechanism for SLDs, in addition to regulations at the expression level and by phosphorylation.

Methods.

Proteins. RB3 variants were obtained by standard molecular biology techniques from RB3SLD [START_REF] Gigant | The 4 Å X-ray structure of a tubulin:stathmin-like domain complex[END_REF] but with the C14A mutation (stathmin numbering). RB3SLD 139Stop was prepared by inserting a stop codon at position 139. For acrylodan labeling, a cysteine residue was introduced at position 72 (L72C substitution). All constructs were verified by sequencing. The RB3SLD proteins was produced and purified [START_REF] Gigant | The 4 Å X-ray structure of a tubulin:stathmin-like domain complex[END_REF] and modified by acrylodan [START_REF] Mignot | Design and characterization of modular scaffolds for tubulin assembly[END_REF] following published protocols. The production and purification of R1 and its R71C variant [START_REF] Mignot | Design and characterization of modular scaffolds for tubulin assembly[END_REF], of PN2-3, of the 316-397 CPAP fragment, and of the 321-397 CPAP construct and its E323R-E324R-I327R triple mutant [START_REF] Cormier | The PN2-3 domain of centrosomal P4.1-associated protein implements a novel mechanism for tubulin sequestration[END_REF][START_REF] Campanacci | Structural convergence for tubulin binding of CPAP and vinca domain microtubule inhibitors[END_REF], of CopN [START_REF] Nawrotek | Biochemical and structural insights into microtubule perturbation by CopN from Chlamydia pneumoniae[END_REF], of the iE5 aRep (29), and of the kinesin motor domain (33) have also been described. Tubulin was purified from ovine brain by two cycles of assembly in a high molarity pipes buffer and disassembly [START_REF] Castoldi | Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer[END_REF]. Before use, an additional assembly and disassembly cycle was performed to remove inactive protein.

Fluorescence spectroscopy. The experiments were based on the fluorescence signal (lex 290 nm, lem 505 nm) which develops upon addition of tubulin to acrylodan-labeled SLD (Fig. 1).

They were performed at room temperature in a buffer consisted of 25 mM Pipes-K, pH 6.8, 0.5 mM MgCl2, 0.2 mM EGTA, and 10 µM GDP. Unless otherwise stated, fluorescent T2R was obtained by mixing 80 nM acrylodan-labeled RB3SLD with 200 nM tubulin, and the protein competitor was added at a 4 µM concentration. In the chase experiment with CopN, a test with an 8 µM concentration was also performed and led to a similar dissociation kinetics than with 4 µM CopN (Fig. S2B). In the case of the tubulin:R1 experiments (Fig. 2 and S1), the fluorescent complex was formed by adding 50 nM tubulin to 30 nM acrylodan-labeled R1, and the fluorescence decrease was recorded after addition of 2 µM PN2-3 or 2.1 µM unlabeled R1.

Kinetics were recorded using a FluoroMax spectrofluorometer (Jobin Yvon, Horiba), except the experiments with tubulin:R1 which were performed using a Hi-Tech KinetAsyst stopped-flow system (TgK Scientific). The signal decrease upon addition of a competitor to fluorescent tubulin:SLD complexes was fit either with a mono-exponential decay function, which also included a photobleaching correction if required (equation 1),

𝐹𝑙𝑢𝑜 = 𝐹𝑙𝑢𝑜 !"# + Δ𝐹𝑙𝑢𝑜 × 𝑒 $% !"# ×' + 𝑏 × 𝑡 (equation 1)
where Fluo is the fluorescence signal, Fluomin is the fluorescence at infinite time, ∆Fluo is the amplitude of the fluorescence variation, and b is the photobleaching term, or with a doubleexponential decay function (equation 2), 𝐹𝑙𝑢𝑜 = 𝐹𝑙𝑢𝑜 !"# + Δ𝐹𝑙𝑢𝑜1 × 𝑒 $% !"#$ ×' + Δ𝐹𝑙𝑢𝑜2 × 𝑒 $% !"#% ×' (equation 2)

