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The Navier—Stokes equations in mixed-norm
time-space parabolic Morrey spaces.

Pierre Gilles Lemarié-Rieusset™®

Abstract

We discuss the Navier-Stokes equations with forces in the mixed-
norm time-space parabolic Morrey spaces of Krylov.

Keywords : Navier—Stokes equations, heat equation, parabolic Morrey
spaces, mild solutions.

AMS classification : 35K55, 35Q30, 76D05.

1 Introduction

In this paper, we consider global mild solutions of the Cauchy problem for
the incompressible Navier-Stokes equations on the whole space R®. More
precisely, the Navier—Stokes equations we study are

Oyii = Nit — Vp — it - Vii + f+ divF
divid =0 (1)
@(0,.) =0

where f and FF are small enough in some critical (homogeneous) mixed-norm
time-space parabolic Morrey spaces of Krylov.

(Following Krylov [Kryl23]), let us recall the definition of mixed-norm
time-space parabolic Morrey spaces on R x R%:

*LaMME, Univ Evry, CNRS, Université Paris-Saclay, 91025, Evry, France; e-mail :
pierregilles.lemarierieusset Quniv-evry.fr



Definition 1. Let 1 < p,q < 400 and (5 € (0, }—27 + %). The parabolic Morrey
spaces E, .5 and F,, 5 are the spaces of locally integrable functions f(t,x)
on R x R such that || f||g,, , < +oo or ||f|lg,,, < +00, where

P,q,8

1

_2_ P P

i ———— (/ (| |f(s,y)\qdy)qd8)
p>0,teR,zcR4 [t—s|<p? J|z—y|<p

and

Qe

1
([ iearata)
p>0,teR,zcR4 lz—yl<p J|t—s|<p?

[SEY

_2
flFps = sup p'

Remark: when p = ¢, writing » = %2 (so that p < r < +00), we see that

Epps=F,p5=M5 (R xR?), where M5"(R x R?) is the parabolic Morrey
space studied in [Lemal6] in the context of Navier—Stokes equations.

For a function defined on (0, +00) x RY, we say that f € E,,sor f € F, .5
if the function f# defined by f# = f for t > 0 and f# = 0 for ¢t < 0 is such
that f# € Ep,q,ﬁ or f# S Fp,q,ﬁ

Our main theorem is the following one:

Theorem 1. Let p,q € (3,00) with % —i—% > 1.
a) There exists eg = eo(p,q) > 0 and Cy = Cy(p,q) > 0 such that, if f €
Ep/qu/373 with div f =0and FF € Ep/27q/272 and Zf

HfHEp/3,q/3,3 + HFHEP/2,q/2,2 < €o,

then the Navier-Stokes equations (1) have a global mild solution i € E, 41
and V (% Uu e Ep/2,q/2,2 with

||ﬁ||Ep,q,1 + ||v ® ,JHEp/g,q/Q,Q < CO(HfHEp/&q/g,g + ||F||Ep/2,q/2,2)'

b) There ezists g = €o(p,q) > 0 and Cy = Cy(p,q) > 0 such that, iffe

Fo34/33 with div f =0 and F € F, /94720 and if

HfHFp/3,q/3,3 + HIFHFP/Z,q/Z,? < €0,

then the Navier-Stokes equations (1) have a global mild solution @ € F, 1
and V ® Uu e Fp/2,q/2,2 with

||l_[:||Fp,q,1 + Hv ® ﬁ||Fp/2,q/2,2 < CU(HfHFp/g,q/B,s + HF”Fp/z,q/z,g)'
When the force f is equal to 0, we may lower the values of p and ¢:
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Theorem 2. Let p,q € (2,00) with % —i—% > 1.
a) There exists g = €o(p,q) > 0 and Cy = Co(p,q) > 0 such that, if F €
E

P/2,q/2,2 and
IF£,5.0/20 < €0

then the Navier-Stokes equations (1) (with f = 0) have a global mild solution
u € Ep,q,l and \V4 (%9 u € Ep/Z,q/Z,Q with

