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The Navier—Stokes equations in mixed-norm
time-space parabolic Morrey spaces.

Pierre Gilles Lemarié-Rieusset™®

Abstract

We discuss the Navier-Stokes equations with forces in the mixed-
norm time-space parabolic Morrey spaces of Krylov.

Keywords : Navier—Stokes equations, heat equation, parabolic Morrey
spaces, mild solutions.

AMS classification : 35K55, 35Q30, 76D05.

1 Introduction

In this paper, we consider global mild solutions of the Cauchy problem for
the incompressible Navier-Stokes equations on the whole space R®. More
precisely, the Navier—Stokes equations we study are

Oyii = Nit — Vp — it - Vii + f+ divF
divid =0 (1)
@(0,.) =0

where f and FF are small enough in some critical (homogeneous) mixed-norm
time-space parabolic Morrey spaces of Krylov.

(Following Krylov [Kryl23]), let us recall the definition of mixed-norm
time-space parabolic Morrey spaces on R x R%:

*LaMME, Univ Evry, CNRS, Université Paris-Saclay, 91025, Evry, France; e-mail :
pierregilles.lemarierieusset Quniv-evry.fr



Definition 1. Let 1 < p,q < 400 and (5 € (0, }—27 + %). The parabolic Morrey
spaces E, .5 and F,, 5 are the spaces of locally integrable functions f(t,x)
on R x R such that || f||g,, , < +oo or ||f|lg,,, < +00, where

P,q,8

([ issaranta)
p>0,teR,zcR4 [t—s|<p? J|z—y|<p

Qe

_2
gy = sup  p7

and

1

_2_ a q

e, = sup (/ </ |f(s,y)!”d8)de)-
p>0,teR xR lz—yl<p o [t—s|<p?

Remark: when p = ¢, writing r = % (so that p < r < +00), we see that

Epps = F,p5 = M5 (R xRY), where M5" (R x R?) is the parabolic Morrey
space studied in [Lemal6] in the context of Navier—Stokes equations.

Krylov [Kryl23] developed a theory of It6 stochastic equations with as sin-
gular a drift as possible. Following an observation of Kinzebulatov [Kinz23],
he considered a drift in parabolic Morrey spaces. We will show that his re-
sults can be easily applied to the Navier—Stokes problem. More precisely,
we consider the initial value problem (on (0,+00) x R?) with initial value
u(0,.) = 0, that we transform as a problem on R x R3 by extending the
Navier-Stokes solution by #(t,.) = 0 for ¢ < 0.

Qe

For a function defined on (0, +00) xR, we say that f € E,,gor f € F, .5
if the function f# defined by f# = f for t > 0 and f# = 0 for ¢t < 0 is such
that f# € E, 5 or f#* € F, 5.

Our main theorem is the following one:

Theorem 1. Let p,q € (3,00) with % +§ > 1.
a) There exists eg = €o(p,q) > 0 and Cy = Cy(p,q) > 0 such that, z'ff €
Ep/3,q/3,3 with div f =0and F € Ep/2,q/2,2 and Zf

HfHEp/?,,q/3,3 + HIFHEP/Z!Z/ZZ < €0,

then the Navier-Stokes equations (1) have a global mild solution i € E, ;1
and V & (TS Ep/2,q/2,2 with

||ﬁ||Ep,q,1 + ||v ® ﬁHEp/z,q/z,z < CO(HfHEp/g,q/g,g + ||F||Ep/2,q/2,2)'

b) There exists €g = €o(p,q) > 0 and Cy = Cy(p,q) > 0 such that, if f €
Fo3,4/33 with div f =0 and F € F, /94720 and if
Hf”Fp/&q/S,B + ”IFHFP/QVq/gyz < €0,
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then the Navier-Stokes equations (1) have a global mild solution @ € F), 1
and V X U € Fp/g’q/g’g with

||ﬁ||Fp,q,1 + ||v ® ﬁHFp/z,q/g,Q < CU(||f||Fp/3,q/3,3 + ||F||Fp/2,q/2,2)'

When the force f is equal to 0, we may lower the values of p and ¢:

Theorem 2. Let p,q € (2,00) with % +§ > 1.
a) There exists g = €o(p,q) > 0 and Cy = Co(p,q) > 0 such that, if F €
E

p/2.0/2,2 aNd
¥, .4/, < €0

then the Navier—Stokes equations (1) (with f: 0) have a global mild solution
U e Ep’q71 and V X U e Ep/2,q/2,2 with

