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Abstract  44 

Pituitary adenomas are neoplasms derived from the endocrine cells of the anterior pituitary gland. Most 45 

frequently, they are benign tumors, but may sometimes display an aggressive course, and in some cases 46 

metastasize. Their biology, including their wide range of behavior, is only partly understood. In terms of 47 

therapeutic targeting, most pituitary adenomas are easily treated with the available medical treatments, 48 

surgery, and sometimes radiotherapy. Nevertheless, gonadotroph adenomas lack medical therapeutic 49 

options, and treatment of aggressive pituitary adenomas and pituitary carcinomas remains challenging. 50 

Here, we present an overview of the implications of tumor microenvironment in pituitary adenomas, 51 
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reviewing its composition and function, as well as published cases that have been treated thus far using 52 

tumor microenvironment-targeting therapies. Additionally, we discuss emerging views, such as the concept 53 

of non-angiogenic tumors, and present perspectives regarding treatments that may represent future potential 54 

therapeutic options. Tumor-infiltrating lymphocytes, tumor-associated macrophages, folliculostellate cells, 55 

tumor-associated fibroblasts, angiogenesis, as well as the extracellular matrix and its remodelling, all have 56 

complex roles in the biology of pituitary adenomas. They have been linked to hormone 57 

production/secretion, size, invasion, proliferation, progression/recurrence, and treatment response in 58 

pituitary adenomas. From a therapeutic perspective, immune-checkpoint inhibitors and bevacizumab have 59 

already shown a degree of efficacy in aggressive pituitary adenomas and pituitary carcinomas, and the use 60 

of numerous other tumor microenvironment-targeting therapies can be foreseen. In conclusion, similar to 61 

other cancers, understanding the tumor microenvironment improves our understanding of pituitary 62 

adenoma biology beyond genetics and epigenetics, and constitutes an important tool for developing future 63 

therapies.  64 

 65 

Introduction 66 

The environment within which a tumor exists, the tumor microenvironment (TME), is composed of vascular 67 

structures, non-tumor cells such as immune cells, and non-cellular components such as extracellular matrix 68 

(ECM) macromolecules. It has long been accepted that the TME impacts tumor biology and has clinical 69 

implications, both as a prognostic tool and a therapeutic target in numerous cancers (1,2). In pituitary 70 

adenomas (PAs), the importance of the TME has emerged more recently, but there is now a constantly 71 

growing literature on the subject, and growing evidence of the complex and intricate roles that the TME 72 

plays in the biology of PAs (3,4).  73 

Here, we review the biological and therapeutic implications of the TME in PAs. Briefly, we provide an 74 

overview of the TME composition and function, and we review all of the published cases of aggressive 75 

PAs and pituitary carcinomas (PCs) that have been treated with therapies that target the TME. Additionally, 76 

we present perspectives regarding treatments that have not so far been used in PAs, but that may represent 77 
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potential therapeutic options in the future. Given that both the mechanisms of tumorigenesis and the 78 

composition of the TME, along with its biological and clinical implications, might differ depending on the 79 

histological subtype of the adenoma, where possible the available data is summarized separately for each 80 

major adenoma subtype. Figure 1 depicts T cells, macrophages, blood vessels, and folliculostellate cells in 81 

four different histological subtypes of PAs. 82 

 83 

1. Immune microenvironment 84 

A. Biology 85 

a) T cells  86 

Tumor-infiltrating lymphocytes (TILs) have complex roles within the TME, that can translate into either 87 

anti-tumorigenic or pro-tumorigenic effects (2). TILs that are considered to have an anti-tumorigenic effect 88 

include CD56+ natural killer cells, CD8+ cytotoxic T cells, CD8+ memory T cells (CD8+CD45RO+), and 89 

CD4+ T helper 1 T cells, while TILs generally considered to have an pro-tumorigenic effect include CD4+ 90 

T helper 2 T cells and CD4+CD25+FoxP3+ regulatory T cells (1,2,5). However, these anti-tumorigenic and 91 

pro-tumorigenic effects are context-dependent, varying across tumor types and tumor stages, and are 92 

dependent on the specific composition of the immune infiltrate of a tumor and composition of its TME in 93 

general, as well as the location of the TIL, i.e. at the tumor invasive margin versus the tumor center (5). 94 

Indeed, although CD8+ T cells have been associated with a positive prognosis in most cancer types, they 95 

have been associated with a negative prognosis in renal cell carcinoma. Conversely, regulatory T cells were 96 

associated with a good prognosis in colorectal or gastric cancer (5). Therefore, TILs along with the other 97 

TME components need to be characterized in detail in PAs, in order to understand their respective roles. 98 

To date, the majority of studies in PAs (6–16) have relied on only single/few immune markers, and the 99 

quantification of the immune infiltrate varied across these studies. Nonetheless, these studies already 100 

provide important information on the immune composition of the TME and its potential roles. 101 

PAs have been shown to be infiltrated by CD3+, CD8+, CD4+, FoxP3+, CD45RO+, and CD56+ cells 102 

(8,12–14,16,17). Compared to the normal pituitary gland (NPG), PAs had more CD4+ T cells and a lower 103 
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CD8+/CD4+ cell ratio (15). Functioning adenomas showed increased CD3+, CD8+, CD4+, and FoxP3+ 104 

IHC infiltrates in comparison to non-functioning (NF) PAs (13,18). Regarding the quantity of various T 105 

cell types relative to the different histological subtypes of adenomas, studies have thus far yielded 106 

contradictory results (7,10,18). In terms of  the genetic background, amongst GH-secreting adenomas, those 107 

