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The rising interest for three-dimensional acoustic imaging requires the improvement of the nu-
merical models describing the propagation between a radiating body and a microphone array.
The commonly used free field transfer functions boil down to assume a full acoustic trans-
parency of the radiating object, which in some case may lead to misleading outcomes for their
characterization. Among other approaches, Equivalent Sources Methods (ESM) emerged as a
convenient and powerful approach to simulate scattered sound fields. In the following paper,
an acoustic imaging algorithm named Galerkin ESM where equivalent sources are tailored
to concomitantly match with microphone pressures and a Neumann boundary condition is
proposed. By means of a projected matrix inversion and a backpropagation of the equivalent
sources, Galerkin ESM aims at the direct synthesis of the pressure field around a diffracting
body by making the most of an array measurement. This method is compared with two
other existing imaging algorithms fueled by both free field and computed transfer functions.
The impact of the chosen transfer model is discussed, and Galerkin ESM performances are
evaluated on both numerical and experimental test cases.
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I. INTRODUCTION

Acoustic propagation models that account for rigid
body diffraction can be obtained with a wide range of nu-
merical methods. When it comes to problems of infinite
extent, the Boundary Element Method (BEM) emerges
as the main option for its strong theoretical foundation
and its convenience (see for instance Bonnet (1999) or
Burton and Miller (1971) for an overview). As it got en-
hanced over the years to tackle its non-uniqueness issues,
BEM became a complete but more complex and time
consuming algorithm that requires consequent computa-
tional resources. Over and above the implementation of
the method itself, BEM also requires a fine mesh manage-
ment expertise. The use of advanced iterative solvers (see
Saad, 2003) or Fast Multipoles introduced by Rokhlin
(1990) led to significant speed ups, but at the same time
turned BEM into a rather hard to master option.

With a view to provide a more simple and flexi-
ble alternative for more simple test cases, Koopmann
et al. (1989) designed and assessed an Equivalent Sources
Method (ESM). Its physical principle can be stated con-
cisely: considering a rigid body exposed to an incident
acoustic field, a volume interior distribution of elemen-
tary sources can be set to offset the boundary condition
induced by the incident field on the skin of the object.
The main interest of having equivalent sources strictly in

a)Also at MicrodB. Author to whom correspondence should be ad-
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the interior domain is to avoid numerical singularities is-
sues encountered with BEM. These sources are thus con-
sidered as acoustically equivalent to the presence of the
rigid body, and can be propagated toward the domain
outside the skin to get the scattered sound field. Af-
ter describing the theoretical background of ESM, Koop-
mann et al. (1989) also established its numerical version
in which the rigid body and the volume of equivalent
sources are respectively modeled by a rudimentary mesh
and a discrete set of acoustic monopoles. Since then,
ESM has been extensively studied and Lee (2017) pro-
posed a review article where the key parameters of its
proper implementation are identified:

� The optimal number equivalent sources was ini-
tially discussed by Koopmann and Fahnline (1991)
on a cylindrical test case. Later on, Dunn and
Tinetti (2004) experimentally showed that a ratio
of three times less sources than nodes on the mesh
provided the best results on practical cases.

� Their spatial distribution proved out to be di-
rectly linked to the conditioning of ESM matrices.
Notably, a slight distinction was pointed out by
Leblanc et al. (2010) between ESM with regularly
distributed equivalent sources (Method of Funda-
mental Solutions, see Chen, 2006; Kondapalli et al.,
1992) and ESM using randomly located sources
(Wave Superposition Method, see again Koopmann
et al., 1989). They showed that the first is a well-
posed problem but suffers from non-uniqueness is-
sues at particular frequencies while the latter is
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more robust but prone to ill-conditioning deficien-
cies. This can be dealt with using singular value
regularization (see Lee et al., 2011). Pavić (2005)
also designed a time consuming but accurate al-
gorithm to determine optimised spatial configura-
tions.

� Their retreat distance toward the skin of the rigid
body is also a key driver for the proper functioning
of ESM approaches. The stake is comparable to
BEM collocation techniques : equivalent sources
far from the mesh struggle to precisely match with
complex incident acoustic fields while sources close
to the skin are likely to be numerically unstable
because of singularities. Bai et al. (2011) recently
tackled this issue and proposed leads to find the
optimal balance.