[l g0 + IV @B, 0. < CollFlz

P/2,9/2,2"

b) There ezists g = €y(p,q) > 0 and Cy = Cy(p,q) > 0 such that, if F €
Fp/g’q/z’g and ’Lf
1E1 7, 3,022 < €05

then the Navier-Stokes equations (1) (with f = 0) have a global mild solution
TS Fp,q,l and V X U e Fp/qu/gyg with

[l 7y 00 + IV @ llE, < Col|Fll,

/2,4/2,2 — /2,q/2,2"

As usual, the mild solution ¥ will be searched as a fixed point of the

transform
U—T(f)+ T(PdivF) — T(Pdiv(d ® u)),

where T(f) = fot et=Af(s )ds. Let us remark that, if X = E,q1 or
X = F,41, then X is a critical space with respect to the scaling of the
Navier—Stokes equations: for A > 0, [|MNZ(A\?t, A\z)||x = ||u]|x. Epq1 is easily
compared to other classical spaces; for instance, we have, for Serrin spaces
with 2+ 2 =1, LF((0, +00), LL(R?)) C E,q1, while E,,5 C M5™P7? (a

critical space discussed in [Lemal6]).

2 Heat equation

The proof of theorems 1 and 2 will rely on the theory of the heat equation
Owu— Au = f on R x R? with the boundary condition v = 0 at infinity. This
condition will be defined as follows:



Definition 2. Let u be a tempered dz’stm’bution on R x R Then u =
0 at mﬁmty if for every § > 0 one has ¢’ 070y ¢ L*(R x RY) and
limg, 40 [|€7° @2 u| o = 0.

Easy examples of u with « = 0 at infinity are u € LYL2 with 1 < p,q <
00, (p,q) # (00,00) or u = Gy + Z?Zl v; where v; € L®(R x RY) for
0 < j < d: in the first case, we have ||e? @ ~2%y]|, < C||u||Lqu€7(%+2iq)
and, in the second case, ||e?” @ =2%y|| . < C(07|volls + Z?Zl 072 |0 |00
Easy examples of bounded functlons w with u # 0 at infinity are u = 1,
u = lysg, or u = 1x¢>0 we have [[e?” @20y, =1, as [[e” @2y < 1
and 1im; z,)— (+00,400) € 6%(07 —A%) u(t,z) = 1.

Lemma 1. Let u be a tempered distribution on R x R? such that u = 0 at
infinity. If Oyou — Au =0, then u = 0.

Proof. Take the Fourier transform (in time and space variables) of the heat
equation. We find

(ir + [¢[*)a(r, §) = 0.

Thus, @ is supported in {(0,0)}, hence is a sum of derivatives of the Dirac
mass, and u is a polynomial. As e’ *07=A%y s then a polynomial, and
as e 0I=A%y ¢ L®(R x R?), we find that u is a constant; in that case,
@Ay — . As u =0 at infinity, we have u = 0. O]

Lemma 2. Let 1 < p,q < +oo and § € (0, §+§). Ifue B, 5 oruc F,,p,
then uw = 0 at infinity.

Proof. We give the proof for u € E, 3 (the case u € F, 5 is proved in a
similar way). Let W (t,z) be the inverse Fourier transform of e~ ~KI*. W
is in the Schwartz class of smooth functions with rapid decay. In particular,

(V] + [T W (¢, 2)| € L=(R x R?). Writing

/ W (t, )| |u(t, )| dt dz

+o0
) //\ﬂt|+x|<1 W) fult, o)l dbdet Z //2j<\ﬂt+|x<zj+1 Wt 2)| ult, z)] dt d

]*0

j(2+2-p)
< OHu”Ep,q,ﬁ(||]l\/_|t\+|a:\<1 Lpf qu +22 ||12J<\/It\+|x\<2j+1w||Lf%IL

S C/Hu“Ep,q,ﬁ(l + Z 2_]6) :OIHUHEp,q,ﬂ’

q

q—1
x

)



we get

|7 @Ay (¢, 7)| < / / W (s, y)lu(t + 0%s, x + Oy)| ds dy

§01||u(t + 9-7 X _'_ \/5')"Ep,q,ﬁ
:Cll|u(97 \/5-)||Ep7q,5
=C||lul| g 60,

P,q,8
Thus, limg_, ,+ [|e? @2y, = 0. =

The proof of Theorems 1 and 2 will be based on the following results on
the linear heat equation:

Theorem 3. Let p,q € (3,00) and 5 > 0 with % +§ > f.
a) If f € Ep343.802(R x R?), then the heat equation

ou=Au+f (2)

has a unique solution such that uw = 0 at infinity. Moreover, there exists
Co = Co(p,q, B) > 0 such that, if denoting by D,u the gradient of u and by
D2y the Hessian of u (with respect to the space variable), we have