1]l 5,0, + IV @l

P/2,q/2,2

< Gol[Fl[

P/2,9/2,2"

b) There exists €g = €y(p,q) > 0 and Cy = Co(p,q) > 0 such that, if F €
Fp/Q’q/Q’Q and ’lf
IF W 7, 2,022 < €05

then the Navier-Stokes equations (1) (with f = 0) have a global mild solution
iU € Fp,q,l and V @ U € Fp/?,q/2,2 with

|7, ,n + IV @l < Gol|F|r,

/2,4/2,2 — /2,4/2,2"

2 Heat equation

The proof of theorems 1 and 2 will rely on the theory of the heat equation
Owu— Au = f on R x R? with the boundary condition v = 0 at infinity. This
condition will be defined as follows:

Definition 2. Let u be a tempered distribution on R x RY.  Then u =
0 at infinity if for every 0 > 0 one has e @=2")y e L®(R x RY) and
limg_, 400 [|€7° @ 20| 5 = 0.

Lemma 1. Let u be a tempered distribution on R x R? such that w = 0 at
infinity. If Opu — Au =0, then u = 0.

Proof. Take the Fourier transform (in time and space variables) of the heat
equation. We find

(it + [§])a(r,€) = 0.
Thus, @ is supported in {(0,0)}, hence is a sum of derivatives of the Dirac
mass, and u is a polynomial. As e?@7=2%4, is then a polynomial, and
as eV OI=A%y ¢ L®(R x R%), we find that u is a constant; in that case,
@ =2%y — y. As u = 0 at infinity, we have u = 0. O

Lemma 2. Let 1 < p,q < +oo and € (0, %+§). Ifue B, 3 oru€ F,,p,
then v =0 at infinity.



Proof. We give the proof for v € E,, s (the case u € F, 3 is proved in a
similar way). Let W (t,z) be the inverse Fourier transform of e~ ~KI*. W
is in the Schwartz class of smooth functions with rapid decay. In particular,

(\/It] + [€]72W (t, 2)| € L®°(R x RY). Writing

/ \W (t,z)| |u(t, z)| dt dx

+o0
- //\ﬂt|+x|<1 Wit o)l fult, )| db dot Z //2f<\ﬂt+|x<2j+1 Wt z)| Jut,z)|dt dx

]*O
j(2+2-p)
< OH“”EM,B(||]1\ﬂt\+|x\<1 Lp PoT T T + Z 2 ||]12]<\ﬂt\+|a:\<2j+1W“Lf%w%)
< g, ,q(1 + Z 277) =Cilullg,,, .
=0
we get

St 0)] < [ [ Wi w)lute + 05,2+ 0y dsdy

<Ci|ju(t+0.,2 +V0.)| g

P,q,8
=Ci[|u(0.,V0.)|5,, .,
=C|ullg,, 0.
Thus, limgy_, ;o ||692 (07~ AQ)UHOO = 0. O

The proof of Theorems 1 and 2 will be based on the following results on
the linear heat equation:

Theorem 3. Let p,q € (3,00) and 5 > 0 with 127 —i—% > f.
a) If f € Eyj343.8+2(R x RY), then the heat equation

ou=Au+f (2)

has a unique solution such that uw = 0 at infinity. Moreover, there exists
Co = Co(p,q, B) > 0 such that, if denoting by Dyu the gradient of u and by
D?u the Hessian of u (with respect to the space variable), we have

HuHEp,q,ﬁ + “Dwu”Ep/z,q/wH + ||D92suHEp/3 a/3.8+2 — COHfHEp/s a/3,8+2"

b) If € Fp3.4/3+2(R x RY), then the heat equation (2) has a unique solution
such that w = 0 at infinity. Moreover, there exists Co = Co(p,q, 5) > 0 such
that we have

