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mixednorm time-space parabolic Morrey spaces of Krylov.

Introduction

In this paper, we consider global mild solutions of the Cauchy problem for the incompressible Navier-Stokes equations on the whole space R 3 . More precisely, the Navier-Stokes equations we study are

     ∂ t u = ∆ u -∇p -u • ∇ u + f + div F div u = 0 u(0, .) = 0 (1)
where f and F are small enough in some critical (homogeneous) mixed-norm time-space parabolic Morrey spaces of Krylov.

(Following Krylov [START_REF] Krylov | On parabolic equations in Morrey spaces with V M O a and Morrey b[END_REF]), let us recall the definition of mixed-norm time-space parabolic Morrey spaces on R × R d : Definition 1. Let 1 < p, q < +∞ and β ∈ (0, 2 p + d q ). The parabolic Morrey spaces E p,q,β and F p,q,β are the spaces of locally integrable functions f (t, x) on R × R d such that f E p,q,β < +∞ or f F p,q,β < +∞, where f E p,q,β = sup .

Remark: when p = q, writing r = d+2 β (so that p < r < +∞), we see that E p,p,β = F p,p,β = M p,r 2 (R × R d ), where M p,r 2 (R × R d ) is the parabolic Morrey space studied in [START_REF] Lemarié-Rieusset | The Navier-Stokes Problem in the 21st Century[END_REF] in the context of Navier-Stokes equations.

Krylov [START_REF] Krylov | On parabolic equations in Morrey spaces with V M O a and Morrey b[END_REF] developed a theory of Itô stochastic equations with as singular a drift as possible. Following an observation of Kinzebulatov [START_REF] Kinzebulatov | Parabolic equations and SDEs with timeinhomogeneous Morrey drift[END_REF], he considered a drift in parabolic Morrey spaces. We will show that his results can be easily applied to the Navier-Stokes problem. More precisely, we consider the initial value problem (on (0, +∞) × R 3 ) with initial value u(0, .) = 0, that we transform as a problem on R × R 3 by extending the Navier-Stokes solution by u(t, .) = 0 for t < 0.

For a function defined on (0, +∞)×R d , we say that f ∈ E p,q,β or f ∈ F p,q,β if the function f # defined by f # = f for t > 0 and f # = 0 for t < 0 is such that f # ∈ E p,q,β or f # ∈ F p,q,β .

Our main theorem is the following one:

Theorem 1. Let p, q ∈ (3, ∞) with 2 p + 3 q > 1. a) There exists 0 = 0 (p, q) > 0 and C 0 = C 0 (p, q) > 0 such that, if f ∈ E p/3,q/3,3 with div f = 0 and F ∈ E p/2,q/2,2 and if

f E p/3,q/3,3 + F E p/2,q/2,2 < 0 , then the Navier-Stokes equations (1) have a global mild solution u ∈ E p,q,1 and ∇ ⊗ u ∈ E p/2,q/2,2 with u E p,q,1 + ∇ ⊗ u E p/2,q/2,2 ≤ C 0 ( f E p/3,q/3,3 + F E p/2,q/2,2 ).
b) There exists 0 = 0 (p, q) > 0 and C 0 = C 0 (p, q) > 0 such that, if f ∈ F p/3,q/3,3 with div f = 0 and F ∈ F p/2,q/2,2 and if f F p/3,q/3,3 + F F p/2,q/2,2 < 0 , then the Navier-Stokes equations (1) have a global mild solution u ∈ F p,q,1 and ∇ ⊗ u ∈ F p/2,q/2,2 with

u F p,q,1 + ∇ ⊗ u F p/2,q/2,2 ≤ C 0 ( f F p/3,q/3,3 + F F p/2,q/2,2 ).
When the force f is equal to 0, we may lower the values of p and q: Theorem 2. Let p, q ∈ (2, ∞) with 2 p + 3 q > 1. a) There exists 0 = 0 (p, q) > 0 and C 0 = C 0 (p, q) > 0 such that, if F ∈ E p/2,q/2,2 and F E p/2,q/2,2 < 0 , then the Navier-Stokes equations (1) (with f = 0) have a global mild solution u ∈ E p,q,1 and ∇ ⊗ u ∈ E p/2,q/2,2 with

u E p,q,1 + ∇ ⊗ u E p/2,q/2,2 ≤ C 0 F E p/2,q/2,2 .
b) There exists 0 = 0 (p, q) > 0 and

C 0 = C 0 (p, q) > 0 such that, if F ∈ F p/2,q/2,2 and if F F p/2,q/2,2 < 0 ,
then the Navier-Stokes equations (1) (with f = 0) have a global mild solution u ∈ F p,q,1 and ∇ ⊗ u ∈ F p/2,q/2,2 with

u F p,q,1 + ∇ ⊗ u F p/2,q/2,2 ≤ C 0 F F p/2,q/2,2 .
As usual, the mild solution u will be searched as a fixed point of the transform u → T ( f