+H| D3ullz Co

p/3,q/3,8+2

I Doul 2

p/2,0/2,8+1

+H Ol

||UHE 'p/3,a/3,6+2 <

P.q,8 Hf||Ep/3,Q/37ﬁ+2’

b) If € Fp3.4/3+2(R x RY), then the heat equation (2) has a unique solution
such that w = 0 at infinity. Moreover, there exists Co = Co(p,q,5) > 0 such
that we have

HuHFp,q,ﬁ_i_”D$u|’Fp/2,q/2,B+1+“D.z‘uHFp/3,q/3,B+2+Hatu”Fp/3,q/3,B+2 < COHfHFp/3,q/3,3+2'

Theorem 4. Let p,q € (2,00) and § > 0 with 129 —1—2 > (3. Let o(D) be a
Fourier multiplier (in the space variable) such that o(§) = 00(%) where o

is a smooth function on the sphere S 1.
a) If F € Eppq/25+1(R x R?), then the heat equation

Ou=Au+o(D)divF (3)

has a unique solution such that v = 0 at infinity. Moreover, there exists
Co = Co(p,q,B,0) > 0 such that we have

+ |1 Daull

P/2,q/2,8+1

< Col|F||

HUHE p/2,q4/2,6+1"

P,q,8

b) IfF € F,24/25+1(RXRY), then the heat equation (3) has a unique solution
such that uw = 0 at infinity. Moreover, there exists Co = Cy(p,q,,0) > 0
such that we have

”uHFp,q,,e + ||D1‘u”Fp/2,q/2,5+1 < COHFHFp/z,q/wH‘
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Theorem 3 has the following corollary on Sobolev—Morrey inequalities:

Corollary 1. Let p,q € (3,00) and > 0 with % +§ > (. Letu =0 at
infinity. Then there exists Cy = Co(p, q, 5) > 0 such that we have

||u||Ep,q,ﬂ+”DquEpm,q/z,/aH+||D?cu||Ep/3,q/3.ﬂ+2 < OO(Hatu||Ep/3,q/3,/3+2+||Au||Ep/3,q/3,6+2)
and
||“||Fp,q,ﬁ+||D$u||Fp/2,q/2,6+1+||Dﬂ2cu||Fp/3,q/3,5+2 < CO(“atuHFp/s,q/s,Bw"'—”AuHFp/s,q/s,mz)'

Another corollary is the following variation on the theorem of Krylov
[Kryl23]:

Proposition 1. Let p,q € (3,00) and B > 0 with % + g > max(f,1). There
exists €y = €o(p, q, 5) > 0 and Cy = Cy(p, q, 5) > 0 such that

CL) ]f f € Ep/37q/3”3+2(]R X ]Rd), b - Ep,q,l; Cc € Ep/Q,q/Q,Q; cmd Zf ||l_7’||Ep7qY1 —+

lcllE, s,00 < €0, then the heat equation

u=Au+b-Vu+cu+ f (4)
has a unique solution such that u =0 at infinity. Moreover, we have

+ || D2ul| g

||U||Ep,q,5 + ||Dwu||E p/3,q/3,6-42

P/2,q/2,8+1

< Colllf 118, 24/3, 50210 By s+ M1l 2 0/02):

b) If f € FyzgrspeaR X RY), b € Fpgu, ¢ € Fygpa, and if |blls,,, +
lcllF, jg/00 < €0, then the heat equation (4) has a unique solution such that
u = 0 at infinity. Moreover, we have

2
j2.a/2841 T ||Dmu”Fp

S OO(||f||Fp/g,q/3$3+2+||b||Fp,q,l _|_ ||C||Fp/2,q/2,2>'

”uHFp,q,ﬁ + HDﬂcuHFp /3,a/3,8+2

3 Anisotropic Hardy-Littlewood maximal func-
tion on mixed norm Lebesgue spaces

Let o= (p1,...,pn) € (1,400)". The mixed-norm Lebesgue spaces LP(R™)
is the space of measurable functions on R™ such that

Flls = /[/{/|f()|dx}]d U

6



For @ = (ay,...,a,) € [1,400)", the anisotropic cylinders Qz(z,r) are de-
fined as

Qa(x,r) = (x1 —r* 2y +r*") X ... (2, — r* 2, + 77)

and the anisotropic Hardy-Littlewood maximal function is defined as

M f(z) = sup !