2
||u||Fp,q,ﬁ + HDIUHFP/Q,q/z,ﬁH + HD:cuHFp/s,q/3,ﬁ+2 < OOHfHFp/g,q/3,3+2‘

4



Theorem 4. Let p,q € (2,00) and f > 0 with % —1—2 > (3. Let o(D) be a
Fourier multiplier (in the space variable) such that o(§) = ao(é—|) where o

is a smooth function on the sphere S 1.
a) If F € Ep24/25+1(R x RY), then the heat equation

Ou=Au+o(D)divF (3)

has a unique solution such that uw = 0 at infinity. Moreover, there exists
Co = Co(p,q,B,0) > 0 such that we have

+ |1 Daull < Col|F|e

||u||E p/2,4/2,8+1 — p/2,q/2,84+1"

P,q,8
b) IfF € Fy24/2,5+41(RXRY), then the heat equation (3) has a unique solution
such that u = 0 at infinity. Moreover, there exists Cy = Co(p,q,5,0) > 0
such that we have
HuHFp,q,ﬁ + ’lDﬂfu”Fp/z,q/z,B+1 < COHIFHFp/z,q/z,B+1'
Theorem 3 has the following corollary on Sobolev—Morrey inequalities:

Corollary 1. Let p,q € (3,00) and § > 0 with % +§ > (. Letu =0 at
infinity. Then there exists Cy = Cy(p, q, ) > 0 such that we have

||u||Ep,q,ﬂ+”Dﬂ?u”Epm,q/z,/aH+||Diu||Ep/3,q/3,ﬁ+2 < OO(Hatu||Ep/3,q/3,/3+2+||Au||Ep/3,q/3,B+2)
and
Hu”Fp,q,ﬁ+”DIUHFP/2,q/2,3+1+||D§u”Fp/3,q/3,3+2 < CO(Hatu”Fp/3,q/3,3+2+HAu”Fp/g,q/3,5+z)'

Another corollary is the following theorem of Krylov [Kryl23]:
Proposition 1. Let p,q € (3,00) and B > 0 with ]2] + % > max(f,1). There
exists € = €o(p, q, 5) > 0 and Cy = Cy(p, q, 5) > 0 such that
a) If f € Epjsgpspra(R X RY), b € Epgr, ¢ € Eppagpp, and if |bllg,,, +

lcllE, s, 00 < €0, then the heat equation

B = Au—+b-Vu+cu+ f (4)
has a unique solution such that uw =0 at infinity. Moreover, we have

2
+ “Dzu”Ep/Zq/wH + ||Dxu||Ep/3,q/3,ﬁ+2

< CO(Hf||Ep/3,q/3,5+2+||b||Ep,q,1 + ||C||Ep/2,q/2,2)‘
b) [ff c Fp/37q/375+2(R X Rd), 56 Fp,q,l; Cc € Fp/?,q/?,?; CLTLd ’Lf ||g|le,q,1 —+

||u||Ep,q,ﬁ

lellE,s,00 < €0, then the heat equation (4) has a unique solution such that
u =0 at infinity. Moreover, we have
”uHFp,q,ﬁ + HDﬂcuHFp/zq/z,BH + ||D32:u||Fp/3,q/3,5+2

< ColllF 117 5,070,600 H IO By + M€l 02)-

b}



3 Anisotropic Hardy-Littlewood maximal func-
tion on mixed norm Lebesgue spaces

Let 7 = (p1,...,pn) € (1,+00)". The mixed-norm Lebesgue spaces L?(R")
is the space of measurable functions on R"™ such that

1
P3 Pn

= [ - [/{/U(asl,...,xnﬂpl d:r}]da; < +oo.

For @ = (ay,...,a,) € [1,400)", the anisotropic cylinders Qz(z,r) are de-
fined as

Qd‘(CL’,T) = (ZL‘l - 7“‘1171’1 +7’a1) X . (:L.n _ ,r,an7xn + Ta")

and the anisotropic Hardy-Littlewood maximal function is defined as

1
Mzf(x :sup—/
() =30 Gate ] Jasier)

We then have the following boundedness result for the anisotropic Hardy-
Littlewood maximal function on mixed norm Lebesgue spaces [Huan19, Huan21]:

f()| dy.