AIP-mutated had more FoxP3+ cells compared to sporadic adenomas (12). The potential impact of T cells 108 

on aggressiveness-related characteristics (9,15,19) is summarized in Table 1 (4,9–15,18–51). 109 

 110 

b) Tumor-associated macrophages (TAMs) 111 

Affected by cues coming from both tumor cells and TME cells, TAMs can acquire distinct phenotypes and 112 

have either anti-tumorigenic or pro-tumorigenic effects (52). TAMs with an M2 phenotype are considered 113 

to be pro-tumorigenic and have been consistently associated with a negative prognosis across various 114 

cancers, while TAMs with an M1 phenotype are considered anti-tumorigenic and have been associated with 115 

a positive prognosis (5). However, in some tumor types, the effect of TAMs on prognosis depends on their 116 

location, in the tumor stroma versus the tumor core (5).  117 

PAs have been reported to contain more macrophages (CD68+), more M2-like macrophages (CD163+), 118 

and a CD163/HLA-DR ratio three-times higher when compared to NPG (the HLA-DR marker being 119 

indicative of M1-like TAMs) (15). This is similar to what is seen in other cancers, where M2-like TAMs 120 

also predominate (5). TAMs were also reported to be the most abundant immune cell in PAs (15,21,53), 121 

most notably M2-like TAMs (15,53). The percentage of CD68+ TAMs showed a positive correlation with 122 

adenoma size in somatotroph, lactotroph, NFPAs (21), and gonadotroph adenomas (14). In terms of TAM 123 

infiltration relative to the different histological subtypes of adenomas, studies have thus far yielded 124 

contradictory results (10,14,15,18,21,53). Concerning the genetic background, amongst GH-secreting 125 

adenomas, those AIP-mutated had more CD68+ cells compared to sporadic adenomas (12).  126 

The potential impact of TAMs on aggressiveness-related characteristics (9–15,18,21,37) is summarized in 127 

Table 1. Taking into account both TILs and TAMs, it appears that aggressiveness is associated with an 128 

immunosuppressive TME. From a mechanistic point of view, bidirectional interactions between tumor cells 129 
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and TAMs take place, with tumor cells recruiting and polarizing TAMs preferentially towards an M2-like 130 

phenotype, while M2-like TAMs promote PA aggressiveness, and most notably PA invasiveness 131 

(12,14,15,21,37). These findings are consistent with the reports of M2-like TAMs being implicated in tumor 132 

growth and development of an invasive phenotype in other types of cancer (5). Moreover, bidirectional 133 

interactions take place between TAMs and other components of the TME, especially between M2-like 134 

TAMs and angiogenesis. For example, in several other cancers it has been shown that hypoxia leads to 135 

macrophage recruitment, which in turn facilitates angiogenesis (54). Figure 2 summarizes the roles and 136 

interactions of TAMs in PAs (12,14,15,18,19,21,37,55).  137 

 138 

c) Other immune cells  139 

There is limited published data concerning other immune cells in PAs. PAs have been reported to contain 140 

fewer neutrophils than NPG (15). Some studies have reported B cells to be only seen in exceptional cases 141 

(6,8,10), while other studies did identify B cells in PAs, but they were fewer compared to TAMs and T cells 142 

(14,15,53). Somatotroph adenomas have been reported to have more B cells compared to NFPAs (56), 143 

while NFPAs contained more neutrophils than somatotroph adenomas (15). 144 

 145 

B. Therapy 146 

a) Immune-checkpoint inhibitors 147 

The immune-checkpoint inhibitors that have been used to date in aggressive PAs and PCs include: 148 

ipilimumab combined with nivolumab, used in six cases, and pembrolizumab, which was used in five cases 149 

(57–64). The mechanisms of action of these drugs are illustrated in Figure 3A. Their use in aggressive PAs 150 

and PCs has been extensively reviewed recently (65). 151 

Six corticotroph carcinomas and one aggressive corticotroph adenoma have been treated with immune-152 

checkpoint inhibitors. In terms of the radiological response, four of the carcinomas showed a partial 153 

response that was maintained for 6 to 42 months (duration not available in one case), two of the carcinomas 154 

showed stable disease that was maintained for at least 12 months in one of the cases (data not available in 155 
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the second), while the aggressive adenoma showed progressive disease (57–61,64,65) (Figure 4). In two 156 

of the cases that initially showed a partial response, a dissociated radiological response was later noted, and 157 

in both cases, continuation of immune-checkpoint inhibitors in combination with local treatment 158 

(radiotherapy, surgery, and radiofrequency ablation, respectively) proved to be a good therapeutic option 159 

(65). 160 

Three lactotroph carcinomas and one aggressive lactotroph adenoma have been treated with immune-161 

checkpoint inhibitors. Regarding the radiological response, one carcinoma showed a complete response 162 

maintained for at least 13 months, one showed a partial response maintained for 8 months, the third showed 163 

progressive disease, while the aggressive adenoma also showed progressive disease (59,62–64) (Figure 4). 164 