- f(y)|dy.
r>0 ‘in(m?r)’ Qa(l"ﬂ“)‘ ( )|

We then have the following boundedness result for the anisotropic Hardy-
Littlewood maximal function on mixed norm Lebesgue spaces [Huan19, Huan21}:

Proposition 2. For p = (p1,...,pn) € (1,4+00)" and @ = (ay,...,a,) €
[1,4+00)", there exists a constant C' = C(p,d) such that

[Maflle < CllflLe

4 Harmonic analysis on the parabolic space

We endow X = R x R? with the Lebesgue measure du(t,z) = dt dz and
the parabolic metric p((¢, z), (s,y)) = /|t — s| + |z — y|. The parabolic ball
B, (t,x) and the parabolic cylinder C, (¢, x) are defined as

B.(t,z) = {(s,9) / p((t,2), (5,9)) < r} and C,(t,x) = (t—r, t+r*)x B(x,1).

We have
B,(t,x) C Cy(t,x) C Ba,(t, ).

(X, p, i) is a space of homogeneous type [Coif71] of homogeneous dimension
Q=d+2:
u(B,(t,x)) = p(B1(0,0))r<.

We associate to this space three useful operators on (non-negative) functions:
the Hardy-Littlewood maximal function M and the Riesz potentials Z, f
(where 0 < a < @) defined by

1
M;(t,z) = sup

>0 m/&w) |f (s, 9)| (s, y)

and
1

Laf(t, ) :/Xp((t e y))Q_af(&y) dp(s, y)-




For 1 < p < ¢, we define the Morrey space M%7 by the space of measurable
functions such that

1_1
[fllpmge = sup pu(Be(t, @) 7 |[Lp,a) fllp, < +oo.
r>0,(t,z)eX

42 min(p,q), L5

We have LI(R x RY) ¢ M2 E,, 5 =M, 7 and E, 5 C M,

The main tool we shall use is Hedberg’s inequality [Hedb72]:
Proposition 3. Let 1 <p<g< 400 and 0 < a < % Then there exists a
constant C' = C(d, p, q, &) such that, for every f € MY we have

Tof(t,7) < CM(t,2)' " @ [If] Zpo-

Proof. We easily check that, for every R > 0, we have

1
/Bmt,x) p((t,x), (s, )9

|f(s,9)| du(s,y) < CR*My(t, x)

and
/ gl dutsg) < CRR ]
s, y)| du(s,y) < “ pa.
X\BR(t,x) p((t,x), (Svy))Q_a M
We then take 0]
Q _/\/[p7‘1
Rae = "2 O
Mf(?f,I)

Applying Proposition 3 to Krylov spaces, we obtain:

Proposition 4. Let 1 < p,q < 400 and 0 < f < % + g. Then
a) f — My is bounded from E, s to E, . and from F, 5 to F,, 3.
b)If 5> 1, f—Iif is bounded from E, .5 to E_s pgra,—1 and from F, 4 3

—1
to F%p,%q,ﬁfl'
¢)If8>2, f—=Dof is bounded from Epg5 to E 5_ 5 5 o and from Fpg g

B
7 2P B2
to
5P 550,82

™

Proof. We consider only the case of £, , 3, as the proof for F}, , 3 is similar.
Let us estimate My on a cylinder C,(¢,z). We have M; < My + My,,
where f1 = l¢,, 2 f and fo = f — f1. By Proposition 2, we know that
2,d_
1My llzers < Cllfillzrg < C'Nfllg, o7

P,q,83



On the other hand, for (s,z) € C,(t,x) C By (t,z), since By (t,x) C
C4r<t7'r)7

1 _
M0 S 3D ) O S U™
p\ = p(s,2

p>2r

so that .

a) is proved. b) and c¢) are then direct consequences of Hedberg’s inequality
(Proposition 3). O

5 The heat equation on R x R,

In this section, we solve the heat equation on R x R%:

()

du=Au+yg
u = 0 at infinity

where g = f € E,,p0rin F,,5 with 2 < 8 < }%—i—% or g = o(D)divF where
FeE,,porin F,,5 with 1 < f < ]% + g. The solution u of equation (5) is
given by the Duhamel formula

t
u :/ e=)%¢(s, ) ds.

In order to estimate u and its derivatives, we need some estimates on the size
of the kernel of ' and its derivatives, or on the derivatives of o(D)e!®.