Proposition 2. For p = (p1,...,pn) € (1,4+00)" and @ = (ay,...,a,) €
[1,400)", there exists a constant C = C(p,d) such that

| Mafllrs < Ol flles

4 Harmonic analysis on the parabolic space

We endow X = R x R? with the Lebesgue measure du(t,z) = dt dz and
the parabolic metric p((¢, x), (s,y)) = /|t — s| + |z — y|. The parabolic ball
B,(t,z) and the parabolic cylinder C, (¢, x) are defined as

B.(t,z) = {(s,9) / p((t, ), (5,9)) < r} and C,(t,x) = (t—r t+r*)x B(xz,71).

We have
B,(t,x) C Cy(t,x) C Ba,.(t, ).
(X, p, i) is a space of homogeneous type [Coif71] of homogeneous dimension
Q=d+2:
W By (t,x)) = p(B1(0,0))r<.



We associate to this space three useful operators on (non-negative) functions:
the Hardy-Littlewood maximal function My and the Riesz potentials Z, f
(where 0 < a < Q) defined by

1
M(t,x) = sup

>0 m/&(m £ (s, y)l du(s, y)

and
1

T1(t0) = [ s ) dus.9)

For 1 < p < ¢, we define the Morrey space M%7 by the space of measurable
functions such that

1_1
[fllage = sup (Bt x)a 7| Lp,(tu)llp < +oo.
r>0,(t,z)eX

d+2 min(p,q), %2

We have LI(R x RY) ¢ MYY E,,5 =M 3 and E, 5 C M,

The main tool we shall use is Hedberg’s inequality [Hedb72]:
Proposition 3. Let 1 <p<qg < +o0 and 0 < a < %. Then there exists a
constant C' = C(d, p, q, &) such that, for every f € MY, we have

L. f(t,) < C(Ms(t,2)" @ || £ Sy

Proof. We easily check that, for every R > 0, we have
/ 1
Ba(ta) PU(E, @), (s,))97°

|f(s,9)| du(s,y) < CRM;(t, x)

and
1
/X\BR(t,z) p((t, ), (s,9))
We then take

a—Q
Q,a|f(say)| du(s,y) < CR" « ||f||./\/l§q

e [fllage
Ri = ——2_, OJ
Mf(t,:B)

Applying Proposition 3 to Krylov spaces, we obtain:

Proposition 4. Let 1 < p,q < 400 and 0 < f < % + g. Then
a) f— My is bounded from E, s to E, s and from F, 3 to F, 3.
b) If B > 1, f+— I, f is bounded from E, , 3 to E%n%qﬁ_l and from F, , 3

to FL B a1
FiP 57301
c)If B >2, f—Isf is bounded from E, , 3 to E

to F
%p) %%5-2

ap iyt f-2 and from F, , 3



Proof. We consider only the case of £, , 3, as the proof for F}, , 3 is similar.
Let us estimate My on a cylinder C,(¢,z). We have M; < My + My,,
where f1 = l¢,, 2)f and fo = f — f1. By Proposition 2, we know that
2,d_
1My llzers < Cllfillzrg < C'Nfllm, o7

P,q,83

Q

On the other hand, for (s,z) € C,(t,x) C By (t,x), since By (t,z) C
C4r(t7$)7

1
< e d d < Cl 75
Mf2(572) S Sup |Bp<S,Z)| /ép(s7z) ‘f(o-v y)' oay =~ HfHEp,qﬁr

p>2r

so that )

a) is proved. b) and c) are then direct consequences of Hedberg’s inequality
(Proposition 3). O

5 The heat equation on R x R,

In this section, we solve the heat equation on R x R%:

{&u =Au-+g (5)

u = 0 at infinity

where g = f € E,,porin F,, 53 with2 < 8 < %—l—g or g = o(D)divF where
FeFE,,porin F,,5 with 1 < 8 < % + g. The solution u of equation (5) is
given by the Duhamel formula

t
u :/ e =92¢(s,.) ds.