Of note, the carcinoma that progressed was initially treated with pembrolizumab, and was subsequently 165 

treated  with programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway 166 

inhibitors, and showed continued progression (64).  167 

Regarding potential predictive factors of response, data is too scarce to allow firm conclusions. Currently, 168 

the most promising predictive factor appears to be a high tumor mutational burden. Negative PD-L1 169 

immunohistochemical staining should not preclude the administration of immune-checkpoint inhibitors, 170 

since even negative cases responded well. Conversely, the presence of a mismatch repair deficiency did not 171 

guarantee a good response (65). Moreover, for corticotroph tumors, it appears important to achieve 172 

eucortisolism, since glucocorticoids have an immunosuppressive effect that could lessen the efficacy of 173 

treatment (65). Currently, too little data is available to reach a conclusion on the eventual superiority of 174 

combined immunotherapy over monotherapy (65). 175 

Concerning the tolerance of immune-checkpoint inhibitors, patients cumulatively experienced fatigue, 176 

diarrhea, nausea, vomiting, anorexia, fever, transaminitis, autoimmune hepatitis, autoimmune nephritis, 177 

rash, myalgia, and possible hypophysitis and progressive weight loss (57–64). As expected, monotherapy 178 

was better tolerated than combined treatment. Nevertheless, these adverse events were mostly mild, and led 179 

to interruption of dual immunotherapy in only two cases: in one in which progressive disease was 180 

simultaneously noted (59), and in a second case, where treatment was continued with nivolumab alone (62).    181 
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 182 

b) Perspectives  183 

Potential leads for increasing the efficacy of immune-checkpoint inhibitors include a better patient 184 

selection, as well as combining immune-checkpoint inhibitors with angiogenesis-targeting drugs (9,66,67), 185 

with radiotherapy (68,69), or with peptide receptor radionuclide therapy (58).  186 

At the same time, given both the presence and the important role TAMs appear to play in PAs, targeting 187 

TAMs may prove to be a good option for PAs and PCs. This might be even more true for gonadotroph 188 

tumors, which are, at least in theory, less amenable to immune-checkpoint inhibitors than other types of PA 189 

(70,71). There are numerous TAM-targeting agents and TAM-targeting strategies, including preventing 190 

TAM recruitment by using, for example, colony stimulating factor 1 (CSF1)–CSF1 receptor inhibitors, C-191 

C chemokine receptor (CCR)5–C-C motif chemokine ligand (CCL)5 inhibitors etc.; depleting TAMs by 192 

using  CSF1–CSF1 receptor inhibitors, triggering receptor expressed on myeloid cells (TREM) inhibitors 193 

etc.; reprogramming TAMs by using CD40 agonists, TREM inhibitors etc.; exploiting the antitumor 194 

functions of TAMs by using tyrosine protein phosphatase non-receptor type substrate 1 (SIRPα)–CD47 195 

inhibitors or sialic acid-binding immunoglobulin-like lectin (SIGLEC)10–CD24 inhibitors; and infusing 196 

macrophages that are engineered to eliminate tumor cells and/or reprogram the TME (72). 197 

 198 

2. Folliculostellate cells 199 

Apart from immune cells, the TME of PAs includes a number of additional cells, including folliculostellate 200 

cells and tumor-associated fibroblasts. Folliculostellate cells are non-endocrine cells that are found in the 201 

NPG, where they account for ~5% of the cells of the anterior lobe (73,74). These cells are recognized by 202 

their morphology and by immunopositivity for S100B protein (75,76). Through both paracrine (76,77) and 203 

physical actions (78,79), folliculostellate cells exert numerous roles in the NPG, including a supportive 204 

role, phagocytic properties, regulation of hormone secretion, and the production of growth factors and 205 

cytokines (vascular endothelial growth factor (VEGF), interleukin 6, basic fibroblast growth factor, 206 

follistatin, transforming growth factor β etc.) (74,77,80,81). A role as a stem/progenitor cell has also been 207 
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often discussed, however it is still debated whether the S100B/SOX2 positive cells, considered to be the 208 

stem/progenitor cells, are a subset of folliculostellate cells or an entirely different population that happens 209 

to also be positive for S100B protein (74,82). 210 

PAs have been consistently shown to contain fewer folliculostellate cells than the NPG (35,73,83). 211 

However, heterogeneity between tumors exists, and although the vast majority of tumors had very low 212 

percentages of S100B+ cells, other tumors were rich in S100B+ cells (35). Concerning their potential roles 213 

in PAs, consistent with their role in the NPG, folliculostellate cells appear to potentially modulate hormone 214 

production/secretion: in acromegaly patients, relationships were shown between S100B+ cells and both 215 

growth hormone and prolactin levels (84), while in gonadotroph tumors a positive correlation between 216 

S100B staining and FSH staining was identified (35). A role of folliculostellate cells in maintaining a more 217 

functional, differentiated state, thus closer to the normal state of gonadotroph tumor cells has also been 218 

proposed (35). Another proposed role for folliculostellate cells in PAs, consistent with a similar role 219 

proposed for a subset of folliculostellate cells in the NPG (74,85), is an antigen presentation function, this 220 

proposition being based on the spatial proximity of immune cells and folliculostellate cells co-expressing 221 

the S100 protein and MHC class II antigens that was observed in three PAs (86). The potential impact of 222 

folliculostellate cells on aggressiveness-related characteristics (35) is summarized in Table 1. Therefore, it 223 

appears that folliculostellate cells might play important roles in tumorigenesis-related processes in PAs, but 224 

these roles need to be further studied. Hopefully, ways in which these cells could be therapeutically 225 

targeted/modulated will be developed in the future.  226 

 227 

3. Tumor-associated fibroblasts 228 

Tumor-associated fibroblasts are phenotypically and functionally heterogeneous cells, that are seen as a 229 

key TME component across various cancers (87,88). Tumor-associated fibroblasts have been mostly 230 

associated with tumor progression, but they can also exhibit cancer-restraining functions (88,89). Through 231 