� Lastly the nature of the equivalent sources plays
a role in the efficiency of the method. ESM can
be described in terms of single and double layer
potentials (see Wilton et al., 1993), and Jeans and
Mathews (1992) first investigated the use of dipolar
equivalent sources, while Ochmann (1995) later on
suggested that any type of sources (like spherical
harmonics, see Bouchet et al., 2000) could be used.

Featuring all these refinements (see Lee, 2017, for
a more in-depth review), ESM is a relevant alternative
to BEM for its straightforward implementation and its
accuracy on a large scope of test cases.

Bearing in mind the advantages cited above, ESM
naturally got introduced into acoustic imaging methods
over the last years. The generic set-up common to all
acoustic imaging problems,

p = Hq, (1)

where a source grid q has to be identified from micro-
phonic pressures p and a collection of acoustic Frequency
Response Functions (FRF) H, can be cast in ESM prob-
lems: it aims at identifying a set of sources acoustically
equivalent to those that actually produced the sound
field covered by the microphone array. When it comes
to acoustic imaging, the ESM terminology was used for
instance by Fernandez-Grande et al. (2017); Hald (2020);
Sarkissian (2005); Valdivia and Williams (2007) for ap-
plications in near-field acoustic holography, by Leclère
et al. (2017) for inverse methods or Pereira et al. (2015,
chapter 2) for imaging in enclosed space. If they differ in
the algorithm used to identify the sources, the common
ground to all these references lies in their use of a discrete
set of equivalent monopoles (or dipoles, see for example
Valdivia, 2018) to reconstruct a radiated acoustic field
from array measurements. However, another common as-
pect is that they no more involve these equivalent sources
in the simulation of a particular boundary condition in
contrast to the historical purpose of ESM.

A few tries to align the use of equivalent sources
in acoustic imaging with scattering simulation are to be

mentioned : Le Magueresse (2016, section 6.2.4) first in-
troduced the idea of using Koopman’s ESM to fill the H
matrix in Eq.(1) with coefficients taking into account the
diffracting behaviours in the acoustic scene. Later on,
Le Magueresse et al. (2020, section 4) also highlighted
how the use of such transfer functions can matter to
avoid misleading interpretations of source identification
on an experimental engine test bench. At the same time,
Chambon et al. (2020) used the same approach in a wind
tunnel, and showed how ESM could be used for aeroa-
coustic source identification on a car mirror to improve
beamforming maps resolution.

Drawing on this, the connection between Koopman’s
ESM approach and acoustic imaging remained to be for-
malized, which is the point addressed in this article. The
concept of fitting a set of equivalent sources to conform
to a given boundary condition is borrowed from ESM,
and included in the acoustic imaging inverse problem.
Considering a Neumann boundary condition, this em-
bedding takes the form of an orthogonal projection of
the equivalent sources on the kernel of a matrix mod-
eling the impedance of a rigid body. The basic inverse
problem in Eq.(1) remains, but finds itself restricted to
solutions satisfying an orthogonality constraint similar
to those stemming from Galerkin methods. The aim of
such an approach is also a crossover between classical
ESM and acoustic imaging : the data provided by the
phased microphone array is processed to identify virtual
equivalent sources, and the latter are to be propagated
to synthesize the acoustic fields at areas of interest.

The proposed algorithm, hence named Galerkin
ESM, is depicted in this paper. Section II is dedicated to
its mathematical formulation, from the statement of the
inverse problem to the backpropagation step providing
the display of the pressure maps synthesized from equiv-
alent sources. Then, in section III, the emphasis is put on
an in-depth study of the orthogonal projector involved in
Galerkin ESM. A lead to precondition the kernel matrix
with a physical maximization of the radiation efficiency
of the sources is exposed. In section IV, Galerkin ESM
is put to the test head-to-head against the well-assessed
acoustic imaging methods that are Conventional Beam-
forming (CBF) and iterative Bayesian Focusing (iBF)
on a various set of test cases featuring scattered sound
propagations. With a full control on the target pressure
fields, this benchmark is an opportunity to discuss the
importance of supplying imaging algorithms with realis-
tic transfer functions instead of the commonly used free
field models. The last section consists in an illustrative
application of Galerkin ESM on an academical experi-
mental set of measurements.