—00

In order to estimate u and its derivatives, we need some estimates on the size
of the kernel of e'® and its derivatives, or on the derivatives of o(D)e!?.

Lemma 3. Let ¢ € S(R?) and, for > 0, yo(x) = 57¢(%). Let o(D) be a
Fourier multiplier (in the space variable) such that o(§) = 00(%) where o

is a smooth function on the sphere S='. Then, for a € N¢,

1

000 (D)y(x)] < Ca,wom-



Proof. We have

1800 (D)tbg|oc = 6747 0a0 (D)) |

and
|2 0o (D)oo = ||| 000 (D))

Thus, we may assume # = 1. We have

1 ol 5
a0 (DYin(2)] < pssloal / 1 (0)] de

On the other hand, taking a smooth function ¢ such that ¢(§) =1 for [¢] < 1
and ¢(&) = 0 for [£| > 2, we have for every R > 0, for 1 < k < d,

D .
ka\‘”'a'|0a¢(§)U(D)¢e(w)\ <C(Rlz)™*[looflcoll¥ ]l
and
2 d+lo D
[k N0a(1 = é(5))o (D)o ()]
1

<

| 18 ((1 —B(E)EoEbe >) g

de 1
< C/ ==
>k 16972 R?

(as [07(4(€))| < Gy, w|§|7‘ﬁ| 07(620()| < Caypol€]* 1 and |07 (1-¢(5)))] <
Cps|€|71P!). Taking R = | i we get 2 oo (D) e L. O

A useful result on the heat kernel is its maximal regularity in LY L% or in
LaLY:

Proposition 5. Let 1 < p,q < +oo. Let o(D) be a Fourier multiplier (in
the space variable) such that (&) = 00(%) where oy is a smooth function on

the sphere S%1.
a) If h € LYLY, then, for 1 <1i,5 <d,

H / 98(D)0;h ds || pus < Ol zss.
a) If h € LLLY | then, for 1 <i,5 <d,
l / 985 (D)2,O; 1 ds| 131y < Clhll gz
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Proof. This is a classical result, obtained through the theory of vector valued

singular integrals [Bene62]. We sketch the proof given in [Lema02]. Let
W(zx) = _1_e="F and let

(4ﬂ.)d/2

1

d+2

t 2

Qt,x) =

(0(D)0;0;W)(—=) for t >0, =0 fort<O0.

Sl =

We then consider the operator

T = Qt — — ds dy. 6
@t.a) = [ [ 0l =s.a () dsdy )
We have
(0, = A)T(g) = 0(D)0i0;9
and, taking the Fourier transform,
TN &i&j .
T(g)(7,€) = —ma(f)g(ﬂ §).

Thus, T is bounded on L*(R x R%). T can be seen as Calderén-Zygmund
operator on the parabolic space R x R? (for the parabolic distance): from

N S A N S
Lemma 3, we see that |Q(¢,z)| < C(\/Hﬂxl)d“’ |0;Q2(t, )| < C(\/HHII)‘M’

and |0,Q(¢, z)| = |[AQ(t, z)| < CW. Thus, we get that T is bounded
on LP(R x RY) for 1 < p < +o00. Let T; be the operator

Ti) = [ 39t = el dy

and T, be the operator

We have .
OT(0) = [ 1At = y)ely) dy
Rd

and

0T (w) :/Rt ! Ot — s, x)w(s) ds.