the secretion of cytokines, chemokines and growth factors, as well as extracellular matrix components and 232 

remodeling enzymes, tumor-associated fibroblasts have been shown to be implicated in tumor growth, ECM 233 
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remodeling, angiogenesis, tumor invasion, metastasis, immune and metabolic reprogramming of the TME, 234 

as well as in chemoresistance (1,87–89). 235 

Tumor-associated fibroblasts have also been identified in PAs (24), and although the literature is, so far, 236 

scarce, promising biological and therapeutic implications can be foreseen. Cultured tumor-associated 237 

fibroblasts, derived from PAs with cavernous sinus invasion, expressed higher levels of VEGF and 238 

interleukin 6 compared to those derived from PAs without cavernous sinus invasion (23,24). Moreover, co-239 

injecting GH3 cells with tumor-associated fibroblasts derived from PAs with cavernous sinus invasion 240 

resulted in xenografts with higher VEGF expression (expressed mainly by tumor cells) compared to co-241 

injecting GH3 cells with tumor-associated fibroblasts derived from PAs without cavernous sinus invasion 242 

(23). In addition, cultured tumor-associated fibroblasts derived from PAs secreted CCL2 – a molecule with 243 

an angiogenic function, whose levels were strongly positively correlated with the microvessel area of PAs 244 

(24). The potential impact of tumor-associated fibroblasts on aggressiveness-related characteristics (23,24) 245 

is summarized in Table 1. These findings point towards a potential role of tumor-associated fibroblasts in 246 

angiogenesis, tumor growth and tumor invasion, consistent with the roles observed for these cells in other 247 

cancers. 248 

From a therapeutic perspective, the somatostatin (SST) type1 receptor was shown to be the predominant 249 

SST receptor expressed in tumor-associated fibroblasts from PAs, shown at the mRNA level, and 250 

pasireotide was able to decrease the release of interleukin 6 and CCL2 from these cells (24). This suggests 251 

that pasireotide may exert its role by acting on both pituitary tumor cells and tumor-associated fibroblasts. 252 

In pancreatic cancers, pasireotide was also shown to inhibit protein synthesis in tumor-associated 253 

fibroblasts,  and in combination with gemcitabine it reduced the chemoresistance triggered by the tumor-254 

associated fibroblast-derived secretome, as well as reducing tumor growth (90). Lastly, numerous other 255 

therapeutic strategies are emerging for targeting of tumor-associated fibroblasts, ranging from cell depletion 256 

(via targeting of cell surface markers), to altering their activation and/or their function, to tumor-associated 257 

fibroblasts normalization (91). 258 

 259 
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4. Angiogenesis 260 

A. Biology 261 

Angiogenesis, i.e. the outgrowth of new blood vessels from pre-existing vessels, is a complex process that 262 

involves numerous signaling pathways and molecules (92,93). Of these, the VEGF/VEGF-receptor 263 

(VEGFR) pathway has remained, thus far, the most studied and most targeted pathway (67,94), including 264 

in PAs. These newly formed blood vessels are immature, disorganized, and with impaired functionality, 265 

leading to poor tumor perfusion, hypoxia, and decreased immune cell infiltration and activity. These 266 

characteristics further facilitate the acquisition of an aggressive phenotype by tumor cells, reduce the anti-267 

tumoral immune response, but also decrease the beneficial effects of both chemotherapy and radiotherapy 268 

(52,93). Therefore, a strategy of vascular normalization, which aims to restore the normal perfusion and 269 

oxygenation of the tumor, has emerged in order to mitigate the aforementioned negative effects of 270 

angiogenesis (93). It is noteworthy that while angiogenesis plays pivotal roles in tumorigenesis-related 271 

processes (52,95), a growing body of literature demonstrates that numerous human tumors in fact lack 272 

angiogenesis, suggesting that their blood supply is acquired either by vascular co-option or by vasculogenic 273 

mimicry (92). These either completely non-angiogenic tumors or partly angiogenic/partly non-angiogenic 274 

tumors, display biological differences compared to angiogenic tumors, which has important therapeutic 275 

implications (92). A better characterization of the blood supply of PAs is therefore needed. 276 

The vascularization of PAs (the microvessel density and area, but also the number and percentage of 277 

endothelial cells) was found to be lower compared to that of the NPG (49,96–99), and higher in PCs 278 

compared to PAs (49,50), suggesting a potential role of angiogenesis during tumor progression and 279 

malignant transformation of PAs. The exception to this is invasive macroprolactinomas, which have been 280 

reported to have vascular densities similar to those of the NPG (28). VEGF expression, on the other hand, 281 

was reported to be either lower in PAs compared to the NPG (100,101), or at similar levels (98). Regarding 282 

vascular densities and the expression of angiogenesis-related molecules relative to the different histological 283 

subtypes of adenomas, studies have so far yielded contradictory results (49,50,96–98,100,102,103). The 284 
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potential impact of angiogenesis and of angiogenesis-related molecules on aggressiveness-related 285 

characteristics (9,20,22,28,30,34,36,38–41,48–51) is summarized in Table 1. 286 

 287 

B. Therapy 288 

a) Anti-VEGF-A and anti-VEGFRs therapies 289 

The anti-angiogenic therapies used to date in aggressive PAs and PCs include: bevacizumab, an anti-VEGF-290 

