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a b s t r a c t

We deploy artificial neural networks to unfold neutron spectra from measured energy-integrated
quantities. These neutron spectra represent an important parameter allowing to compute the absor-
bed dose and the kerma to serve radiation protection in addition to nuclear safety. The built architectures
are inspired from convolutional neural networks. The first architecture is made up of residual transposed
convolution's blocks while the second is a modified version of the U-net architecture. A large and
balanced dataset is simulated following “realistic” physical constraints to train the architectures in an
efficient way. Results show a high accuracy prediction of neutron spectra ranging from thermal up to fast
spectrum. The dataset processing, the attention paid to performances' metrics and the hyper-
optimization are behind the architectures' robustness.
© 2023 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Neutron flux or fluence (flux integrated over time) energy dis-
tribution (also known as neutron spectrum) plays a key role for
radiation protection, nuclear safety, reactors design and others.
Despite the progress in neutron detector systems, assessing the
neutron spectrum remains a hard task essentially for two reasons.
First, the variety of shapes is almost infinite and depends on the
neutron sources as well as the neutron interactions along their
path. Second, no measurement method provides a direct assess-
ment of the neutron flux distribution in the energy range
encountered in radiation protection scenarios, which ranges from
GeV evaporation sources down to meV thermalized neutron
spectra. Indeed, multiple detectors are needed to cover this whole
energy range and data processing is required to elaborate the flu-
ence energy distribution. Therefore, the estimation of the neutron
spectrum remains a hard task.

The most explored approaches to assess a neutron spectrum for
radioprotection applications remain the so-called Bonner spheres
spectroscopy (BSS) and the multi-foils activation methods [1]. The
ouhadida).

by Elsevier Korea LLC. This is an
basic principle of these approaches is identical and is based on
multiple detectors having different responses functions against the
neutron's energy. Knowing the response function of all detectors
and the measured data (counting rates in detectors), an unfolding
algorithm is in principle able to assess the neutron spectrum. Most
of the unfolding algorithm are based on iteration, maximum en-
tropy, and matrix inversion [2e4]. The feedback from the use of
these unfolding algorithms highlights a number of limitations, the
main one being the necessity to provide a prior spectrum, the
output of the unfolding process being dependent on the initial
solution proposed.

To get more accurate neutron spectra unfolding without
depending on a priori knowledge of the measured neutrons, al-
ternatives using artificial neural networks (ANNs) have been pro-
posed [5,6]. An ANN can learn and model complex and non-linear
relationships between inputs and outputs. It is based on a training
process, which overcomes the requirement of any prior knowledge
of the neutron spectrum. However, a large and balanced training
dataset is mandatory to deploy a robust ANN. Besides, the design of
these architectures is rather challenging, and special attention
should be paid tomodel choice, training dataset processing (feature
engineering, data augmentation, scaling, …), performance metrics,
loss functions, and hyper-parameters tuning.

Different unfolding ANN architectures have been proposed in
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Fig. 1. Geometry context used for generating the spectra dataset with Serpent; s1,2,3
represent the surfaces; R1,2,3 represent the radii; MIX1,2,3 represent the material mix-
tures; dashed sphere represents the detector.
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recent years. We can cite multilayer perceptron (MLP) [7], gener-
alized regression neural network (GRNN) [8], and radial basis
function network (RBF) [9]. In this paper we investigate an inno-
vative approach by using a convolutional neural network (CNN),
which, to the authors’ knowledge, has not yet been considered for
neutron spectra unfolding. As a matter of fact, CNNs are mainly
credited for their efficiency in image processing since they use
linear algebra as a powerful tool to identify image features.
Recently, CNN has also started to be used in signal prediction,
which makes them a promising candidate for neutron spectra
reconstruction [10].

In this paper, we propose to investigate the use of two archi-
tectures that derive from CNN. The first one is based on residual
transposed convolution blocks [11] and the second one is an
adapted version of U-NET architecture recently investigated in the
biomedical field [12]. The methods’ performances are detailed and
compared opening the way to a robust unfolding solution for
different applications in the nuclear field.