— S

From Lemma 3, we find
1 1
T3/l pacsrs < C; and |01} || g s < Ct_2

10



so that the continuity L{(L%) — L{(L%) of T can be extended to the conti-
nuity LY (L) — LP(L%). Similarly, we have

1
||T:Jc||Lfn—>Lf < C— and ||8kT HLP._)LP < C——

|

and the continuity LP(L}) — LE(LY) of T can be extended to the continuity
Li(LY) = LY(LY). O

o

Similar estimates hold for Krylov spaces:

Proposition 6. Let 1 < p,qg < 400 and 0 < 8 < %—i— ‘é. Let (D) be a
Fourier multiplier (in the space variable) such that o(§) = 0'0(%) where o

is a smooth function on the sphere S1.
a) If h € E, 5, then, for 1 <1i,j <d,

P,q,B"

||/ (=9)26¢(D)0;0;hds||k, , , < Cllh||&
a) If h € F, 5, then, for 1 <i,j <d,
[ damiodsndsl,,, <l .

Proof. We consider only the case of I, 3, as the proof for F), , 3 is similar.
Let us estimate 7'(h) on a cylinder C, (¢, x) (where T is the operator given by
(6)). We have T'(h) = T'(hy) + T'(hy), where hy = 1¢,, .0)h and hy = h — hy.
By Proposition 5, we know that

2,d_
il zers < Cllhallprrs < C'lAlIE, , r7 a7

Q

On the other hand, for (s,z) € C,(t,x) C By (t,x), since By.(t,z) C
C47'<t7$)7

1

falt2 <C// T,y)|dT d
’ 2 ‘ (Uy)t:v)>4r \/’Tfs‘ﬂz—y\ d+2‘ ( 3/)’ Y
< !
+o0o
1
<" —// |h(7,y)| dT dy
; (4Jr)d+2 o
C///”hH qu
so that »
Ieremhallrzs < Cllls,, 7o ", .

11



We may now easily prove Theorems 3 and 4, Corollary 1 and Proposition
1. Again, we shall consider only the case of E), 4 3, as the proofs for F), , 3 are
similar.

Proof of Theorem 3

Proof. The solution u of equation dyu = Au+f is given by u = fjoo et~ f(s,.)ds
By proposition (6), we already know that

2
HDxu||Ep/3,q/3,z3+2 < C“fHEp/S,q/S,BH'

On the other hand, from Lemma 3, we see that

|D,u(t, x) |f(s,9)| ds dy = CTi([f)(t, )

// \/‘tj""x y|)dtt

and

|f(s, )l ds dy = CL(| f])(t, x).

) =
(V ]t = s[+ |z —y])¢
We then apply Proposition 4 to get

HDacuHEp/Q,q/z,ﬁH < 0Hf||Ep/3,q/3,ﬂ+2

and
lullz,, s < CUflE, 54550 O

Proof of Theorem 4

Proof. The solution u of equation dyu = Au + o(D)divF is given by u =
ffoo =8¢ (D) divF(s,.) ds. By proposition (6), we already know that

| Daull

P/2,q9/2,8+1

< Gol|Flg

P/2,4/2,8+1"

On the other hand, from Lemma 3, we see that

[F(s,y)| ds dy = CLy(|F])(L, ).

u(t,z)| < C//
(V|t —s| + ]:U—y] )dtt
We then apply Proposition 4 to get

< O[] : O

HUHE p/2,0/2,8+1

P,q,8

12



Proof of Corollary 1

Proof. We just write O,u — Au = f with f = du — Au. By Theorem 3, we
have

[ull 2, g5+l Dael| s, +|Dzullg,

< Co([|0eul[, +Aul g,

/2,q/2,8+1 /37q/373+2)

]

/3,a/3,8+2 /3,a/3,8+2

Proof of Proposition 1

Proof. Let X ={u € E, .5/ Dyu € Ep24/9p+1, D2u € Ep3 473542}, normed
with
+ [ Dyull g

P/2,q/2,8+1

lullx = llullz,, , +1Dzullz, 55,512

We are looking for a solution in X of the equation
uw="T(f)+T(b-Vu)+ T(cu)
, where T'(f) = fjoo et=92 f(s,.) ds. By Theorem 3, we have
IT(Hlx < Cillfllz, o,0/6,5520

175 Vu)l|x < Callb- Vullg,

and

/3,q/3,68+2 < C2HbHEp,q,1HDCEUHEP/Q,q/2,B+1>

1T (cu)llx < Cslleulls, s, 5500 < CallellB, a0 tllp.g6-
For Col|b]| g, ., +C5lcll &

o e < 1, the operator S(u) = u—T(b-Vu)—T(cu)
is an isomorphism of X, with ||S7!|xx < 2. The solution u is then given
by w=STHT(f)), with ||ullx < 2Ci|/fll O

p/3,4/3,8+2"

6 The Navier—Stokes equations.

We prove here Theorem 1. The proof of Theorem 2 is similar. Again, we
consider only the case of E, ;3.