Lemma 3. Let v € S(R?) and, for 6 > 0, o(x) = 72¢(%). Let o(D) be a
Fourier multiplier (in the space variable) such that o(§) = ao(é—|) where oy
is a smooth function on the sphere S¥~'. Then, for a € N,

1

D < e
000 (D)e(2)| < Cayo (6 + |z] )4+l
Proof. We have

1000 (D)¥slloe = 6~ 1|00 (D)¥ 1o

and
” |x|d+|a|aaU(D)¢9”oo = H |x|d+|alaoca<D)¢Hoo-



Thus, we may assume # = 1. We have

1 ol 5
a0 (Din(2)] < psslonl / 1 (0)] de

On the other hand, taking a smooth function ¢ such that ¢(§) = 1 for [£| < 1
and ¢(&) = 0 for [£| > 2, we have for every R > 0, for 1 < k <d,

ka\“'a'|0a¢(%)0(9)w9(13)\ <C(Rz))* |00l ool [l
and
|| H10.(1 — ¢(5))a (D)o ()|

e [ 180 (1= o Sneaiice) ) las

dg 1
< C/ ==
>R ’§|d+2 R2

(as [07(4(€))| < Cy, w!ﬁ\_w (07(£20()| < Caypol€]* 1 and [07(1-¢(5)))] <
Cps|€|71P!). Taking R = | . we get 2 9e0(DYy € L. O

— |

<

A useful result on the heat kernel is its maximal regularity in LY L% or in
LaLY:
Proposition 5. Let 1 < p,q < +00. Let o(D) be a Fourier multiplier (in
the space variable) such that o(§) = 00(%) where ag is a smooth function on

the sphere S1.
a) If h € LYLYL, then, for 1 <1i,5 <d,

H/ t S 88 h’dSHLqu < C“h“LPLq
a) If h € LLLY, then, for 1 <1i,j <d,

l / 985 (D)2,O; 1 ds| 131y < Cllhll gz

Proof. This is a classical result, obtained through the theory of vector valued

singular integrals [Bene62]. We sketch the proof given in [Lema02]. Let

|2
W(z) = We"Tl and let

1

a+2
2

Qt,x) = (()83W)( )fort >0, =0fort<D0.

Vit
10

t



We then consider the operator

T)ta) = [ [ 0t = sa = ngls.y) dsdy )
We have
(0~ N)T(9) = o(D)0i0s0

and, taking the Fourier transform,

N &i&;

T(g)(r,€) = 7m0 (7, €)

Thus, T is bounded on L*(R x R%). T can be seen as Calderén—Zygmund

operator on the parabolic space R x R¢ (for the parabolic distance): from
1 1

Lemma 3, we see that ‘Q(t, .Z')| < CW, \@Q(t,x)\ < CW’

and |0,Q(t, z)| = |AQ(t, z)| < CW. Thus, we get that T is bounded
on LP(R x RY) for 1 < p < +o00. Let T} be the operator

1) = [ 300 =) dy

and T}, be the operator

T.(w) = /R ! Q(t — s,x)w(s)ds

t—s
We have .
OTi(v) = | AQ(t 2 —y)uly)dy

Rd
and

1
kT (w) = / Ot — s, x)w(s) ds.
R t—s
From Lemma 3, we find
1 1

ITel[rgsrs < C; and (|07 g1 < Ot_2
so that the continuity Li(L%) — Li(L%) of T can be extended to the conti-
nuity LY(L%) — LY(L%). Similarly, we have

1 1
1Tl e osrr < CW and [|0x Tz psrr < OW

and the continuity LP(LY) — L2(L}) of T' can be extended to the continuity
Li(LY) = LE(LY). O

11



Similar estimates hold for Krylov spaces:

Proposition 6. Let 1 < p,q < +00 and 0 < 8 < %—l— g. Let o(D) be a
Fourier multiplier (in the space variable) such that o(§) = 00(%) where o

is a smooth function on the sphere S 1.
a) If h € E,,3, then, for 1 <i,j <d,

||/ g (D)0,0;h ds|s, ., < Cllhlls, .

a) If h € F, 5, then, for 1 <i,5 <d,
[ o000 ksl < Clbls,

Proof. We consider only the case of I, , 3, as the proof for F), , 3 is similar.
Let us estimate 7'(h) on a cylinder C,.(¢,x) (where T is the operator given by
(6)). We have T'(h) = T'(hy) + T'(hy), where hy = 1¢,, .0)h and hy = h — hy.
By Proposition 5, we know that

a_
[hallzrre < Cllhallpre < C'lhllg,, rati—B

On the other hand, for (s,z) € C,(t,x) C By (t,x), since By.(t,z) C
C4r(t7x)a

1
]h232\<0// |h(,y)| dT dy
(o) (ta)>ar (/|7 — s +|z yl)d+?
so'// (h(r, )| dr dy
(@) (tap>ar (VT =t + [z —y[)¥2
+o0
1
e re— / [ nyldrdy
jgo ()i Cyjt1,
SC’///||}1/||Ep,q,67"718
so that
1Lc,ayhellrrs < C|!|!Ep,q57’5+5_6~ O

We may now easily prove Theorems 3 and 4, Corollary 1 and Proposition
1. Again, we shall consider only the case of E, , 3, as the proofs for F, , s are
similar.