where ∆Fluo1 and kobs1 are associated with the first phase of the dissociation kinetics and ∆Fluo2 and kobs2 with the second one. 
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 1 Figure 1. PN2-3 based constructs of CPAP destabilize the T2R complex. Tubulin (200 nM) was added to a 80 nM acrylodan-labeled RB3SLD solution (point A). At point B, 4 µM of either unlabeled RB3SLD (pink curve) or CPAP 316-397 construct (blue) were added. Point C corresponds to the addition of 4 µM CPAP construct to the "RB3SLD" sample. The magenta curve is the fit with a mono-exponential decay function of the signal decrease upon addition of excess RB3SLD to the fluorescent complex. a.u., arbitrary units.
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 2 Figure 2. PN2-3 enhances the dissociation of R1 from tubulin. (A) Hypothesis on the destabilization of T2R by PN2-3. (Left) Schematic representation of T2R (with the N-and Cterminal ends of RB3SLD labeled), of tubulin:R1 and of tubulin:PN2-3. The SLDs are in pink,

Figure 3 .

 3 Figure 3. Interfering with the SLD C-terminus enhances the dissociation of T2R. (A) The modeling of a PN2-3 based fragment (pdb id 7Q1F (27)) on the distal b subunit of T2R (pdb id 3RYC (37)) indicates that the binding of PN2-3 to T2R would lead to steric conflicts with the RB3 region interacting with this b-tubulin. (B) Modeling CopN (pdb id 6GX7 (32)) on the distal b subunit of T2R predicts that CopN interferes with the C-terminus of the SLD a-helix, whereas modeling a kinesin motor domain (pdb id 4LNU (38)) or the iE5 aRep (pdb id 6GWC (29)) on T2R suggests a "more classical" competition mechanism. The C-terminal residues absent in the RB3SLD 139Stop construct are highlighted in magenta in the top panel. (C) Adding 4 µM kinesin (green curve) or 4 µM iE5 aRep (orange) to a solution containing 80 nM acrylodan-labeled RB3SLD and 200 nM tubulin leads to a fluorescence decrease kinetics which is similar to that of the control chase experiment with 4 µM RB3SLD added (pink). By contrast, adding 4 µM CopN (yellow) leads to a ~10-fold faster dissociation of T2R. The noisy curves represent the time course of fluorescence change, whereas darker smooth curves represent fitted curves with a mono-exponential decay function from which apparent kobs of (2.0 ± 1.6) x 10 -3
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 4 Figure 4. The RB3SLD 139Stop mutant makes a less stable complex with tubulin than wild type RB3SLD. To fluorescent tubulin:RB3SLD 139Stop complex (obtained by mixing 80 nM
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Figure S2 .

 S2 Figure S2. CPAP constructs destabilize T2R more efficiently than CopN. (A) Theoretical mono-exponential decay curves for kobs=0.001 s -1 (emulating T2R dissociation in presence of excess unlabeled RB3SLD; pink curve), kobs=0.01 s -1 (approximating the chase by CopN; yellow), and kobs=0.1 s -1 (blue). (Inset) Close-up image of the first 50 s of the theoretical kinetics. The first 10 seconds of the kinetics, which correspond to the time required for adding the protein competitor to the T2R solution in the fluorescence cuvette and for mixing, are highlighted with a semi-transparent grey box. Therefore, kobs=0.1 s -1 corresponds to the limit which can be detected in the assay with the spectrofluorometer and provides a lower bound of the kobs for the destabilization of T2R by CPAP constructs. (B) The difference in efficacity between CPAP constructs and CopN for T2R destabilization is not related to their difference in affinity for tubulin or for T2R. At time zero, 4 or 8 µM CopN (yellow or pink curve, respectively), or 4 µM CPAP 321-397 construct or its E323R-E324R-I327R triple mutant (blue or black curve, respectively) were added to fluorescent T2R. Data for the 4 µM CopN concentration and for the wild type 321-397 fragment are from Fig. 3C.
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