A monoclonal antibody, which has been used in 21 cases; sunitinib, a tyrosine kinase inhibitor that targets 291 

multiple tyrosine kinases, including VEGFRs, and which was used in two cases; and apatinib, a tyrosine 292 

kinase inhibitor that is primarily a VEGFR2 inhibitor, and which was used in one case (3,64,104–107). The 293 

mechanisms of action of these drugs are illustrated in Figure 3B.  294 

The 15 patients who received monotherapy with one of these molecules had all previously received at least 295 

one course of temozolomide, while for the nine patients receiving concomitant temozolomide, this included 296 

both first-course and second-course temozolomide (3,64,104–107). Given the already proven response to 297 

temozolomide, the response to combination treatments does not give a clear illustration of the potential 298 

efficacy of bevacizumab, therefore in Figure 4 we present only the radiological response to monotherapy.  299 

Bevacizumab 300 

Five corticotroph carcinomas and three aggressive corticotroph adenomas received bevacizumab alone (six 301 

cases) or combined with temozolomide (two cases) (3,104,106,108).  Of the six cases treated with 302 

bevacizumab alone, the radiological response was reported in 4 cases, with two showing stable disease 303 

(3,104,106) maintained for at least 26 months in one case (109), and for an unknown duration in the second 304 

(110), one showed progressive disease (108) (Figure 4), while the fourth patient died shortly after an MRI 305 

performed following 2 cycles of bevacizumab showed radiological stable disease (106). Regarding the 306 

cases receiving concomitant temozolomide, one corticotroph carcinoma received bevacizumab, 307 

temozolomide, and radiotherapy, and demonstrated radiological complete response, while one corticotroph 308 

carcinoma received bevacizumab and temozolomide, and demonstrated radiological stable disease (104).  309 
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Following ICI failure, one lactotroph carcinoma and one aggressive lactotroph adenoma received 310 

bevacizumab alone and showed stable disease. Stable disease was maintained for at least 2 months in one 311 

case (59) (Figure 4), while in the second case stable disease was demonstrated 6 months after the 312 

administration of three cycles of bevacizumab (62) (Figure 4). A third case of a lactotroph carcinoma, 313 

progressed after ICI failure on combined therapy with bevacizumab, temsirolimus, and valproic acid (64). 314 

One aggressive somatotroph adenoma received concomitant bevacizumab and temozolomide, and showed 315 

partial response (111).   316 

One aggressive non-immunoreactive adenoma was treated with bevacizumab monotherapy, and showed 317 

stable disease, which was maintained for 18 months (106) (Figure 4). 318 

Four tumors of unknown subtype were treated with bevacizumab alone and showed partial response in one 319 

case, stable disease in one case, and progressive disease in one case (3) (Figure 4). The duration of 320 

maintained partial response, and stable disease, respectively, were not reported. The radiological outcome 321 

is unknown in the fourth case (112). An additional four tumors of unknown subtype were treated with 322 

combined bevacizumab and temozolomide. The radiological responses consisted of a partial response in 323 

two cases, progressive disease in one case, and unknown radiological response in the fourth case (3).  324 

The potential benefit of adding bevacizumab to first-course temozolomide is hard to evaluate at this time 325 

because of the generally good efficacy of first-course temozolomide, combined with the small number of 326 

cases that have been published with combination therapy. However, regarding the combination of 327 

bevacizumab with second-course temozolomide, in the European Society for Endocrinology survey, out of 328 

18 patients who received second-course temozolomide, only two patients showed partial response, of whom 329 

one received concomitant bevacizumab (113). Therefore, if second-course temozolomide is envisioned, 330 

given the generally poor response that has been reported, addition of bevacizumab might be considered. 331 

Reported adverse events consisted of epistaxis and hypertension in one case (59), nephritis in another case 332 

(62), and petechia and fatigue in a third case (106). 333 

 334 

Tyrosine kinase inhibitors 335 
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Two tumors, one corticotroph carcinoma and a tumor of unknown type, were treated with sunitinib 336 

monotherapy and showed progression (3,108) (Figure 4). Any eventual adverse events were not reported. 337 

An aggressive somatotroph adenoma treated concomitantly with apatinib and temozolomide showed 338 

radiological partial response. Adverse events included hypertension, and hand and foot syndrome (107). 339 

 340 

b) Perspectives 341 

While the VEGF/VEGFR pathway has been thus far the most targeted pathway in cancer, tumors can be 342 

inherently resistant or can become resistant to inhibition of the VEGF/VEGFR axis (67), and thus additional 343 

therapeutic strategies are needed, for example vascular normalization (93). Strategies to achieve vascular 344 

normalization include the use of agonists of dopamine receptor type 2, which have been found to have an 345 

effect on both pericytes and endothelial cells (93,114,115). Interestingly, in a mouse prolactinoma model, 346 

bromocriptine not only blocked tumor growth, but also restored the balance between anti-angiogenic and 347 

pro-angiogenic factors, and normalized blood vessels (116). Of note, in the same prolactinoma model, 348 

axitinib (a TKI inhibiting VEGFRs) restrained tumor growth and improved vascular remodeling, while 349 

when bromocriptine was combined with axitinib, intratumoral hemorrhage was suppressed and blood vessel 350 

perfusion was restored (116). This is consistent with the complementary effect that VEGF/VEGFR pathway 351 

inhibitors and drugs targeting alternative angiogenesis pathways were shown to have, and highlight the role 352 

that combination therapies might have when targeting angiogenesis (116–118). 353 

Interestingly, the angiopoietin-2/angiopoietin-1 receptor axis, classically regarded as an endothelial cell 354 

axis, was recently also shown to be active in pituitary tumor cells. Both in vitro and in vivo evidence 355 

indicated that this axis was an exploitable therapeutic target in PAs, most notably in NFPAs, and therefore 356 

the use of anti-angiopoietin biologicals or angiopoietin-1 receptor inhibitors might be warranted in these 357 

tumors (22). 358 

 359 

5. Extracellular matrix and its remodeling 360 
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The ECM consists of a dynamic 3D network of macromolecules (proteins, proteoglycans, 361 

glycosaminoglycans etc.), in which soluble factors (cytokines, growth factors etc.) are embedded (1,119–362 