12



Proof of Theorem 3

Proof. The solution u of equation 0yu = Au+f is given by u = fjoo et=I)Af(s,.) ds.
By proposition (6), we already know that
2
HDIuHEp/ZS,q/:i,B-‘-Q < O“f”Ep/&q/&lH?'

On the other hand, from Lemma 3, we see that

1
D)) < € [ el ) dsdy = CTUT D 2)

and

|f(s,y)l ds dy = CLy(| f])(t, ).

o)< [ :
u(t,z)| <

(VIt = s[+ |z —y))?
We then apply Proposition 4 to get

||DquEp/2,q/2,ﬁ+1 < CHfHEp/s,q/wu

and
”uHEp,q,,B < CHfHEp/g,,q/g,BH' [

Proof of Theorem 4

Proof. The solution u of equation dyu = Au + o(D)divF is given by u =
ffoo =20 (D) divF(s,.) ds. By proposition (6), we already know that

| Dzullg, < Col|Fle,

/2,q/2,8+1 /2,q/2,8+1"

On the other hand, from Lemma 3, we see that

[F(s,y)| ds dy = CTy(|F|)(¢, z).

uta) < [ :
u(t,z)| <
(VIt = |+ |z =y
We then apply Proposition 4 to get
< CO|F| g

HUHE p/2,0/2,8+1"

P,q,8

Proof of Corollary 1

Proof. We just write Oyu — Au = f with f = d;u — Au. By Theorem 3, we
have

[l 031 Dt 0 HN D5 By 5,542 S CollOullBy 05,500 TIAUN By 475,1)

[]
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Proof of Proposition 1

Proof. Let X ={u € E,,5/ D,u € Ey2.q/2,8+15 D%y e Ep/g,q/gﬁﬁ}, normed
with

lullx = llullz,, s + [1Deullz + | Diullp,

p/2,9/2,8+1 /3,a/3,8+2"

We are looking for a solution in X of the equation
uw="T(f)+T(b-Vu)+T(cu)
, where T(f) = ['__e@=92f(s,.)ds. By Theorem 3, we have
IT(Hlx < CillFllz, o,0/0,5520

IT(b - Vu)|lx < Collb- Vullg

<
p/3.4/3.6+2 —

Coll0ll 2, 41 |1 D] 2

p/2,q/2,8+17
and

IT(cw)llx < Csllcullz, js.0/500 < Callellz, o gpmallullpas-

For C’2||l;||Ep,q71 +Csllcllr, )p 0 < 1, the operator S(u) = u—T(b-Vu)—T(cu)

is an isomorphism of X, with ||S™!||x..x < 2. The solution u is then given
by u = STHT(f)), with [lulx < 2C1[|f|& 0

p/3,q/3,8+2"

6 The Navier—Stokes equations.

We prove here Theorem 1. The proof of Theorem 2 is similar. Again, we
consider only the case of E, ;.

Proof of Theorem 1

Proof. The Navier—Stokes equations we study are

Oyl = Ail —Vp—ii-Vii+ f+divF
divi =0 (7)
@(0,.) =0

where fE E,3.4/3,3 With div f: 0 and F € E,/54/2,2. We rewrite (7) as
— 1 —
Ol — At = f+ (Id — ZV div) div(F — 4 ® ).

(Id— %ﬁ div = P is the Leray projection operator on solenoidal vector fields.)

14



Let X ={u € E, 41/ D,i € Ey3 422}, normed with

lullx = Nldllz, o, + 1D2till 5, 0,000

We are looking for a solution in X of the equation

i=T(f) + T(PdivF) — T(Pdiv(d ® @),
where T(f fo (t=)Af(s, ) ds (= [T e92f(s,.)ds if we extend f to
(—00,0) Wlth f(t,z) =0 for t < 0). By Theorem 3, we have

IT(P)llx < Cll 1Lz, g 0.

By Theorem 4, we have

TP divF)||x < Col|F||e

P/2,4/2,2
and
1T (P div(d ® @))|x < Csl|@ @ llE, 5,0, < Calltl} 00
For ClHﬂ’Ep/&q/g,?, + ColFllE, 5,0, < ﬁ, we find a solution @ € X with
[allx < 2CulI 1B, .0/05 + CollFll5,2002)- O

Appendix 1: Parabolic Besov spaces

In this appendix, we describe some results on the heat equation on parabolic
Besov spaces that may shed a new light on many of the inequalities we
obtained throughout the paper, which are to be viewed more as regularity
assertions than as results on existence of solutions.