2. Methodology

2.1. Training dataset

To perform efficient and robust solutions for neutron spectra
reconstruction, a large and balanced dataset is necessary for the
neural network training. This dataset should include neutron
spectra and their reaction rates over a detector. The term “balanced”
refers to an equiprobable proportion of the different types of
neutron spectra. The dataset is based on neutronic simulation, since
the neutron spectrum is data that cannot be measured directly. The
simulations are based on a simple physical model (neutron source,
material's geometry, and detector) enabling to generate as many
samples as needed. This dataset generation is original and should
cover large range of neutron spectrum that are representative of the
real system neutron spectra shapes. The representativity of the
spectrum in the dataset compared to real systems is an essential
information to keep in mind when using the trained networks. For
instance, the generated dataset is limited to fission neutron sources,
that excludes its application to fusion systems.

The set of the neutron spectra, (flux distributed over 1000 en-
ergy bins), with the shape of (rows ¼ number of samples,
columns ¼ 1000) corresponds to the neural network output. It
contains 19 000 samples where each one is a neutron spectrum
generated via a Monte-Carlo based SERPENT software (http://
montecarlo.vtt.fi/download/Serpent_manual.pdf). The generated
default SERPENT spectra are normalized by the total neutron flux.
The considered geometry is described in Fig. 1. It is about a central
sphere s1 of a radius R1 and two spherical “shells” s2 and s3 sur-
rounding it and having respectively radii R2 and R3. For the spectra
generation, the radii R1, R2 and R3 are randomly sampled within a
given range. Each cell of this geometry (s1, s2 and s3) is made up of
a mixture of 16 basic materials that absorb or slow down the
neutrons with random fractions. The list of the materials is the
following: H2O, D2O, graphite, B, B4C, CH2, concrete, steel, UO2, U8,
Cd, Pb, Gd, AgeIneCd, Xe and Hf. Vacuum is also added to the list to
enable the modification of the materials’ densities. These fractions
are found by deploying a genetic algorithm guaranteeing a com-
plete exploration of the sampling spaces and a conception of a
balanced dataset.

The temperature of S(a,b) (symmetric form of the thermal
scattering law where is a momentum transfer and b is energy
transfer) related to materials moderators (H2O, D2O, graphite…) is
randomly chosen for each neutron spectrum within the set [21�,
51�, 101 �C, 151 �C, 201�, 251�, 300�, 350�, 373�, 523�, 726�]
expressed in Celsius.
2277
Finally, the neutrons source is generated in the center of s1 and
randomly chosen from the fission neutron distribution of typical
isotopes. The obtained neutron flux at the external surface of s3 is
scored in 1000 energy bins between 1.10�9 MeV and 20 MeV with
equal lethargy. The SERPENT output files are processed as detailed
in Ref. [13].

The neural network input is the reaction rates associated to the
neutron spectra set. The reaction rates are computed for given ra-
dioisotopes in different activation foils included in a detector. We
consider, as a detector, the multiple foils neutron activation spec-
trometer (SNAC2) described in Ref. [14]. Since SNAC2 is composed
of 8 activation foils, the shape of the neural network input is
(rows ¼ number of samples, columns ¼ 8). The reaction rates are
computed as explained in Ref. [13] using Equation (1) where fi is
the flux at the ith binwith i ¼ 1… n ¼ 1000, RFji is the jth response
function value at the ith bin with j ¼ 1..8 and Rj is the jth reaction
rate. The response functions are “pre-calculated” by SERPENT
simulation using a detailed SNAC2 activation foils modeling. Using
this approach, we have the possibility to re-use the neutron spec-
trum dataset, which generation requested some CPU and analysis
investment, to other detectors, by simply replacing the response
functions.

Rj ¼
Xn

i¼1

RFji*f i (1)

Equation (1) assumes that the detector response is linear,
allowing the response function matrix and generated spectra to
convolute in order to generate the reaction rates. Such an
assumption is valid in the simulation case. For experimental data
and depending on the detector and the intensity of the incident
flux, this assumption should be re-evaluated. In the present case of
SNAC2 detector, we have checked that no saturation effect was
observed as well as no detection limits.