Conventions and notations

Throughout this article, vectors are represented by
bold lowercase letters and matrices by bold uppercase

letters. M
H

denotes the transpose conjugate of a complex
matrix, and M+ stands for its Moore Penrose inverse.
The orthogonal complement of a given Hilbert space H
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is noted as H⊥. The complementary of a given set E is Ē .
The euclidean norm of a vector v is written ∥v∥ and its
p-norm ∥v∥p. The column space of a matrix M is noted
as Im M and its kernel as kerM.

Lastly, the convention chosen for phase sign is e−iωt.

II. GALERKIN ESM

A. Overall methodology

First is considered a three-dimensional radiating
body bounded by a closed surface Γ. The acoustic field
is sensed via a set of M microphones located at the posi-
tions (ri)i≤M . The purpose of the method is to provide a

description of the exterior acoustic field (both phase and
amplitude) at a given pulsation ω by means of equivalent
sources placed inside Γ. The latter are to be determined
with respect to the measured pressures p(ri)i≤M on the
one hand, and to the impedance condition induced by
the behaviour of the body on the other hand.

A discrete formulation of the problem is proposed
now. Γ is modeled by a surfacic mesh featuring N nodes
of positions (rj)j≤N and a set ofNs equivalent monopolar

acoustic sources are introduced at the positions (rk)k≤Ns

in the volume Ω.
Let G ∈ CM×Ns be the matrix defining the acous-

tic free-field transfer functions between the equivalent
sources and the pressure at the microphone positions,
i.e. ∀i ≤ M, ∀l ≤ Ns,

Gil = −iωρ
eik∥ri−rl∥

4π ∥ri − rl∥
, ri ∈ Ω̄, rl ∈ Ω. (2)

Similarly can be defined the matrix GΓ ∈ CN×Ns

describing the source to pressure transfer between the
equivalent sources and the nodes on Γ, and TΓ ∈ CN×Ns

the source to normal velocity transfer ∀j ≤ N, ∀l ≤ Ns,

TΓ,jl =
eik∥rj−rl∥

4π ∥rj − rl∥
(1− ik ∥rj − rl∥) cos θjl,

rj ∈ Γ, rj ∈ Ω.

(3)

where θjl denotes the angle between rj − rl and the di-
rection normal to Γ at rj .

Finally the impedance imposed by the radiating

body is introduced as
(
zj =

p(rj)
vn(rj)

, rj ∈ Γ
)
j≤N

.

After stacking the M pressures p(ri), the Ns equiv-
alent sources flow q(rl), and the impedances zj into the
column vectors p, c and the diagonal matrix Z respec-
tively, the inverse problem under scrutiny boils down to

{
p = Gc (measurements matching)

(ZTΓ −GΓ) c = 0 (boundary condition).
(4)

From a mathematical standpoint, the goal here will
be to solve a classical acoustic imaging inverse problem

FIG. 1. (Color online) A set of equivalent monopolar sources

with complex amplitudes c (blue dots) is sought after to

match both the impedance condition z on the skin of the

body and the pressure p measured by a microphone array at

a given frequency.

whose solution has to be projected on a null space ac-
counting for the presence of the boundary condition.

Assuming Eq.(4) solved, the last step of the approach
consists in the repropagation of the obtained sources c on
any observation region Γobs thanks to free field transfer
matrices defined similarly to Eq.(2) and (3).

In this paper, the particular case of a perfectly rigid
body is investigated for the sake of simplicity. In other
words, the admittance on Γ is set to zero which implies

TΓc = 0 (5)

to account for a Neumann boundary condition, and the
overall problem as stated in Eq.(4) becomes{

p = Gc (measurements adequation)

TΓc = 0 (boundary condition).
(6)

B.TΓ Null space

As the acoustic inverse problem turns into an alge-
braic projected inversion, the settings of the operating
matrices dimensions is a major stake for the practical
implementation of the method.

M and N are considered as inputs of the problem:
the number of microphones is given by the available hard-
ware, and the number of nodes describing the body is
fixed in accordance with the minimum wavelength under
scrutiny. Concerning the test cases presented in this pa-
per, a 5 nodes per wavelength condition is matched to
ensure a margin (Lee et al. (2011) showed that ESM ap-
proaches could be more resilient than FEM/BEM on this
point).