) + T (P div F) -T (P div( u ⊗ u)),
where T ( f ) = t 0 e (t-s)∆ f (s, .) ds. Let us remark that, if X = E p,q,1 or X = F p,q,1 , then X is a critical space with respect to the scaling of the Navier-Stokes equations: for λ > 0, λ u(λ 2 t, λx) X = u X . E p,q,1 is easily compared to other classical spaces; for instance, we have, for Serrin spaces with 2 p + 3 q = 1, L p t ((0, +∞), L q x (R 3 )) ⊂ E p,q,1 , while E p,q,β ⊂ M min(p,q),5 2

(a critical space discussed in [START_REF] Lemarié-Rieusset | The Navier-Stokes Problem in the 21st Century[END_REF]).

Heat equation

The proof of theorems 1 and 2 will rely on the theory of the heat equation ∂ t u -∆u = f on R × R d with the boundary condition u = 0 at infinity. This condition will be defined as follows:

Definition 2. Let u be a tempered distribution on R × R d . Then u = 0 at infinity if for every θ > 0 one has

e θ 2 (∂ 2 t -∆ 2 ) u ∈ L ∞ (R × R d ) and lim θ→+∞ e θ 2 (∂ 2 t -∆ 2 ) u ∞ = 0.
Easy examples of u with u = 0 at infinity are u ∈ L p t L q x with 1

≤ p, q ≤ ∞, (p, q) = (∞, ∞) or u = ∂ t v 0 + d j=1 v j where v j ∈ L ∞ (R × R d ) for 0 ≤ j ≤ d: in the first case, we have e θ 2 (∂ 2 t -∆ 2 ) u ∞ ≤ C u L p L q θ -( 1 p + d 2q )
and, in the second case,

e θ 2 (∂ 2 t -∆ 2 ) u ∞ ≤ C(θ -1 v 0 ∞ + d j=1 θ -1 2 v j ∞ ). Easy examples of bounded functions u with u = 0 at infinity are u = 1, u = 1 t>0 , or u = 1 x d >0 : we have e θ 2 (∂ 2 t -∆ 2 ) u ∞ = 1, as e θ 2 (∂ 2 t -∆ 2 ) u ∞ ≤ 1 and lim (t,x d )→(+∞,+∞) e θ 2 (∂ 2 t -∆ 2 ) u(t, x) = 1.
Lemma 1. Let u be a tempered distribution on R × R d such that u = 0 at infinity. If ∂ t u -∆u = 0, then u = 0.

Proof. Take the Fourier transform (in time and space variables) of the heat equation. We find

(iτ + |ξ| 2 )û(τ, ξ) = 0.
Thus, û is supported in {(0, 0)}, hence is a sum of derivatives of the Dirac mass, and u is a polynomial. As e θ 2 (∂ 2 t -∆ 2 ) u is then a polynomial, and as

e θ 2 (∂ 2 t -∆ 2 ) u ∈ L ∞ (R × R d ),
we find that u is a constant; in that case, e θ 2 (∂ 2 t -∆ 2 ) u = u. As u = 0 at infinity, we have u = 0.

Lemma 2. Let 1 < p, q < +∞ and β ∈ (0, 2 p + d q ). If u ∈ E p,q,β or u ∈ F p,q,β , then u = 0 at infinity. Proof. We give the proof for u ∈ E p,q,β (the case u ∈ F p,q,β is proved in a similar way). Let W (t, x) be the inverse Fourier transform of e -τ 2 -|ξ| 4 . W is in the Schwartz class of smooth functions with rapid decay. In particular,

( |t| + |x|) d+2 |W (t, x)| ∈ L ∞ (R × R d ). Writing |W (t, x)| |u(t, x)| dt dx = √ |t|+|x|<1 |W (t, x)| |u(t, x)| dt dx+ +∞ j=0 2 j < √ |t|+|x|<2 j+1 |W (t, x)| |u(t, x)| dt dx ≤ C u E p,q,β ( 1 √ |t|+|x|<1 W L p p-1 t L q q-1 x + +∞ j=0 2 j( 2 p + d q -β) 1 2 j < √ |t|+|x|<2 j+1 W L p p-1 t L q q-1 x ) ≤ C u E p,q,β (1 + +∞ j=0 2 -jβ ) =C 1 u E p,q,β , we get |e θ 2 (∂ 2 t -∆ 2 ) u(t, x)| ≤ W (s, y)|u(t + θ 2 s, x + θy)| ds dy ≤C 1 u(t + θ., x + √ θ.) E p,q,β =C 1 u(θ., √ θ.) E p,q,β =C 1 u E p,q,β θ -β/2 . Thus, lim θ→+∞ e θ 2 (∂ 2 t -∆ 2 ) u ∞ = 0.
The proof of Theorems 1 and 2 will be based on the following results on the linear heat equation:

