

Vibrational spectroscopy of a cetane improver for biodiesel

Mickaël Guinet¹, Emilie-Laure.Zins¹, Sebastien.Payan².

Sorbonne Université, CNRS, MONARIS, UMR 8233, 75005 Paris, France. Laboratoire LATMOS, Laboratoire Atmosphères Milieux Observations Spatiales, Centre National de la Recherche Scientifique, Sorbonne Université, Université de Versailles-Saint-Quentin-en-Yvelines, F-75252 Paris, France

https://www.veryone.com/fr/cetane-improver-fr/

Biofuels Comprehensive Study by Type (Wood, Biogas, Biodiesel, Ethanol, Others), Sources (Animal Fat, Sugarcane, Rice, Beet, Wood Chippings) Players and Region - Global Market Outlook to 2027

SUMMARY

Introduction	р3
Experimental setup	p 7-8
Calculations	р9
Results	р 10-13
Conclusion	p 14

Overview of the 2-EHN molecule

2-Ethylhexyl nitrate :

Formula: $CH_3(CH_2)_3CH(C_2H_5)CH_2ONO_2$ M= **175.2 g.mol-1**

Psat(20 °c)= 0.27 Mbar

99% Pure 2-EHN AS No 27247-96

es cold starting & sm

99% Pur 2-EHN

Π

Liquid at room Temp

T_{decomp} =

130 °C (ΔrH<0)

-incorporated into diesel/biodiesel at a level of 0.3 to 1 g.L⁻¹

-acute toxicity : H302 "harmful if swallowed" H312 "harmful in contact with skin" H332 "harmful by inhalation" EUH066 "repeated exposure may cause skin dryness or cracking", EUH044 "danger of exposure if heated in a confined space" and H411 "toxic to aquatic organisms, causing long-term adverse effects".

https://www.amazon.fr/HYDRA-2-Ethylhexyl-Nitrat-Performance-Treatment-Behandelt/dp/B07C98RJFV?source=ps-sl-shoppingadslpcontext&ref_=fplfs&smid=A22E4JFCXL3T0B&th=1

Impact on the environment

https://www.veryone.com/fr/cetane-improver-fr/

- -Cetane improver
- -Decrease of fuel consumption
- -reduce the emissions of unburned hydrocarbons, particulates, carbon monoxide and nitrogen oxides

Double-Face in "Batman : The Animated Serie"

Atmospheric pollutant
-involved in atmospheric chemistry,
-not easily biodegradable
-long term pollution

Fig. 1. Tropospheric and stratospheric odd-nitrogen cycle. [4]

^[1]Ickes, A. M., Bohac, S. V., & Assanis, D. N. (2009). Effect of 2-ethylhexyl nitrate cetane improver on NO x emissions from premixed low-temperature diesel combustion. Energy & Fuels, 23(10), 4943-4948. Qian, [2]W., Huang, H., Pan, M., Huang, R., Tong, C., Guo, X., & Yin, J. (2020). Effects of 2-ethylhexyl nitrate and post-injection strategy on combustion and emission characterizes in a dimethyl carbonate/diesel blending engine. Fuel, 263, 116687.

^[3]Roberts, J.M., 1990. The atmospheric chemistry of organic nitrates. Atmospheric Environment Part A e General Topics 24, 243e287

^[4]Atkinson, R., 1997. Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and alkenes. Journal of Physical and Chemical Reference Data 26, 215e290.

^[5]Solano-Serena, F., Nicolau, E., Favreau, G., Jouanneau, Y., & Marchal, R. (2009). Biodegradability of 2-ethylhexyl nitrate (2-EHN), a cetane improver of diesel oil. Biodegradation, 20(1), 85-

Motivation

Collaboration LATMOS/MONARIS

Gas detection on an industrial site using hyperspectral imaging[1]

Successive infrared images superimposed on corresponding visible images. A tank degassing 1-2 dichloro-ethylene through a valve.