For 6 > 0, let us define the parabolic Besov space B[;ﬁ so.00 85 the space of
tempered distributions on R x R such that

001~ A2)U(t7ﬂf)|’LOO(Rde) < 4-00.

fullgs = sup??]e”
(In particular, E,, 3 C B[g]pq and F,,3 C 5[2] so0o) [The index [2] indi-
cates the underlying time-space scaling, where ¢ behaves like |z|?.]

It is easy to check that B[g]’g soo Coincides with the (realization of the)
homogeneous Besov space defined through the parabolic Littlewood-Paley
decomposition (for instance, see Triebel’s book [Trie06]). Let ¢(7,&) be a
smooth function equal to 1 when /|7] + |¢| < 1 and to 0 when \/F—i- 13
2. Let S;f be defined as the inverse Fourier transform of ¢(Z, o) F(7, ).
Then 8[2],00,00 is the Banach space of tempered distributions f such that
sup ez 2°(|8; flloe < +o0.

We have the following Gagliardo—Nirenberg inequality

15



Proposition 7. Let 6 >0, 1 < p,q < +oo and 3 € (0, % + Cé).

a) If u € Bz] o0 @1 O, Au € E, 43, then
1is
1DattllBgss, 245, 11s, < CHU\ = (Il 5,5 + 1 Aullg,, )%+
ToP THs 02160 00,00

b) If u € 8[2] sose N Oyu, Au € F 4 5, then

146
Dol s s s CHU| = (10wl p, .5 + 1Aull 5, 5)2

+5 +5 298 B ,00,00

Our final resuts extend Corollary 1 and Theorem 3 to parabolic Besov
spaces:

Theorem 5. Let 6 > 0. Let w = 0 at infinity. Then u € 6[2] oo U and
only if Qu € B[Q] o and Au € B[z]éofoo Moreover, the norms HuHB[_] and
50, [l 2],00,00

H@tuHB[-Z]s’;zm + HAUHB[Ef,me are equivalent.

Theorem 6. Let 6 > 2. If f € B then the heat equation

[2],00,00”

ou=Au+f (8)

0+2

2] 00,00 and

has a unique solution such that uw = 0 at infinity. Moreover, u € B
u -5 < O -5
|| ||B[2];2’OO = ||f”3[2]’mc>o
Those results are not very new, as they can be recovered from the volu-

minous literature on anisotropic Besov spaces We present them for sake of
completeness.

Proof of Proposition 7.

Proof. As u = 0 at infinity, we may write

"= / (=) (P -5 dg
0

and -
Dyu = / (—09) Do ("2 u) db.
0
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For R > 0, we rewrite this as

R 272 2 A2 df
Dyu = — / 200, %\ OD e 2o —
0 (260 ) Vo

o 39252 3922 02 02 A2 do
_/R (2928752649 8t\/§Dx€ 20°A )(64(6t A)u)m

+ /R(26928393/2DxA602A2)Au do

’ Vo
" / T (PR D, A2 3 (R0 %
=Iill+1n+1v,

Recall that M designs the parabolic Hardy-Littlewood maximal func-
tion. If ¢ € S(R x R?), we have, for every 6 > 0,

1
J[ 0GR = 5.2 = sy < Cumya
and )

J[ 510G 28 = 5.2 = sy < ol e
Thus, we have

11| < CVRMg,, and |I1T| < CvVRMa,

and s
(1] + |1V] < CR [u] s

[2],00,00

1
' Il 75
Taking VR = Mo (tx)[ij\jl:"u ) , we get

_1
[Dou(t, z)] < Clul %% (Mault,z) + Mau(t )7
[

2],00,00

and we conclude by Proposition 4 a). ]

Proof of Theorem 5.
Proof. Writing

(PO-D7) (9,0)) — %(«9(9756302(3’52_A2))(641102(8’52_A2)U)
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and

692(637A2)(Au> _ (QAG%HQ(@Q*AQ))(eiHQ(BffAQ)u)

Y

| =

we find that

HatuHB[;ﬁ;jw + HAUHB[;]%%OO < CHUHB‘5

[2],00,00

As u = 0 at infinity, we write
- ) T AT 2y r(0R-A)
u = (=0y)(e"' %2 u) dn = 2 n(A* = 0;)e™ %2 ) udn.
0 0
We get
92(62 AQ) oo 772 82 A2 92 772 82 AZ
Cs uzg/ (A6’ O =5 o+ 51O =52 Ay g
0
+oo 772 2 2 2 712 2 2
_2/ (ndye ™ @ =22)) (OG-0 4
0
so that