The number of equivalent sources Ns is a key param-
eter of the method and requires further clarification. As
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it is mandatory that Eq.(5) admits non zero solutions for
the proper operation of the method, the lowest Ns is first
given by the rank theorem:

Ns = Rank (TΓ) + dim (kerTΓ) . (7)

AsTΓ is of full rank (i.e. Rank (TΓ) = min (N,Ns)),
a non-empty kernel implies Ns > N and the number of
equivalent sources must be greater than the number of
nodes supporting the boundary condition on the body.

Under this assumption, the resolution of Eq.(4) in-
volves the extraction of the kernel of TΓ. The simplest
way to do so is based on the classical relationship

kerTΓ =
(
ImT

H

Γ

)⊥
. (8)

From then on, the QR decomposition (see for ex-

ample Golub and Van Loan, 1996) of T
H

Γ is sufficient to
sample a K sized matrix B ∈ CNs×K from the null space
of TΓ. Let us first introduce

T
H

Γ = QR

=


Q1,1 · · · Q1,N Q1,N+1 · · · Q1,Ns

Q2,1 · · · Q2,N Q2,N+1 · · · Q2,Ns

... · · ·
...

... · · ·
...

︸ ︷︷ ︸
ImT

H

Γ

QNs,1 · · · QNs,N ︸ ︷︷ ︸
null space of TΓ

QNs,N+1 · · · QNs,Ns

R,

(9)

where Q ∈ CNs×Ns is an unitary matrix and R ∈
CNs×N is an upper triangular matrix.

Equation (9) can be rewritten as

T
H

Γ =
[
Q1 Q2

]
R, (10)

with Q1 ∈ CNs×Rank(TΓ) describing the image of T
H

Γ and

Q2 ∈ CNs×(Ns−Rank(TΓ)) being a set of orthogonal rows
in the kernel of TΓ. From there, any matrix B of the
form

B = Q2Λ, Λ ∈ C(Ns−Rank(TΓ))×K (11)

ensures that TΓB will equal zero.
The B matrix is the cornerstone of the proposed

Galerkin ESM as it plays two major roles:

� Because of its similarity withQ2, it can force equiv-
alent sources to respect the Neumann boundary
condition stated in Eq.(5).

� The appropriate construction of Λ allows the re-
duction of the the inverse problem dimension in
Eq.(4) from Ns to K unknowns.

Leads to define what can be a relevant definition of this
matrix is investigated in section III.

C. Practical inversion

The initial system (4) can now be reduced to a single
inverse problem

p = Gc = GBd (12)

where the new unknown vector d ∈ CK may be under-
stood as a set of equivalent source coefficients in a basis
accounting for the Neumann boundary condition on the
body.

Since it is desirable for this new statement of the
problem to be correctly conditioned, a parametric con-
dition arises from Eq.(12) as it should not be underde-
termined. This means that the size of the kernel basis
K has to be larger than the output dimension M of the
matrix GB to invert, which necessarily leads to

M ≤ K ≤ Ns −N. (13)

This prerequisite on the number of equivalent sources
will be supported by numerical considerations in section
IV.

Now that the inverse problem boils down to the for-
mulation Eq.(12) remains the choice of an inversion al-
gorithm to reach the solution d. A large scope of sophis-
ticated algorithms are available in the literature, (see for
example Leclère et al. (2017) or Merino-Mart́ınez et al.
(2019) for a review). The shape of the optimal solution d
(i.e. for example sparse or with minimum energy) is case-
dependant and likely to be influenced by the choice of Λ.
For that reason, the generic choice would be to make use
of an L2 regularized inversion. This is the one made in
the framework of this article in the validation sections,
with the regularization parameter set up according to
Pereira et al. (2015) Bayesian regularization algorithm.