Measurements also done over a storage area of large 2-EHN tanks

no data available for the phase gas in the mid-IR domain

MONARIS, de la Molécule aux Nano-Objets : Réactivité, Interactions et Spectroscopies LATMOS, Laboratoire Atmosphères Milieux Observations Spatiales

Experimental setup and conditions (spectrometer)

UFR DE CHIMIE

- -Bruker IFS 120 HR :
- -Resolution 0.5 cm-1 (+tests at 2x10⁻³ cm⁻¹)
- -Globar source / KBr beam splitter
- -Stainless steel cells of 68.8 cm and 31.8 cm -KBr windows

-coadditions of 20 scans/white spectrum (45 sec)

- -Pressure 0.025-> 0.181 mbar
- -capacitive gauge (0.25%)
- -Temperature (298K ->318 K) (PT100)
- -2-EHN at 98%

Experimental setup (filling ramp)

-Passivation layer of 2-EHN -outgassing rate 0.03/hour (cell)

Spectra

Comparison between a spectrum of pure 2-EHN and the same pressure of 2-EHN $_{\!_8}$ with 1013 mbar of air added

. D

Calculations

UFR DE CHIMIE

SCIENCES

INIVERSITÉ

Isomer A		Altribution	Isomer B	
(cm ⁻¹)	Theoretical intensity		(cm ⁻¹)	Theoretical intensity
1785	428	N-O twisting	1785	429.0552
926	173			
931	132	N-O stretching linked to the carbon chain	934	240
1368	126	H methyl wagging, N-O sym stretching	1366	111
1434	108		1432	110
1385	61		1385	63
1050	13	C-O asymm		
1036	57	stretching	1043	58
1068	21	C-O asymm	1061	41
1068	17	stretching		
		H methyl wagging, N-O sym stretching	1338	34
792.9368	12	NO ₃ umbrella mode	793	12

DFT on Gaussian09

Absolute absorption cross section of 2-EHN in IR region. E-L Zins, M. Guinet, Delphy Rodriguez, Sébastien Payan. Journal of Quantitative Spectroscopy and Radiative Transfer, Elsevier, 2022, 283 (June), pp.108141.

average absorption cross section of 2-EHN (obtained as average of 10 spectra)

-Criteria

Characteristic of the NO₃ group
 Atmospheric window

➡ Band at 1280 cm⁻¹

Radiance atmospheric spectrum and radiative transfer transmittance simulations of the main absorbing[1]

Results evaluation (two approaches)

UFR DE CHIMIE

Y(1283.8) as a function of the pressure x length (left) and difference between the affine function and Y(1283) (right)

Experimental value	Predicted value
for P × L of 2-EHN	for P × L of 2-
(mbar.cm)	EHN(mbar.cm)
0.795	0.763
0.859	0.700
2.27	2.752
3.646	3.577
6.742	6.793
6.949	7.091
7.018	6.879
7.086	7.086
4.229	4.188
12.453	12.453

Determination of the R² value associated with the model. Comparison of predicted and measured pressures based on the chemometric analysis of the spectra presented in Table 1.

S sciences u measurement : study of the adsorption desorption p

UFR DE CHIMIE

Conclusion

-measurements absorption cross section of 2-EHN

- 850 -4000 cm-1
- 9 % uncertainties
- results give in a 2 columns file
- DFT calculations for band attribution
- Geometry optimizations (conformers)
- Two approaches
- Adsorption-desorption study
- No detection in hyperspectral measurements

Outlooks

- Filling ramp and cell in glass/ longer cell
 - measurements diesel/biodiesel mixed with 2-EHN
 - Bruker 120 (platform IP2CT)

Spectromètre infrarouge Haute Résolution 120 (Bruker)

Domaines : NIR, MIR et FIR Résolution maximale : 2.10⁻³ cm⁻¹ Cellule multi-passages refroidissable Cryostat (matrice) et jet moléculaire