Theorem 3. Let p, q ∈ (3, ∞) and β > 0 with 2 p + 3 q > β. a) If f ∈ E p/3,q/3,β+2 (R × R d ), then the heat equation ∂ t u = ∆u + f (2)
has a unique solution such that u = 0 at infinity. Moreover, there exists C 0 = C 0 (p, q, β) > 0 such that, if denoting by D x u the gradient of u and by D 2

x u the Hessian of u (with respect to the space variable), we have

u E p,q,β + D x u E p/2,q/2,β+1 + D 2 x u E p/3,q/3,β+2 + ∂ t u E p/3,q/3,β+2 ≤ C 0 f E p/3,q/3,β+2 . b) If ∈ F p/3,q/3,β+2 (R × R d )
, then the heat equation (2) has a unique solution such that u = 0 at infinity. Moreover, there exists C 0 = C 0 (p, q, β) > 0 such that we have

u F p,q,β + D x u F p/2,q/2,β+1 + D 2
x u F p/3,q/3,β+2 + ∂ t u F p/3,q/3,β+2 ≤ C 0 f F p/3,q/3,β+2 . Theorem 4. Let p, q ∈ (2, ∞) and β > 0 with 2 p + 3 q > β. Let σ(D) be a Fourier multiplier (in the space variable) such that σ(ξ) = σ 0 ( ξ |ξ| ) where σ 0 is a smooth function on the sphere S d-1 . a) If F ∈ E p/2,q/2,β+1 (R × R d ), then the heat equation

∂ t u = ∆u + σ(D) div F (3)
has a unique solution such that u = 0 at infinity. Moreover, there exists C 0 = C 0 (p, q, β, σ) > 0 such that we have

u E p,q,β + D x u E p/2,q/2,β+1 ≤ C 0 F E p/2,q/2,β+1 . b) If F ∈ F p/2,q/2,β+1 (R×R d ),
then the heat equation (3) has a unique solution such that u = 0 at infinity. Moreover, there exists C 0 = C 0 (p, q, β, σ) > 0 such that we have

u F p,q,β + D x u F p/2,q/2,β+1 ≤ C 0 F F p/2,q/2,β+1 .
Theorem 3 has the following corollary on Sobolev-Morrey inequalities:

Corollary 1. Let p, q ∈ (3, ∞) and β > 0 with 2 p + 3 q > β. Let u = 0 at infinity. Then there exists C 0 = C 0 (p, q, β) > 0 such that we have

u E p,q,β + D x u E p/2,q/2,β+1 + D 2
x u E p/3,q/3,β+2 ≤ C 0 ( ∂ t u E p/3,q/3,β+2 + ∆u E p/3,q/3,β+2 ) and

u F p,q,β + D x u F p/2,q/2,β+1 + D 2 x u F p/3,q/3,β+2 ≤ C 0 ( ∂ t u F p/3,q/3,β+2 + ∆u F p/3,q/3,β+2 ).
Another corollary is the following variation on the theorem of Krylov [Kryl23]: Proposition 1. Let p, q ∈ (3, ∞) and β > 0 with 2 p + 3 q > max(β, 1). There exists 0 = 0 (p, q, β) > 0 and

C 0 = C 0 (p, q, β) > 0 such that a) If f ∈ E p/3,q/3,β+2 (R × R d ), b ∈ E p,q,1 , c ∈ E p/2,q/2
,2 , and if b E p,q,1 + c E p/2,q/2,2 < 0 , then the heat equation

∂ t u = ∆u + b • ∇u + cu + f (4)
has a unique solution such that u = 0 at infinity. Moreover, we have

u E p,q,β + D x u E p/2,q/2,β+1 + D 2 x u E p/3,q/3,β+2 ≤ C 0 ( f E p/3,q/3,β+2 + b E p,q,1 + c E p/2,q/2,2 ). b) If f ∈ F p/3,q/3,β+2 (R × R d ), b ∈ F p,q,1 , c ∈ F p/2,q/2
,2 , and if b F p,q,1 + c F p/2,q/2,2 < 0 , then the heat equation (4) has a unique solution such that u = 0 at infinity. Moreover, we have

u F p,q,β + D x u F p/2,q/2,β+1 + D 2 x u F p/3,q/3,β+2 ≤ C 0 ( f F p/3,q/3,β+2 + b F p,q,1 + c F p/2,q/2,2 ).
3 Anisotropic Hardy-Littlewood maximal function on mixed norm Lebesgue spaces