The total number of resulting neutron spectra is 16 240. A
feature engineering is performed by computing the ratios between
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all the reactions rates pairs. Then, the input becomes with a matrix
shape equivalent to (number of samples, 64 ¼ 8 þ all computed
ratios). For the network output, a padding of 24 zeros at the
beginning of the neutron spectra vectors is done to fit the built
architectures and to preserve factors of 2 for the input shape of 64
up to 1024 for the output layer. Fig. 2 shows the architecture's
general structure from the input (reaction rates) to the output
(neutron spectrum).

2.2. Convolutional proposed architectures

Several intrinsic properties of CNN make it an efficient alter-
native for neutron spectra reconstruction. In fact, properties of a
CNN are based onweight sharing which means that it makes use of
local spatial coherence providing the same weight to some of the
connections. This local spatial coherence exists in images as well as
in the neutron spectra, where the flux in one energy bin is highly
correlated to its adjacent values. Besides, the neuron connections in
CNNs are inspired from the animal visual cortex where only a patch
of neurons from one layer is connected to a single neuron of the
next layer contrary to the fully connected networks. Since the
problem to optimize is “inverse”, we can explore the translation of
invariance to guarantee an accurate correlation of bins with their
nearest neighbors. In this paper, we propose two varieties of CNNs:
ResConvT which includes residual blocks of transposed convolu-
tions [11] and UnetUnfold which is an adapted version of the
original U-net architecture [12].

To develop both architectures, we are based on Python scientific
libraries for dataset processing and on Tensorflow (version 2.11)
(Releases $ tensorflow/tensorflow (github.com) libraries for
training and evaluation processes. We use the callback TensorBoard
(version 2.11.2) (https://pypi.python.org/pypi/tensorflow-
tensorboard) to track the training in real time, and we use the
mlflow (version 2.0) (https://learn.microsoft.com/en-us/azure/
machine-learning/how-to-track-experiments-mlflow) library to
easily save all our results.

2.2.1. CNN1: ResConvT
Since the output size is larger than the input one, we need to

expand the input data to reach this final dimension which corre-
sponds to the neutron spectra vector length. One way to do so is to
explore transposed convolution layers ConvT [11]. ConvT has no
deconvolution layers but, unlike a regular convolution, it broad-
casts input elements to produce a larger output via kernels and by
tuning a stride. A ConvTk,s,f is characterized by a kernel k that ex-
tracts the data features, a stride s that modifies the amount of the
Fig. 2. ANN general structure.
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kernel movement over the data and the number of filters f within
each ConvT unit. Parameters k, s, and f can be adjusted to adapt the
proposed architecture to a target application.

We propose a residual block based on transposed convolution
and upsampling layers as described in Fig. 3 (a). The residual
alternative avoids the vanishing gradient in case of a high number
of layers and creates “highways” to overcome some inefficient
layers and to reduce training running time.

This residual block includes two branches: The first branch is
based on ConvT1,1,256 applied to the up-sampling part has a kernel
size of 1, a stride of 1, and 256 filters. The other branch, which is
ConvTk,2,256, uses a stride of 2, 256 filters and a kernel size of k
depending on the input data. The two parts are summed, and an
activation function is applied to this sum. The considered activation
function is the rectified linear function ReLU which will output the
input directly if it is positive and zero if it is negative.

An architecture based on such blocks have the form shown in
Fig. 3 (b). The input is injected into some dense layers (MLP) fol-
lowed by residual blocks. The dense layers represent the encoding
part, and the data dimension does not change at the output of the
MLP, which is the input of the first ResConvT block. After 4 residual
blocks, the final output is a 1024-length vector, and it represents
the predicted neutron spectrum.