121). The ECM is implicated in the differentiation, adhesion, migration, proliferation, and survival of cells 363 

in both physiological and pathological conditions (121–123). In cancer, the ECM might also influence 364 

treatment efficacy, for example, ECM attachment to cancer cells might lead to resistance to apoptosis, a 365 

desmoplastic stroma might represent a physical barrier for chemotherapy, while soluble factors might 366 

activate survival signaling pathways resulting in resistance to cell death (52). 367 

Regarding the presence and distribution of ECM macromolecules and of integrins (cell membrane receptors 368 

that transduce ECM signals to cells), differences have been shown to exist between PAs and the NPG 369 

(25,124,125). For example, vitronectin was found in PA TME, but not in the NPG, while tumor cells 370 

showed a greater range of expression of integrin subunits, simultaneously with the downregulation of α3β1 371 

expression and the loss of α6β4 expression compared with the NPG (125). From a functional viewpoint, 372 

laminin expression was found to gradually decrease from the NPG stage to the lactotroph hyperplasia stage 373 

and then to the prolactinoma stage, and, in addition, laminin was found to inhibit GH3 and AtT-20 cell 374 

proliferation (25,32). Several other ECM macromolecules were also found to impact tumor cell 375 

proliferation, invasion and migration (26,32) – see Table 1, suggesting ECM macromolecules might indeed 376 

play a role in PA tumorigenesis. Moreover, ECM macromolecules (laminin, collagen I, and fibronectin) 377 

were found to inhibit hormonal production/secretion (25,32). Interestingly, the same ECM macromolecules 378 

did not impact the hormonal production/secretion of normal rat pituitary cells, suggesting a potential change 379 

in integrin expression during tumorigenesis (25,32).  380 

Regarding ECM remodeling, numerous studies have looked at matrix metalloproteinases (MMPs), enzymes 381 

that degrade and remodel the ECM, while in the process releasing the molecules that are embedded in it, 382 

and also at tissue inhibitors of metalloproteinases (TIMPs), molecules that regulate MMPs (1). Lower TIMP 383 

levels and higher levels of MMP activity were found in PA-derived conditioned medium compared to 384 

normal pituitary explant-derived conditioned medium (27). TIMP-3 expression was associated with the 385 

deposition of fibrous matrix in PAs (126). In both PAs and PCs, MMPs and TIMPs have been linked to 386 
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multiple characteristics related to aggressiveness (27,29,31,33,42,43) – see Table  1. In addition, by 387 

releasing growth factors embedded in a synthetic matrix (matrigel), MMPs were shown, in vitro, to have a 388 

role in hormone secretion by pituitary tumor cell lines (27). MMPs have also been linked to angiogenesis 389 

in PAs, with MMP-9 positive prolactinomas showing higher vascular densities than MMP-9 negative 390 

prolactinomas (29). These data are consistent with the roles the MMP-system plays in other cancers, notably 391 

in progression and angiogenesis (127). Other than MMPs, the urokinase plasminogen activator (uPA) 392 

system is another key player in ECM remodeling and has been shown to be involved in cancer progression, 393 

including in cell growth, cell migration, epithelial–mesenchymal transition, and angiogenesis (128). uPA, 394 

uPA receptor, tissue-type plasminogen activator, and plasminogen activator inhibitor-1, were also found to 395 

be expressed in PAs, and a higher uPA expression was noted in PAs when compared to the NPG (31). The 396 

potential impact of the uPA-system, as well as of other ECM components, on aggressiveness-related 397 

characteristics (4,25–27,29,31–33,42–47) is summarized in Table 1. Therefore, both the ECM and ECM 398 

remodeling appear to have important roles in the biology of PAs, and may constitute potential treatment 399 

targets. Appealing candidates include the targeting of the MMP-system (129,130) and targeting of integrins 400 

(131,132). 401 

 402 

Conclusions 403 

Similar to the case in other cancers, the TME represents a promising lead for understanding of PA biology 404 

beyond genetics and epigenetics, and promises to be an important tool for therapeutic purposes. TILs, 405 

TAMs, folliculostellate cells, tumor-associated fibroblasts, angiogenesis, as well as the ECM and ECM 406 

remodelling, all have complex roles in the biology of PAs, being linked to their functionality, size, invasion, 407 

proliferation, progression/recurrence, and to their response to treatment. From a therapeutic viewpoint, 408 

immune-checkpoint inhibitors and bevacizumab have already shown some efficacy in treating aggressive 409 

PAs and PCs, and the use of numerous other TME-targeting therapies can be foreseen. Further work is still 410 

required for a better understanding of TME composition, its roles, and of the extensive crosstalk that takes 411 

place between adenoma cells and the TME, as well as between the different components of the TME. 412 
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Ideally, future studies will integrate a more intricate and complete view of the network of interactions that 413 

may exist between tumor cells and the components of the PA TME. Additionally, given the potential 414 

differences in TME composition and involvement in different subtypes of PAs, it will be important to study 415 

each of the histological subtypes of PA separately.  416 

 417 
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Figure legends 792 

Figure 1. Immunohistochemical stainings depicting T cells (CD3+), macrophages (CD68+), blood vessels 793 