Let p = (p 1 , . . . , p n ) ∈ (1, +∞) n . The mixed-norm Lebesgue spaces L p (R n )
is the space of measurable functions on R n such that

f L p =   . . . |f (x 1 , . . . , x n )| p 1 dx 1 p 2 p 1 p 3 p 2 . . . dx n   1 pn < +∞.
For a = (a 1 , . . . , a n ) ∈ [1, +∞) n , the anisotropic cylinders Q a (x, r) are defined as

Q a (x, r) = (x 1 -r a 1 , x 1 + r a 1 ) × . . . (x n -r an , x n + r an )
and the anisotropic Hardy-Littlewood maximal function is defined as

M a f (x) = sup r>0 1 |Q a (x, r)| Q a (x,r)
|f (y)| dy.

We then have the following boundedness result for the anisotropic Hardy-Littlewood maximal function on mixed norm Lebesgue spaces [START_REF] Huang | Atomic and Littlewood-Paley characterizations of anisotropic mixed-norm Hardy spaces and their applications[END_REF][START_REF] Huang | On Function Spaces with Mixed Norms -A Survey[END_REF]:

Proposition 2. For p = (p 1 , . . . , p n ) ∈ (1, +∞) n and a = (a 1 , . . . , a n ) ∈ [1, +∞) n , there exists a constant C = C( p, a) such that M a f L p ≤ C f L p .

Harmonic analysis on the parabolic space

We endow X = R × R d with the Lebesgue measure dµ(t, x) = dt dx and the parabolic metric ρ((t, x), (s, y)) = |t -s| + |x -y|. The parabolic ball B r (t, x) and the parabolic cylinder C r (t, x) are defined as B r (t, x) = {(s, y) / ρ((t, x), (s, y)) < r} and C r (t, x) = (t-r 2 , t+r 2 )×B(x, r).

We have

B r (t, x) ⊂ C r (t, x) ⊂ B 2r (t, x).
(X, ρ, µ) is a space of homogeneous type [START_REF] Coifman | Analyse harmonique noncommutative sur certains espaces homogènes[END_REF] of homogeneous dimension

Q = d + 2: µ(B r (t, x)) = µ(B 1 (0, 0))r Q .
We associate to this space three useful operators on (non-negative) functions: the Hardy-Littlewood maximal function M f and the Riesz potentials I α f (where 0 < α < Q) defined by

M f (t, x) = sup r>0 1 µ(B r (t, x)) Br(t,x)
|f (s, y)| dµ(s, y)

and

I α f (t, x) = X 1 ρ((t, x), (s, y)) Q-α f (s, y) dµ(s, y).
For 1 < p ≤ q, we define the Morrey space M p,q 2 by the space of measurable functions such that

f M p,q 2 = sup r>0,(t,x)∈X µ(B r (t, x)) 1 q -1 p 1 Br(t,x) f p < +∞.
We have

L q (R × R d ) ⊂ M p,q 2 , E p,p,β = M p, d+2 β 2 and E p,q,β ⊂ M min(p,q), d+2 β 2
. The main tool we shall use is Hedberg's inequality [START_REF] Hedberg | On certain convolution inequalities[END_REF]:

Proposition 3. Let 1 < p ≤ q < +∞ and 0 < α < Q q .
Then there exists a constant C = C(d, p, q, α) such that, for every f ∈ M p,q 2 , we have

I α f (t, x) ≤ C(M f (t, x)) 1-αq Q f αq Q M p,q 2 .
Proof. We easily check that, for every R > 0, we have

B R (t,x) 1 ρ((t, x), (s, y)) Q-α |f (s, y)| dµ(s, y) ≤ CR α M f (t, x) and X\B R (t,x) 1 ρ((t, x), (s, y)) Q-α |f (s, y)| dµ(s, y) ≤ CR α-Q q f M p,q 2 .
We then take

R Q q = f M p,q 2 M f (t, x) .
Applying Proposition 3 to Krylov spaces, we obtain:

Proposition 4. Let 1 < p, q < +∞ and 0 < β < 2 p + d q . Then a) f → M f is bounded from E p,q,β to E p,q,β and from F p,q,β to F p,q,β .

b) If β > 1, f → I 1 f is bounded from E p,q,β to E β β-1 p, β β-1 q,β-1 and from F p,q,β to F β β-1 p, β β-1 q,β-1 . c) If β > 2, f → I 2 f is bounded from E p,q,β to E β β-2 p, β β-2 q,β-2 and from F p,q,β to F β β-2 p, β β-2 q,β-2
Proof. We consider only the case of E p,q,β , as the proof for F p,q,β is similar.