2.2.2. CNN2: UnetUnfold
Another way to reconstruct the neutron spectra efficiently is to

propose an adapted version of a novel architecture named Une-
tUnfold. This architecture is a CNN developed for biomedical image
segmentation at the Computer Science Department of University of
Freiburg [12]. U-net has several advantages such as better handling
of data noise, a more precise output estimation thanks to its layers’
combination and preservation of the structural integrity of the
input data. Fig. 4 shows the detailed structure of the adapted U-net
version that we propose.

U-Net architecture looks like a ‘U’ justifying its name. It is
composed of a contracting path (encoder) and an expansive path
(decoder). Both paths are connected through a bottleneck section.
These fundamental sections are kept in the proposed adapted
version of the architecture but with key modifications in the choice
of layers, data dimensions, and filter numbers and dimensions. In
fact, the width of the architecture shape is based on the symmetry
of the data set (respecting powers of two from 64 to 1024). These
modifications make the architecture suitable for our case of study.
The contracting path (left side) consists of the repeated application
of two one-dimension convolutions denoted conv1D. Each conv1D
is followed by a ReLU activation function. Then a 2� 2max-pooling
operation is applied to reduce the input dimensions for example
from 64 to 32 in the first and the second blocks. As the neural
network gets deeper and since we move to forward layers, we
double the number of filters for better extraction of features. For
this adapted architecture, we have a filter size of 2 � 2.

For the bottleneck section, there is only one block. As input, it
takes the output of the last encoder blockwith 128 filters and 8 data
dimensions. Then, it feeds it to two conv1D layers and then to a
ResConvT block defined in the section above. Therefore, the result is
combined with a concatenation layer to give an output with 256
filters and 8 data vector length.

In the decoder expansive path, every step includes an up-
sampling of the feature map followed by a 2 � 2 transpose
convolution block as defined before. Such a structure enables to
divide by two the number of feature channels. We also add con-
catenations with the corresponding feature map from the con-
tracting path, and conv1D layers. At the final step, a “flatten” layer
transforms the conv1D output to a vector of 1024 bins which is fed
to a dense layer that gives the corresponding target vector of 1000
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Fig. 3. (a) ResConvT block scheme: Two parallel ConvT blocks with an upsampling; (b) ResConvT architecture scheme: MLP block followed by 4 ResConvT blocks; h represents a
hidden layer.

Fig. 4. UnetUnfold architecture scheme: contraction, bottleneck and expansion blocks; numbers above rectangular shapes refer to the number of filters; numbers on the side of
rectangular shapes refer to data dimensions.
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bins.

3. Results and discussion

To adapt the data to the architectures, scaling the input and the
output is mandatory. We have tested all the possible combinations
of the predefined scalers called MaxScaler, MinMaxScaler and
StandardScaler from scikit learn library respectively for the neutron
spectra and reaction rates. The best scaling combination is applying
MinMaxScaler to neutron spectra and StandardScaler to reaction
rates. In fact,MinMaxScaler translates each sample individually to a
given range (between zero and one in this case). StandardScaler
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consists of scaling each input vector separately while subtracting
the mean (called centering) and dividing by the standard deviation
to shift the distribution. Then, the mean and the standard deviation
will be respectively equal to zero and one. We consider 75% of the
dataset for training and the other 25% for validation. The training
process is performed on an Nvidia Tesla V100 GPU (12 GB of GPU
memory).

The hyper-parameters have a huge impact on neutron spectra
unfolding and they include the number of hidden layers, the
number of neurons, learning rate, batch size, normalization batch,
and pooling. We decide to use optuna to ensure the hyper-
optimization. What makes optuna efficient is its ability to



Table 1
Hyperparameters values for both architectures.