(CD34+), and folliculostellate cells (S100B+) in four different histological subtypes of pituitary   adenomas. 794 

Original magnification ×200. 795 

 796 

Figure 2. Roles and interactions of tumor-associated macrophages (TAMs) in pituitary adenomas. Derived 797 

from data from (12,14,15,18,19,21,29,37,55). Dashed arrows indicate that only associations or correlations 798 

(i.e., no causality, nor any mechanism demonstrated) are available so far. Question marks indicate that 799 

additional, currently unknown, mechanisms might be also responsible. *In rat estrogen-induced 800 

prolactinoma. Figure created using illustrations from Servier Medical Art (https://smart.servier.com/). 801 

Abbreviations: associated with (as.), correlated with (cor.), matrix metalloproteinase (MMP), S100 802 

calcium-binding protein A9 (S100A9), epithelial-to-mesenchymal transition (EMT), enhancer of zeste 803 

homolog 2 (EZH2), growth factors (GFs), C-C motif chemokine ligand (CCL), colony stimulating factor 1 804 

(CSF1), granulocyte-macrophage colony-stimulating factor (GM-CSF), cluster of differentiation (CD), 805 

human leukocyte antigen – DR isotype (HLA-DR), vascular endothelial growth factor (VEGF), VEGF-806 

receptor (VEGFR). 807 

 808 

Figure 3. Schematic representation of the mechanism of action of immune-checkpoint inhibitors (A), and 809 

of anti-VEGF-A and anti-VEGFRs therapies (B) used in pituitary carcinomas and aggressive pituitary 810 

adenomas. Immune-checkpoint inhibitors are monoclonal antibodies that block either CTLA-4 811 

(ipilimumab) or PD-1 (nivolumab and pembrolizumab), that are found on T cells, or PD-L1, the ligand of 812 

PD-1, which is found on antigen-presenting cells and on tumor cells. Bevacizumab is a monoclonal 813 

antibody that blocks VEGF-A. Sunitinib and apatinib are tyrosine kinase inhibitors that target VEGFR1 814 

and VEGFR2 (amongst other targets) for sunitinib, and VEGFR2 for apatinib. Figure produced using 815 

illustrations from Servier Medical Art (https://smart.servier.com/). *Not used so far in pituitary carcinomas 816 

and aggressive pituitary adenomas. Abbreviations: programmed cell death protein 1 (PD-1), programmed 817 

https://smart.servier.com/
https://smart.servier.com/
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death-ligand 1 (PD-L1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), vascular endothelial 818 

growth factor A (VEGF-A), VEGF-receptor (VEGFR). 819 

 820 

Figure 4. Radiological response of pituitary carcinomas and aggressive pituitary adenomas treated with 821 

therapies targeting the tumor microenvironment. Derived from data from (3,65,104,105). Abbreviation: 822 

non-immunoreactive (NIR), immune-checkpoint inhibitors (ICIs). 823 

 824 

 825 

 826 

 827 

 828 

 829 

 830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 



30 
 

           Table 1. Potential impact of tumor microenvironment on aggressiveness-related characteristics of pituitary adenomas and carcinomas. Derived from data from (4,9–15,18–51). 844 

 Invasion (Patients) Proliferation (Patients) Progression/Recurrence/Resistance 
to treatment (Patients) In vivo/in vitro 

Somatotroph F: CS inv. as. with less CD8+ cells (19) & more 
CD68+ TAMs (14) 

F: Higher Ki-67 index in PAs 
with high VEGF expression vs. 
PAs with no VEGF expression 
(20) 

F: Resistance to first-generation SRLs 
as. with less CD8+ cells (19) 

Macrophage-conditioned media induced 
morphology changes, EMT activation & increased 
inv. of GH3 cells (12,15) 

CCL17 promoted increased EMT changes, 
migration, inv. & pf. of GH3 cells (21) 

Angiopoientin-2 promoted the pf. of GH3 cells (22) 

TAFs derived from PAs with CS inv. promoted pf. 
of GH3 cells in vitro, as well as the growth of 
GH3-derived xenografts in mice (23) 

TAF-conditioned medium induced morphology 
changes, EMT activation, & increased inv. & 
migration of GH3 cells (24) 

Laminin inhibited GH3 cell pf. (25) 

Different collagen subtypes impacted differently 
GH3 cell inv. & migration strategy (26) 

MMP inhibition decreased GH3 cell pf. (27) 

IL-2, IL-6, BMP-4 & CXCL12 stimulated, while 
TGF-β inhibited GH3 cell pf. (4) 

CXCL12 stimulated, while TGF-β inhibited GH4 
cell pf. (4) 

Lactotroph 

F: Inv. macroprolactinomas as. with higher 
microvessel density than non-inv. 
macroprolactinomas (28) 

F: Inv. macroprolactinomas expressed more MMP-9 
than non-inv. macroprolactinomas (29) 

 
F: Resistance to bromocriptine as. with 
higher endothelial expression of 
endocan (30) 

Corticotroph F:  CS inv. as. with lower tPA expression (31)   

Collagen IV, fibronectin & activation of β1 integrin 
stimulated, while collagen I & laminin inhibited 
AtT-20 cell pf. (32) 

TIMP-1 inhibited AtT-20 cell inv. & migration (33)  

MMP inhibition decreased AtT-20 cell pf. (27) 

RSUME silencing inhibited inv. of AtT-20 cells 
(34) 