Let us estimate M f on a cylinder C r (t, x). We have

M f ≤ M f 1 + M f 2 , where f 1 = 1 C 4r (t,x) f and f 2 = f -f 1 .
By Proposition 2, we know that

M f 1 L p t L q x ≤ C f 1 L p t L q x ≤ C f E p,q,β r 2 p + d q -β .
On the other hand, for (s, z) ∈ C r (t, x) ⊂ B 2r (t, x), since B 4r (t, x) ⊂ C 4r (t, x),

M f 2 (s, z) ≤ sup ρ>2r 1 |B ρ (s, z)| Bρ(s,z) |f (σ, y)| dσ dy ≤ C f E p,q,β r -β so that 1 Cr(t,x) M f 2 L p t L q x ≤ C f E p,q,β r 2 p + d q -β .
a) is proved. b) and c) are then direct consequences of Hedberg's inequality (Proposition 3).

5 The heat equation on R × R d .

In this section, we solve the heat equation on R × R d :

∂ t u = ∆u + g u = 0 at infinity (5) 
where g = f ∈ E p,q,β or in F p,q,β with 2 < β < 2 p + d q or g = σ(D) div F where F ∈ E p,q,β or in F p,q,β with 1 < β < 2 p + d q . The solution u of equation ( 5) is given by the Duhamel formula

u = t -∞
e (t-s)∆ g(s, .) ds.

In order to estimate u and its derivatives, we need some estimates on the size of the kernel of e t∆ and its derivatives, or on the derivatives of σ(D)e t∆ . Lemma 3. Let ψ ∈ S(R d ) and, for θ > 0, ψ θ (x) = 1 θ d ψ( x θ ). Let σ(D) be a Fourier multiplier (in the space variable) such that σ(ξ) = σ 0 ( ξ |ξ| ) where σ 0 is a smooth function on the sphere S d-1 . Then, for α ∈ N d ,

|∂ α σ(D)ψ θ (x)| ≤ C α,ψ,σ 1 (θ + |x|) d+|α| .
Proof. We have

∂ α σ(D)ψ θ ∞ = θ -d-|α| ∂ α σ(D)ψ ∞ and |x| d+|α| ∂ α σ(D)ψ θ ∞ = |x| d+|α| ∂ α σ(D)ψ ∞ .
Thus, we may assume θ = 1. We have

|∂ α σ(D)ψ θ (x)| ≤ 1 (2π) d σ 0 ∞ |ξ| |α| | ψ(ξ)| dx.
On the other hand, taking a smooth function φ such that φ(ξ) = 1 for |ξ| < 1 and φ(ξ) = 0 for |ξ| > 2, we have for every R > 0, for 1 ≤ k ≤ d,

|x k | d+|α| |∂ α φ( D R )σ(D)ψ θ (x)| ≤C(R|x|) d+α σ 0 ∞ ψ ∞ and |x| 2 |x k | d+|α| |∂ α (1 -φ( D R ))σ(D)ψ θ (x)| ≤ 1 (2π) d |∆∂ d+|α| k (1 -φ( ξ R ))ξ α σ(ξ) ψ(ξ) | dξ ≤ C |ξ|>R dξ |ξ| d+2 = C 1 R 2 (as |∂ β ( ψ(ξ))| ≤ C β,ψ |ξ| -|β| , |∂ β (ξ α σ(ξ))| ≤ C α,β,σ |ξ| |α|-|β| and |∂ β (1-φ( ξ R )))| ≤ C β,φ |ξ| -|β| ). Taking R = 1 |x| , we get x d+|α| k ∂ α σ(D)ψ ∈ L ∞ .
A useful result on the heat kernel is its maximal regularity in L p t L q x or in L q

x L p t : Proposition 5. Let 1 < p, q < +∞. Let σ(D) be a Fourier multiplier (in the space variable) such that σ(ξ) = σ 0 ( ξ |ξ| ) where σ 0 is a smooth function on the sphere

S d-1 . a) If h ∈ L p t L q x , then, for 1 ≤ i, j ≤ d, t -∞ e (t-s)∆ σ(D)∂ i ∂ j h ds L p t L q x ≤ C h L p t L q x . a) If h ∈ L q x L p t , then, for 1 ≤ i, j ≤ d, t ∞ e (t-s)∆ σ(D)∂ i ∂ j h ds L q x L p t ≤ C h L q x L p t .
Proof. This is a classical result, obtained through the theory of vector valued singular integrals [START_REF] Benedek | Convolution operators on Banach space valued functions[END_REF]. We sketch the proof given in [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF]. Let and let

W (x) = 1 (4π) d/2 e -|x| 2
Ω(t, x) = 1 t d+2 2 (σ(D)∂ i ∂ j W )( x √ t
) for t > 0, = 0 for t < 0.