ResConvT UnetUnfold

Batch size 256 128
Regularization Dropout of 0.2 L1 type
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automate the optimization process of the hyperparameters cited
above. It gives us the best combination of the optimal hyper-
parameter values. In fact, optuna is based on the history record of
trials to determine the hyperparameter values for the next trial [1].
Exploring this data, it becomes able to estimate a promising area for
optimal architecture. The process is repeated until reaching the
optimization goal. The algorithm behind optuna [15] uses a
Bayesian approach and is called Tree-structured Parzen Estimator.
optuna is implemented in the ML script and adapted to the project
context. We detail in Table 1 the values of the batch size and the
chosen regularization fixed after the hyper-optimization. These two
hyper-parameters have a significant impact on the predicted
spectra smoothness. For example, in the UnetUnfold case;
decreasing the batch size from 256 to 128 makes the relative error
between the predicted and the real spectra decrease from an in-
terval of [�5.2%, 5.9%] to an interval of [�2%, 2%] for Spectrum 1.
Besides, applying a dropout of 0.2; in the ResConvT case; reduces
the relative error from an interval of [�3.8%, 4.4%] to an interval of
[�2%, 1.5%] for the same spectrum.

The performances of the prediction are measured via physically
significant metrics. Since the neutron spectra are normalized, we
decided to record a loss which is the mean square error MSE and a
performance metric which is the spectral quality QS. MSE is a loss
whose formula is detailed in Equation (2). It characterizes the de-
gree of difference between the predicted neutron spectrum ypred
and the SERPENT generated neutron spectrum ytrue. The metric QS
represents the closeness of the predicted neutron spectrum ypred to
Fig. 5. Spectra reconstruction using ResConvT and UnetUnfold: Blue lines correspond the tru
predictions; Three examples of neutron spectra (thermal (Spectrum 1), fast (Spectrum 2) and
this figure legend, the reader is referred to the Web version of this article.)

2280
the true one ytrue. In an ideal case, both methods are close to 0. Its
definition is shown in Equation (3).

MSE¼1
n

Xn

1

�
ypred � ytrue

�2
(2)

QS¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
1

�
ypred � ytrue

�2

Pn
1
ðytrueÞ2

vuuuuuut (3)

Three examples of neutron spectrum reconstructions with both
architectures are proposed in Fig. 5. The upper part represents a
thermal spectrum denoted Spectrum 1, the medium one is a fast
spectrum denoted Spectrum 2 and an epithermal one (Spectrum 3)
is represented in the lower part. The default SERPENT neutron flux
normalized by the total flux is plotted as a function of the energy
bins. The energy bins axis is log-scaled. We notice a significant
agreement between the predicted and the real spectra with both
methods and for the different tested spectrum types.

We have also plotted, in Fig. 6 the relative error between the
predicted and the real spectra as a function of energy bins for the
three neutron spectra shown above. The relative error doesn't
exceed ±2.5% for the three spectrum types along the energy bins
vector. These observations are confirmed for both architectures.

For both methods, no gradient explosion effect is observed. The
optimization algorithm well converges in the two cases and the
gradients have low values. Fig. 7 describes the evolution of train
and test QS averages as a function of epochs in the case of ResConvT.
As observed, the stopping epoch is 421. UnetUnfold curves have the
same trends with a stopping epoch equal to 435.

To compute MSE average of the test samples, we restore the
original spectra values range. Test-MSE average is 1.16e-09 with a
standard deviation of 5.85e-10 for ResConvT and 5.87e-09 with a
e spectra; dashed red and green lines represent respectively ResConvT and UnetUnfold
epithermal (Spectrum 3)) are shown. (For interpretation of the references to colour in



Fig. 6. Relative error between the predicted and the real spectra as a function of energy bins for Spectrum 1, Spectrum 2, and Spectrum 3.

Fig. 7. Train and test QS as functions of epochs.

Fig. 8. Test QS and MSE his
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standard deviation of 3.95e-09 for UnetUnfold. These losses values
prove the robustness of the proposed methods. These high-quality
predictions, with both methods, are found for the different types of
neutron spectra (the thermal, the fast, and even the epithermal
ones). The average of test-QS is 0.059 with a standard deviation of
0.034 for ResConvT architecture and 0.064 with a standard devia-
tion of 0.041 for UnetUnfold. These average values, very close to
zero, confirm the high accuracy of the neutron spectra predictions.
Histograms of QS and MSE sets covering 100 samples are respec-
tively represented in Fig. 8 (a) and 8 (b) and giving an idea about the
metrics distribution for both methods. We can see that QS distri-
butions is equivalent for the two techniques while MSE ones are
different since theMSE histogram represents a maximal bar around
1e-9 with 78 of redundancy over 100 samples.