Proof of Theorem 1

Proof. The Navier—Stokes equations we study are

Oyt = Nt — Vp— it - Vi + f+ divF
divii =0 (7)
@(0,.) =0

13



where fe E,)3,4/3,3 with div f: 0and F € E,/54/22. We rewrite (7) as
— ]_ —
ol — Au = f+ (Id — ZV div) div(F — @ ® ).

(Id— %ﬁ div = P is the Leray projection operator on solenoidal vector fields.)
Let X = {ﬁ € Ep,q,l / Dxﬁ S Ep/?,q/Z,Q}u normed with

lullx = Nz, o, + 1Datill 5, 0,000

We are looking for a solution in X of the equation

—

i=T(f) + T(PdivF) — T(Pdiv(d ® @)),

where T(f) = fot =92 fls ) ds (= I et=9A (s, ) ds if we extend f to

(—00,0) with f(¢,2) =0 for t < 0). By Theorem 3, we have

TN x < Cullfllz, 57050

By Theorem 4, we have

|T(PdivF)||x < Cy|F| e

P/2,q/2,2
and
IT(P div(i @ @))|x < Csl|i @ llg, 0, < Calll} 41
For Cil|fllg, 5055 + ColFll5, 500 < 75 We find a solution i € X with
1l x < 2(Coll FllE, 000 + CollFllE, 0 ) O

Appendix: Parabolic Besov spaces

In this appendix, we describe some results on the heat equation on parabolic
Besov spaces that may shed a new light on many of the inequalities we
obtained throughout the paper, which are to be viewed more as regularity
assertions than as results on existence of solutions.

For 6 > 0, let us define the parabolic Besov space B[gﬁ so.00 B8 the space of

tempered distributions on R x R such that

92(63—A2)u(

lullgs = sup 0" t, 2)|| oo ey < +00.
,00,00 >

(In particular, E,, 5 C B[;fowo and F,,5 C B )

[2],00,00°"
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It is easy to check that 82] so0e COINCides with the (realization of the)
homogeneous Besov space defined through the parabolic Littlewood-Paley
decomposition (for instance, see Triebel’s book [Trie06]). Let ¢(7,&) be a
smooth function equal to 1 when /|7[+ [¢] < 1 and to 0 when \/F+ €| >
2. Let S;f be defined as the inverse Fourier transform of ¢(, 23) f(7,6).
Then 8[2],00,00 is the Banach space of tempered distributions f such that
sup ez 2°(|8; fllee < +00.

We have the following Gagliardo—Nirenberg inequality

Proposition 7. Let 6 >0, 1 < p,q < +oo and 3 € (0, 1% + g).
a) If u € B[;]‘SOOOO and Owu, Au € E, , 5, then

146
1DattllBgss, 515, 110, <C||U||2+5 (18ull, . 5 + 1Aullg,, )2
Ex b e Ll m i J,00,00
b) If u e 8[2] sose N Ou, Au € Fy g 5, then
1 146
1Datell s, ass, 1is, < Cllulls™s  (I10ullr,, s + 1Aullr, )=
T5P 145245 P [2],00,00

Our final resuts extend Corollary 1 and Theorem 3 to parabolic Besov
spaces:

Theorem 5. Let 6 > 0. Let u = 0 at infinity. Then u € B[z]oooo if and
only if Oyu € 15’2]500200 and Au € 82]‘500200 Moreover, the norms HuHB_] and
2],00,00
H@tuHB[_]a_z + HAU||B[—]6—2 are equivalent.
2],00,00 2],00,00
Theorem 6. Let 6 > 2. If f € B[g]éoo . then the heat equation
has a unique solution such that uw = 0 at infinity. Moreover, u € 82]5;200 and

HUHB[;]{;?m < OHf”B[;ﬁwm

Those results are not very new, as they can be recovered from the volu-
minous literature on anisotropic Besov spaces We present them for sake of
completeness.
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Proof of Proposition 7.