We then consider the operator

T (g)(t, x) = R R d Ω(t -s, x -y)g(s, y) ds dy. (6) 
We have

(∂ t -∆)T (g) = σ(D)∂ i ∂ j g
and, taking the Fourier transform,

T (g)(τ, ξ) = - ξ i ξ j iτ + |ξ| 2 σ(ξ)ĝ(τ, ξ). Thus, T is bounded on L 2 (R × R d ).
T can be seen as Calderón-Zygmund operator on the parabolic space R × R d (for the parabolic distance): from Lemma 3, we see that

|Ω(t, x)| ≤ C 1 ( √ |t|+|x|) d+2 , |∂ i Ω(t, x)| ≤ C 1 ( √ |t|+|x|) d+3 , and |∂ t Ω(t, x)| = |∆Ω(t, x)| ≤ C 1 ( √ |t|+|x|) d+4 . Thus, we get that T is bounded on L p (R × R d ) for 1 < p < +∞. Let T t be the operator T t (v) = R d 1 t Ω(t, x -y)v(y) dy
and T x be the operator

T x (w) = R 1 t -s Ω(t -s, x)w(s) ds
We have

∂ t T t (v) = R d 1 t ∆Ω(t, x -y)v(y) dy and ∂ k T x (w) = R 1 t -s ∂ k Ω(t -s, x)w(s) ds.
From Lemma 3, we find

T t L q x →L q x ≤ C 1 t and ∂ t T t L q x →L q x ≤ C 1 t 2
so that the continuity L q t (L q x ) → L q t (L q x ) of T can be extended to the continuity L p t (L q x ) → L p t (L q x ). Similarly, we have

T x L p t →L p t ≤ C 1 |x| d and ∂ k T x L p t →L p t ≤ C 1 |x| d+1
and the continuity L p x (L p t ) → L p x (L p t ) of T can be extended to the continuity L q

x (L p t ) → L q x (L p t ).

Similar estimates hold for Krylov spaces: Proposition 6. Let 1 < p, q < +∞ and 0 < β < 2 p + d q . Let σ(D) be a Fourier multiplier (in the space variable) such that σ(ξ) = σ 0 ( ξ |ξ| ) where σ 0 is a smooth function on the sphere S d-1 . a) If h ∈ E p,q,β , then, for

1 ≤ i, j ≤ d, t -∞ e (t-s)∆ σ(D)∂ i ∂ j h ds E p,q,β ≤ C h E p,q,β . a) If h ∈ F p,q,β , then, for 1 ≤ i, j ≤ d, t -∞ e (t-s)∆ σ(D)∂ i ∂ j h ds F p,q,β ≤ C h F p,q,β .
Proof. We consider only the case of E p,q,β , as the proof for F p,q,β is similar. Let us estimate T (h) on a cylinder C r (t, x) (where T is the operator given by ( 6)). We have T (h) = T (h 1 ) + T (h 2 ), where h 1 = 1 C 4r (t,x) h and h 2 = h -h 1 . By Proposition 5, we know that

h 1 L p t L q x ≤ C h 1 L p t L q x ≤ C h E p,q,β r 2 p + d q -β .
On the other hand, for (s, z) ∈ C r (t, x) ⊂ B 2r (t, x), since B 4r (t, x) ⊂ C 4r (t, x), 

≤C h E p,q,β r -β so that 1 Cr(t,x) h 2 L p t L q x ≤ C E p,q,β r 2 p + d q -β .
We may now easily prove Theorems 3 and 4, Corollary 1 and Proposition 1. Again, we shall consider only the case of E p,q,β , as the proofs for F p,q,β are similar.

Proof of Theorem 3

Proof. The solution u of equation ∂ t u = ∆u+f is given by u = t -∞ e t-s)∆ f (s, .) ds. By proposition (6), we already know that D 2

x u E p/3,q/3,β+2 ≤ C f E p/3,q/3,β+2 . On the other hand, from Lemma 3, we see that

|D x u(t, x)| ≤ C 1 ( |t -s| + |x -y|) d+1 |f (s, y)| ds dy = CI 1 (|f |)(t, x)
and

|u(t, x)| ≤ C 1 ( |t -s| + |x -y|) d |f (s, y)| ds dy = CI 2 (|f |)(t, x).
We then apply Proposition 4 to get

D x u E p/2,q/2,β+1 ≤ C f E p/3,q/3,β+2
and u E p,q,β ≤ C f E p/3,q/3,β+2 .

Proof of Theorem 4

Proof. The solution u of equation ∂ t u = ∆u + σ(D) div F is given by u = t -∞ e t-s)∆ σ(D) div F(s, .) ds. By proposition (6), we already know that |D x u E p/2,q/2,β+1 ≤ C 0 F E p/2,q/2,β+1 .

On the other hand, from Lemma 3, we see that

|u(t, x)| ≤ C 1 ( |t -s| + |x -y|) d+1 |F(s, y)| ds dy = CI 1 (|F|)(t, x).
We then apply Proposition 4 to get

u E p,q,β ≤ C F E p/2,q/2,β+1 .