IL-1 & IL-2 stimulated, while IFN-γ & LIF 
inhibited AtT-20 cell pf. (4) 

Gonadotroph CS inv. as. with more CD68+ & CD163+ TAMs, & 
less thick & thin collagen fibers (14) 

Ki67 index ≥3%, mitosis > 2/10 
HPFs & proliferative status as. 
with fewer S100B+ cells (35) 

Progression after surgery as. with 
higher VEGF expression (36) 

Less progression-free time as. with 
higher VEGFR2 expression (36) 
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Unspecified  
or combined 

NFPAs 

CS inv. as. with more CD163+ TAMs (9), M2-
like/M1-like TAMs ratio >1 (37) & higher 
FoxP3/CD8 ratio (9)  

CS inv. as. with more VEGF & VEGFR1 (9) 

Inv. of hormone-negative PAs as. with high 
endothelial expression of endocan (38) 

 
Higher MMP-9 expression in recurrent 
NFPAs (for the second surgery 
compared to the first) (29)  

Cultured M2 versus M1 macrophages promoted 
increased inv., motility & pf. of primary NFPA 
cultures (37) 

Combined 
histological 

subtypes 

Knosp grades cor. with CD68+ TAMs number (10), 
endocan expression relative to CD34 expression (39) 
& tumor cell expression of endocan (40) 

CS inv. as. with high infiltration of M2-like TAMs, 
higher expression of lactate-related genes, more 
CCL17 & high CCL17 expression (21), lower VEGI 
levels (41), higher MMP-2, -9 (42) & MMP-14 
expression (33), & lower TIMP-2 expression (31) 

Inv. as. with more VEGF, HIF-1α, RSUME (34), 
higher MMP-9 expression (43,46) & serum levels 
(43), lower TIMP-1 expression & serum levels (43), 
higher CXCL12 & CXCR4 expression, more 
CXCL12-positive & CXCR4-positive cells (44), 
higher IL-6 & TNF-α expression (45), higher IL-17 
expression & serum levels (46), higher IL-17 
receptor expression (46), & positively cor. with β1 
integrin & FAK expression (47) 

Ki67 index ≥3% as. with more 
FoxP3+ cells, lower 
CD8/FoxP3, CD68/FoxP3 & 
CD8/CD4 ratios, & a 
“deleterious immune 
phenotype” 
(CD68hiCD4hiFOXP3hiCD20hi) 
(15), as well as as. with fewer 
S100B+ cells (35) 

Ki67 index >3% as. with 
increased expression in CD45+ 
cells (13) 

Higher mitotic count & p53 
expression as. with endothelial 
expression of endocan (48) 

Persistence/recurrence after surgery as. 
with the presence of CD45+ cells (11) 

Recurrent PAs had higher CD45+ & 
lower CD163+ infiltrates than primary 
PAs (18) 

Recurrence/progression after surgery 
as. with high CCL17 expression (21) & 
endothelial expression of endocan (48) 

Carcinomas as. with increased 
vascularization compared to PAs 
(49,50)  

No recurrence/regrowth positively cor. 
with VEGF expression (51)   

Lower post-operative survival rate as. 
with higher MMP-9 & lower TIMP-1 
expression (43) 

 

Abbreviations: non-functioning pituitary adenoma (NFPA), functioning (F), cavernous sinus (CS), invasion (inv.), was associated (as.), tumor-associated macrophages 845 
(TAMs), matrix metalloproteinase (MMP), tissue-type plasminogen activator (tPA), vascular endothelial growth factor (VEGF), VEGF-receptor (VEGFR), pituitary 846 
adenoma (PA), correlated (cor.), C-C motif chemokine ligand (CCL), endothelial growth inhibitor (VEGI), hypoxia-inducible factor-1α (HIF-1α), RWD-containing 847 
sumoylation enhancer (RSUME), C-X-C motif chemokine (CXCL), C-X-C chemokine receptor (CXCR), interleukin (IL), tumor necrosis factor-α (TNF-α), vascular 848 
somatostatin receptor ligands (SRLs), tissue inhibitors of metalloproteinases (TIMP), focal adhesion kinase (FAK), proliferation (pf.), epithelial-to-mesenchymal transition 849 
(EMT), tumor-associated fibroblast (TAF), bone morphogenetic protein (BMP), transforming growth factor-β (TGF-β), interferon-γ (IFN-γ), leukaemia inhibitory factor 850 
(LIF). 851 
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Essential points 

 Tumor-associated macrophages are the most abundant immune cell in pituitary adenomas, and 

have been linked to the size, invasion, and proliferation of pituitary adenomas – most notably 

to their invasion. 

 Tumor-infiltrating lymphocytes have been linked to invasion and proliferation of pituitary 

adenomas, and to the response to treatment of somatotroph adenomas. 

 Folliculostellate cells have been linked to hormone production/secretion and to the proliferation 

of pituitary adenomas.  

 Angiogenesis and angiogenesis-related molecules have been linked to invasion, proliferation, 

and the progression/recurrence of pituitary adenomas, as well as to response to treatment in 

lactotroph adenomas.  

 The extracellular matrix and its remodeling have been linked to hormone production/secretion, 

to the invasion and proliferation of pituitary adenomas – most notably to their invasion. 

 Substantial crosstalk takes place between adenoma cells and the tumor microenvironment, as 

well as between the different components of the tumor microenvironment. 

 Immune-checkpoint inhibitors and bevacizumab have already shown some efficacy in treating 

aggressive pituitary adenomas and pituitary carcinomas. 
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