Table 2 shows the examples of test-QS and test-MSE values
associated to the specific plotted cases Spectrum 1, Spectrum 2, and
Spectrum 3 in Fig. 5 and after training and after restoring the
original spectra values. These spectra are, as mentioned above,
among the test dataset.
tograms (100 samples).



Table 2
Validation QS and MSE for both architectures.

ResConvT UnetUnfold

QS Spectrum 1 0.057 0.066
Spectrum 2 0.063 0.07
Spectrum 3 0.058 0.061

MSE Spectrum 1 1.2 � 10�9 5.1 � 10�9

Spectrum 2 2.3 � 10�9 4.3 � 10�9

Spectrum 3 1.9 � 10�9 6.7 � 10�9
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4. Conclusion

In this paper, we detailed two implemented ANNs for neutron
spectra unfolding. Both networks include convolutional layers
enabling a precise reconstruction of signals. Compared to other
ANN architectures, the CNN, with both proposed versions, allows
accurate neutron spectra unfolding even for a high number of en-
ergy bins (1000 bins). The spectral quality is significantly high
(around 0.065) and the different types of neutron spectra are effi-
ciently predicted giving a relative loss of an order of 10�9. ResConvT
is less time-consuming than UnetUnfold. Then, it is a better alter-
native for applications dealing with long-dimension data vectors. It
also have slightly better performances metrics. However, UnetUn-
fold has higher performances than ResConvT for smaller training
datasets (same performances metrics with only 70% of the original
training dataset). So, it is an efficient option for applications
suffering from a lack of available dataset on which the prediction is
based. We built a large dataset including in a balanced way the
different types of spectra for robust training. The suitable dataset
processing (scaling and feature engineering) is one of the powerful
keys to enhance accuracy. The results show that we can rely on
ANNs to overcome the limitation of classical unfolding techniques,
which is the necessity of the prior information and to get a robust
unfolding.

The adaptation of the feature engineering to the experimental
activation measurements issued from gamma spectrometry is in
progress. This step requires an accurate normalization of the input
measurement to the simulated training dataset. We have done
some preliminary tests with real spectra resulting from CALIBAN,
SILENE and GODIVA IV reactors. The first step of this approach
consists in finding a normalization factor using the mean value of
gold data in the training dataset divided by the value of gold acti-
vation foil in the measurement input part. Since some other
deconvolution approaches and simulations have shown that the
impact of neutron diffusion has not been highlighted in simulation
leading to a nonrealistic computed response function for the back-
copper foil, a second step is to replace the back-copper response
function and the associated back-copper counting respectively by
the front-copper response function and the front copper counting.
In complement, we have done tests with different binning (1024
bins, 512 bins and 128 bins) in order to see the impact of this
parameter on real spectra unfolding. this approach leads to prom-
ising results on case of SILENE, where we can compare with a
precise simulation of the reactor and its environment. A detailed
comparison of the results of ANN, with these simulations and
classic deconvolution technics results will be the object of a future
publication.

It is also important to investigate the impact of neutron spectra
and reaction rates’ uncertainties on the CNN model performances
and on the spectra prediction. We aim to integrate them for
example, by adding new input features by modeling a set of
Gaussians where the mean if the main input information and the
standard deviation is the uncertainties set.
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Finally, expanding the applicability of the proposed models to
different fields is possible by making the networks allow to
compute the absorbed dose and the kerma which are key param-
eters for radiation protection for example.

In the future, the genetic algorithm could be more accurate and
can take more parameters and constraints into account to fit as
much as possible the real data case and this is part of a new
exploratory project having for goal to characterize the neutron
spectra induced in laser installations. Our actual dataset is up to
now oriented to the state of art of expected SNAC2 spectra and
should of course be improved for this new project.
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