Proof of Corollary 1

Proof. We just write ∂ t u -∆u = f with f = ∂ t u -∆u. By Theorem 3, we have

u E p,q,β + D x u E p/2,q/2,β+1 + D 2 x u E p/3,q/3,β+2 ≤ C 0 ( ∂ t u E p/3,q/3,β+2 + ∆u E p/3,q/3,β+2 ) Proof of Proposition 1 Proof. Let X = {u ∈ E p,q,β / D x u ∈ E p/2,q/2,β+1 , D 2 x u ∈ E p/3,q/3,β+2 }, normed with u X = u E p,q,β + D x u E p/2,q/2,β+1 + D 2
x u E p/3,q/3,β+2 . We are looking for a solution in X of the equation

u = T (f ) + T ( b • ∇u) + T (cu)
, where T (f ) = t -∞ e (t-s)∆ f (s, .) ds. By Theorem 3, we have

T (f ) X ≤ C 1 f E p/3,q/3,β+2 , T ( b • ∇u) X ≤ C 2 b • ∇u E p/3,q/3,β+2 ≤ C 2 b E p,q,1 D x u E p/2,q/2,β+1 , and 
T (cu) X ≤ C 3 cu E p/3,q/3,β+2 ≤ C 3 c E p/2,q/2,2 u p,q,β . For C 2 b E p,q,1 +C 3 c E p/2,q/2,2 < 1 2 , the operator S(u) = u-T ( b• ∇u)-T (cu) is an isomorphism of X, with S -1 X →X ≤ 2. The solution u is then given by u = S -1 (T (f )), with u X ≤ 2C 1 f E p/3,q/3,β+2 .
6 The Navier-Stokes equations.

We prove here Theorem 1. The proof of Theorem 2 is similar. Again, we consider only the case of E p,q,β .

Proof of Theorem 1

Proof. The Navier-Stokes equations we study are

     ∂ t u = ∆ u -∇p -u • ∇ u + f + div F div u = 0 u(0, .) = 0 (7)
where f ∈ E p/3,q/3,3 with div f = 0 and F ∈ E p/2,q/2,2 . We rewrite (7) as

∂ t u -∆ u = f + (Id - 1 ∆ ∇ div) div(F -u ⊗ u).
(Id-1 ∆ ∇ div = P is the Leray projection operator on solenoidal vector fields.)

Proposition 7. Let δ > 0, 1 < p, q < +∞ and β ∈ (0, 2 p + d q ). a) If u ∈ B -δ

[2],∞,∞ and ∂ t u, ∆u ∈ E p,q,β , then

D x u E 2+δ 1+δ p, 2+δ 1+δ q, 1+δ 2+δ 
β ≤ C u 1 2+δ B -δ [2],∞,∞ ( ∂ t u E p,q,β + ∆u E p,q,β ) 1+δ 2+δ . b) If u ∈ B -δ
[2],∞,∞ and ∂ t u, ∆u ∈ F p,q,β , then

D x u F 2+δ 1+δ p, 2+δ 1+δ q, 1+δ 2+δ 
β ≤ C u 1 2+δ B -δ [2],∞,∞
( ∂ t u F p,q,β + ∆u F p,q,β ) 1+δ 2+δ .

Our final resuts extend Corollary 1 and Theorem 3 to parabolic Besov spaces:

Theorem 5. Let δ > 0. Let u = 0 at infinity. Then u ∈ B -δ

[2],∞,∞ if and only if ∂ t u ∈ B -δ-2

[2],∞,∞ and ∆u ∈ B -δ-2

[2],∞,∞ Moreover, the norms u B -δ

[2],∞,∞ and

∂ t u B -δ-2 [2],∞,∞ + ∆u B -δ-2 [2],∞,∞ are equivalent. Theorem 6. Let δ > 2. If f ∈ B -δ [2]
,∞,∞ , then the heat equation

∂ t u = ∆u + f (8) 
has a unique solution such that u = 0 at infinity. Moreover, u ∈ B -δ+2

[2],∞,∞ and

u B -δ+2 [2],∞,∞ ≤ C f B -δ [2],∞,∞
.

Those results are not very new, as they can be recovered from the voluminous literature on anisotropic Besov spaces We present them for sake of completeness.

Proof of Proposition 7. For R > 0, we rewrite this as

D x u = - R 0 (2θ∂ t e θ 2 ∂ 2 t √ θD x e -θ 2 ∆ 2 )∂ t u dθ √ θ - ∞ R (2θ 2 ∂ 2 t e

  4

  |h 2 (s, z)| ≤C ρ((σ,y),(t,x))>4r 1 ( |τ -s| + |z -y|) d+2 |h(τ, y)| dτ dy ≤C ρ((σ,y),(t,x))>4r 1 ( |τ -t| + |x -y|) d+2 |h(τ, y)| dτ dy ≤C +∞ j=0 1 (4 j r) d+2 C 4 j+1 r |h(τ, y)| dτ dy

Proof.