—+oco
| @20y <C / e+ 5D Ao, 4[| DAl d
0

+oo ) 772 945
<Cllollgys s +18ulgez ) [ @ +0) an
[2],00,00 [2],00,00 0 2
—5)2 +00 7]2 Caus
0 (oulse + |Bullgse ) [ 4Ty
[2],00,00 [2],00,00 0 2
and finally
HUHB[EfOOOO < O(HatuHB[;]‘s;foo + HAUHB[;f;fOO)' U

Proof of Theorem 6.
Proof. We write

[e%e] —+o0
f= / (—0,) (" @AY )y dny = —2(9, — A) / (A + 0,)e™ % =20 £ ap.
0 0

Let oo
uw=—2 / n(A 4 8,)e™ =57 £ ap,
0

18



We have
92 82—A2 +00 ﬁ 82—A2 02 ﬁ 82—A2
e” 2|, <2 [(nAe> @82 (O )O=A0 )| dn
0
—+o0 2 2
2 [ o O D gy,
0

“+oo
S0/ @+ =27 g
0

+o0 ) 772 Co4s
<Clflggz [ @+5) " an
[2],00,00 [ 2
o0 2
OOl [T g
[2].00,00 2
and finally
_ <C 52 . 0
lullgs = Cllfllsgee

Appendix 2: A remark on the regularity of
mild solutions

The reviewer asked the following questions about the regularity of the solu-
tion u constructed in Theorem 1: can one expect the constructed solution to
be in L},.(R,C%')? The answer is clearly negative, as the force is not regular
enough to grant such a regularity. In this appendix, we give an example of a

not so regular solution.

We start from a well-known fact: the map F — f[f e=)AP div F ds maps
9] ,00 3 [ 1,00 (T3 1 _
l;/ ((?, +00), LP(R?)) to L*((0, +00), LP***(R?)) for 1 < pg < 3 and .- =

5 (see for instance [Lema02]). Thus, if ||F|| ;e p3/2. is small enough, the

ﬁ?avierfStokes problem
Ol = A+ Pdiv(F — 4 ® @)

will have a solution in L*((0, +o0c), L>*°(R3)). Similarly, if 3/2 < r < 2
and ||F||poep3/2.00 + [|F||pocpro is small enough, the Navier—Stokes problem
will have a solution @ in L>®((0, +00), L**(R?)) N L>=((0, +00), L%"’O(RS)).
Moreover, we have

¢ ¢
u— / AP divF ds = — / e IAPdiv(d @ 1) ds
0 0
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and we find that @ — [, e*=2Pdiv F ds belongs to L((0, +00), Lz7°(R?))
(with 57—~ > 25).

We may remark that, if F € L®°L32%° N L>®°L"*® and F is supported in
[0,1] x R?, then F € Epj4/05 for p>2,3 < ¢ <2rand 2 +2 > 1. Indeed,

we have F € L°L92 N LP?LY? so that

( [ mEepeatia ) < CP D F e
[t—s|<p? J|z— y|<p

(which is bounded for 0 < p < 1) and

237 (/ | 2(/| | |F($,y)|q/2dy)2d8) < CP TN oz
t—s|<p? J|z—y|<p

(which is bounded for 1 < p).

We now give an example of a mild solution such that 4 is not (locally in
time) L'C%'. Let ¢ € D(R?) be equal to 1 on a neighborhood of 0 and with

support in B(0,1), let 0 < ¢ < 1/2 and let flt,z) = A]l(o,l)(t)Aﬁ A (|z]p),
with A > 0 small enough. We have div f = 0. We write f in the divergence
form

f= Za (M 0.3,V A (|z|5)) = divF.
F is supported in [0, 1] x R?; moreover, F € L>®L"> for every p € (1, zi_e],
hence F € L®L32% 0 L[z, Tf ) is small enough, the Navier-Stokes
problem have a solution « such that

@ € L((0,400), L**(R®)) N L((0, +00), LT=(R?))

and

t
ﬁ—/ AP divF ds € L®((0, +00), L2 (R?)).
0

For 0 <t < 1, we have
t
/ ISP AivEds = A(V A (Jz]p) — ¢ (V A (J2[9)).
0

If locally @ were L'C!, thenl (i /s1)(t)1p(0,1)(z)d would be L L2 This
would give that V A (|z|) € L™ But V A (|x|<p) € L™ if and only if

réle
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