Once c is recovered from Eq.(12), the last step con-
sists in the backpropagation of the optimal equivalent

sources vector ĉ = Bd̂ to estimate the radiated pressure
in the region of interest within Ω̄. This is simply achieved
with the free field propagator following

pobs = GΩ̄ĉ. (14)

For this backpropagation to be meaningful, a noticeable
precaution has to be highlighted: since the equivalent
sources arising from Galerkin ESM are designed to acous-
tically model the object defined by Γ, it is mandatory for
this region of interest not to intersect Γ. This would in-
deed boil down to evaluating the pressure radiated by the
body inside or on itself, and most likely lead to incoherent
results and interpretations. Indeed, like classical ESM or
BEM, the Galerkin inverse problem is dedicated to the
simulation of the acoustic field outside the source region
since the 1/r singularity of the monopoles is unmanage-
able within Ω. Apart from this area, it is supposed to
provide a realistic synthesized acoustic field outside the
rigid body based on the microphone array measurements.

In the end, the overall execution of Galerkin ESM is
summarized in Algorithm 1.
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Algorithm 1: Step-by-step description of Galerkin ESM

Require: Array measures p ∈ CM , N node positions on
Γ, Ns equivalent sources positions in Ω, and a region
of backpropagation Γobs featuring Nobs points.

Ensure: M ≤ Ns −N and Γ ∩ Γobs = ∅
G ∈ CM×Ns ← Eq.(2).
TΓ ∈ CN×Ns ← Eq.(3).

Q2,R← QR decomposition of T
H

Γ.
Λ ∈ C(Ns−Rank(TΓ))×K ← User defined, see section III.
B← Q2Λ.

d̂← regularized inversion of p = GBd.

pobs ← GΓobsBd̂.

From the computational cost point of view, the two
most significant steps are the QR decomposition (O

(
N3

)
operations using numpy Householder reflectors) and the
inversion of GB that will depend on Λ and the chosen
inverse methods.

III. KERNEL LAYOUT THROUGH PRINCIPAL SURFACES

When choosing the simplest form for Λ, i.e. a rect-
angular matrix with unitary entries on its diagonal, there
is no genuine reason to expect any dimension reduction
from Ns − N to K: in that case B is directly sampled
from the QR decomposition, which is a pure mathemat-
ical operation with no physical meaning involved. The
selection of columns from Q2 is thus bound to be arbi-
trary and it is shown in the next section that Galerkin
ESM is unlikely to provide meaningful results with small
values of K in this set up.

As mentioned in the previous section, the construc-
tion of Λ thus deserves an in-depth analysis since it im-
pacts both the physical meaning of the equivalent sources
model and the numerical cost of the inverse problem. The
current section is dedicated to a practical way to define an
acoustic operator from which are derived principal radi-
ating surfaces. For the sake of clarity, only one promising
option is advocated in this section, but some other leads
could be studied as well depending on the application
cases.

Sources with maximum radiation efficiency

The proposed option is to tidy up the columns of
Q2 following an order of increasing efficiency in terms
of acoustic radiated power. For that purpose, the choice
was to test Galerkin ESM featuring a Λ matrix filled
with K eigenvectors associated to the largest eigenvalues
of the radiation efficiency operator.

Given a closed surface completely covering the rigid
body (ΓW ⊂ Ω̄) and discretized in NW nodes and surface
elements, the acoustic power propagated by the equiva-
lent sources c through ΓW is determined by

W =
1

2
ℜe

(
v

H

nAp
)
=

1

2
ℜe

(
(TΓW

c)
H

AGΓwc
)

(15)

where TΓW
,GΓW

are the free field propagation matrices
of c on ΓW respectively for normal velocity and pressure,
and A ∈ RNW×NW is a diagonal matrix containing the
areas of ΓW surface elements.

From that perspective, it seems relevant to favour
distributions of equivalent sources with the best radiation
efficiency when reducing the size of the inverse problem.
In practice this can be achieved by setting the columns
of Λ as

Λ = [λ1, . . . ,λK ] (16)

where

λi = argmax
∥u∥=1

u
H
λj=0, j≤i−1

1

2
u

H

ℜe
(
Q

H

2T
H

ΓW
AGΓwQ2

)
u. (17)

All in all, the matrix B = Q2Λ brings in a combi-
nation of a projection on the kernel of TΓ while sorting
the equivalent sources distribution in ascending order re-
garding their radiation efficiency on ΓW . Through this
intermediary step, a physical behaviour is coupled to Q2

and allows to significantly reduce the size of the inverse
problem without damaging its accuracy. An illustration
of how radiate such principal surfaces and the quantita-
tive gain of the introduction of Λ defined with Eq.(17) is
put forth in section IVE.