  As u = 0 at infinity, we may writeu = ∞ 0 (-∂ θ )(e θ 2 (∂ 2 t -∆ 2 ) u) dθ and D x u = ∞ 0 (-∂ θ )D x (e θ 2 (∂ 2 t -∆ 2 ) u) dθ.

Let X = { u ∈ E p,q,1 / D x u ∈ E p/2,q/2,2 }, normed with u X = u E p,q,1 + D x u E p/2,q/2,2 .

We are looking for a solution in X of the equation u = T ( f ) + T (P div F) -T (P div( u ⊗ u)), where T ( f ) = t 0 e (t-s)∆ f (s, .) ds (= t -∞ e (t-s)∆ f (s, .) ds if we extend f to (-∞, 0) with f (t, x) = 0 for t < 0). By Theorem 3, we have

By Theorem 4, we have

Appendix 1: Parabolic Besov spaces

In this appendix, we describe some results on the heat equation on parabolic Besov spaces that may shed a new light on many of the inequalities we obtained throughout the paper, which are to be viewed more as regularity assertions than as results on existence of solutions.

For δ > 0, let us define the parabolic Besov space

indicates the underlying time-space scaling, where t behaves like |x| 2 .]

It is easy to check that B -β [2],∞,∞ coincides with the (realization of the) homogeneous Besov space defined through the parabolic Littlewood-Paley decomposition (for instance, see Triebel's book [START_REF] Triebel | Theory of Function Spaces III[END_REF]). Let φ(τ, ξ) be a smooth function equal to 1 when |τ | + |ξ| < 1 and to 0 when |τ | + |ξ| > 2. Let S j f be defined as the inverse Fourier transform of φ( τ

We have the following Gagliardo-Nirenberg inequality and

we find that

.

As u = 0 at infinity, we write

We get

).

Proof of Theorem 6.

Proof. We write

We have

Appendix 2: A remark on the regularity of mild solutions

The reviewer asked the following questions about the regularity of the solution u constructed in Theorem 1: can one expect the constructed solution to be in L 1 loc (R, C 0,1 )? The answer is clearly negative, as the force is not regular enough to grant such a regularity. In this appendix, we give an example of a not so regular solution.

We start from a well-known fact: the map F → t 0 e (t-s)∆ P div F ds maps L ∞ ((0, +∞), L p 0 ,∞ (R 3 )) to L ∞ ((0, +∞), L p 1 ,∞ (R 3 )) for 1 < p 0 < 3 and 1 p 1 = 1 p 0 -1 3 (see for instance [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF]). Thus, if F L ∞ L 3/2,∞ is small enough, the Navier-Stokes problem

and we find that u -t 0 e (t-s)∆ P div F ds belongs to L ∞ ((0, +∞), L r 2-r ,∞ (R 3 )) (with r 2-r > 3r 3-r ). We may remark that, if F ∈ L ∞ L 3/2,∞ ∩ L ∞ L r,∞ and F is supported in [0, 1] × R 3 , then F ∈ E p/2,q/2,2 for p > 2, 3 < q < 2r and 2 p + 3 q > 1. Indeed, we have

x , so that

(which is bounded for 0 < ρ ≤ 1) and

(which is bounded for 1 < ρ).

We now give an example of a mild solution such that u is not (locally in time) L 1 C 0,1 . Let ϕ ∈ D(R 3 ) be equal to 1 on a neighborhood of 0 and with support in B(0, 1), let 0 < < 1/2 and let f (t, x) = λ1 (0,1) (t)∆ ∇ ∧ (|x| ϕ), with λ > 0 small enough. We have div f = 0. We write f in the divergence form

If λ is small enough, the Navier-Stokes problem have a solution u such that u ∈ L ∞ ((0, +∞), L 3,∞ (R 3 )) ∩ L ∞ ((0, +∞), L 3 1-,∞ (R 3 )) and u -t 0 e (t-s)∆ P div F ds ∈ L ∞ ((0, +∞), L 3 1-2 ,∞ (R 3 )).

For 0 < t < 1, we have t 0 e (t-s)∆ P div F ds = λ( ∇ ∧ (|x| ϕ) -e t∆ ( ∇ ∧ (|x| ϕ))).

If locally u were L 1 C 0,1 , then1 (1/2,1 )(t)1 B(0,1) (x) u would be L 1 L 3 1-2 ,∞ . This would give that ∇ ∧ (|x| ϕ) ∈ L