Proof. As u = 0 at infinity, we may write

u= / (=) (e P2~y dp
0

and -
Dyu = / (—0p) Dy (e OF=2%y,) db.
0

For R > 0, we rewrite this as

: 207 272 do
Dyu =~ /o (200,¢” % 0D, 2" )ou 75
) /:@62‘0‘?63928? VD, 18 (o 5080y
+ /R(26923393/2DxA602A2)Au do
: Vo
" /1%00(262928?95/2DxA2eZHQAZ)(ef(a?AQ)u) %

=I+I11+1I1+1V.

Recall that M designs the parabolic Hardy-Littlewood maximal func-
tion. If v € S(R x RY), we have, for every 6 > 0,

1
J[ 500G s = s =) dsdy < CoMytt.a)

and

J[ 510G e = 5.0 =) dsdy < 1o

Thus, we have
11| < CVRMg,, and |I11| < CvV'RMa.,

and

[II| + |[IV| < CR™% [[u]|5s

[2],00,00 ’

Jull - 75
: _ [2],00,00
Taking VR = (Matu(t,a:)iMAu(t,x)> , we get

1
[Dou(t, )| < Cllull ;55 (Mault,2) + Mau(t,z))
2

],00,00

and we conclude by Proposition 4 a). ]
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Proof of Theorem 5.

Proof. Writing

692(83—A2)(3tu) — é(eateia%af—ﬁ))(6102(83—&)@
and

692(637A2)<Au> _ %(9Aeie2(aﬂ2AQ))(641192(63A2)U),
we find that

1Oullgsz  +lAullzs-2 < Cllullgs

[2],00,00

As u = 0 at infinity, we write
- 7 (03-12) T A2 2 (0247
u = (=0y)(e"' ™2 u)dn = 2 (A% — 0;)e™ '\ T2y dn.
0 0
We get
92 82 A2 too 772 82 A2 92 7]2 82 A2
0202, :2/ (nAe’s O =5 o+ 51O =A%) Ay g
0
Feo 772 2 2 2 712 2 2
_2/ (ndye 3 @ =02)) (OG-0 4
0
so that

+oo
@27y, <C / @87 Ay, 4 @A)y di
0

772 243

+o0
<Ol + ”A“”%ﬁ;",w)/o (6°+ )"+ dn

2

+oo
=CO (|0l gs2 +|Dullgsz ) [ (1+ D)y
[2],00,00 [2],00,00 0 2

and finally
HUHB[‘QfOOOO < C(||8tu||5[—2]5;200 + ||Au||3[—2]5;200)~ O]

Proof of Theorem 6.
Proof. We write

o] +o0
f= / (—0,) ("2 £y dn = —2(9, — A) / (A + 0,)e™ =20 £ ay,
0 0

17



Let oo
uw=—2 / n(A 4 8,)e™ =57 £ ap,
0

We have
“+oo
[N §2/ ||(ﬁﬁeé(a?_ﬂ))(6(92+§)(83_A2)f)||oodn
0
+oo 772 2 2 2 7]2 2 2
+ 2/ [(ndse = Vi=27) (el 027 1)) dn,
0

“+o00
SC/ H€(92+§)(BE*A2)]£HOOdn
0

2

+o0 ) 0 _2ss
<Clflsge [ @+T) 5 dy
,00,00 0

2

+oo
— OO f s 2 / 1+ Ty gy
[2).00,00 [ 2

and finally

[ell 5

[2],00,00

< Ol g 0
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