Another subsidiary benefit lies in the orthogonality
between the columns of B. Considering further applica-
tions of Galerkin ESM, one could think of decomposing
the overall radiated acoustic power on the principal sur-
faces according to

W =

K∑
i=1

wi, where wi =
∣∣∣d̂i∣∣∣2 Πi, (18)

with Πi being the ith eigenvector of the matrix
1
2ℜe

(
Q

H

2T
H

ΓW
AGΓwQ2

)
in Eq.(17) and d̂i the ith co-

efficient of d̂. Such a process is likely to provide some
insightful hierarchy in the operating radiative patterns
(see Fig. 6,7,8 in the next section for a example on an
academic case).

IV. NUMERICAL VALIDATION

A comparison of Galerkin ESM with other popular
acoustic imaging algorithms is proposed in this section.
The purpose of the method is to reconstruct acoustic
fields outside a rigid surface. To evaluate these methods
from that angle, a spherical geometry is chosen: with re-
spect to Fig. 1, Γ is modeled here by a spherical mesh
of radius a = 0.3 meters featuring 1280 triangular ele-
ments and N = 642 nodes. As they get equally spread
over the sphere, this set of nodes allows a 5 elements per
wavelength condition up to ka = 15.
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A. Spherical Related Transfer Functions

The acoustic field radiated around a rigid box (see
for example Bouchet et al., 2000; Koopmann et al., 1989)
is a common test case for ESM approaches. However, the
point of this paper is also to put Galerkin ESM to the test
in terms of three-dimensional diffracted source identifica-
tion based on array imaging. From that perspective, the
spherical case offers valuable advantages. First of all, the
pressure in the vicinity of a rigid sphere given a monopo-
lar source on its skin is analytically known (Williams
(1999, section 8.8)): using the notations of Eq.(2) and
considering the sphere centered on the origin, the acous-
tic transfer function between a unitary monopolar source
located at rl on the spherical surface Γ and a microphone
at ri in the outer field is given by

Hs
il =

−iρc

4πa2

∑
n∈N

(2n+ 1)
hn(k ∥ri∥)
h′
n(ka)

Pn

(
ri · rl

∥ri∥ ∥rl∥

)
,

(19)
where hn, h′

n and Pn respectively refers to spherical
Bessel Functions of second kind and order n, its deriva-
tive, and Legendre polynomials of order n. Duda and
Martens (1998) even proposed an accelerated routine to
compute high orders of formulation (19), and Pereira
(2013, chapter 2) empirically linked the maximum order
nmax to the frequency of interest through

nmax > 1.2(ka)2 + 8
r/a+ 1

r/a
(20)

to ensure a truncation error lesser than 10−9 on the
sum. Equation (19) provides the acoustic field result-
ing from any combination of monopoles on the surface of
the sphere, and thus allows to assess Galerkin ESM on
monopolar source identification.

An observation surface Γobs is set up for the dis-
play of the acoustic fields propagated by the equivalent
sources from Galerkin ESM and the sources identified
through classical acoustic imaging methods. It consists
in an additional sphere of radius aobs =

4
3a merged with

a cutting plane of size 5a (see Fig. 2). This set-up allows
to check discrepancies between the obtained propagated
fields and the analytical one on both near and far field.

For the sake of simplicity, the choice was made to
use a regular spherical array of radius 16

3 a with M = 250
microphones.

B. Acoustic imaging methods

For each validation case below, Galerkin ESM is
benchmarked against two already existing acoustic imag-
ing approaches.

The first one is Conventional Beamforming (CBF)
(see Chiariotti, 2019). Known to be fast and robust, CBF
is theoretically justified for the identification of a single
monopolar radiating source in a free field toward the ar-
ray. Even if its relevance may be questioned given the
more complex radiation patterns used here, it remains

FIG. 2. (Color online) Geometrical set-up for validation. The

yellow surface is the control point support Γ, the transparent

grey is Γobs and the cloud of points around it is the micro-

phone array.

a reference in industrial applications and a comparison
with CBF output is a necessary step for the evaluation
of new acoustic imaging methods. If H ∈ CM×N denotes
the acoustic transfer matrix between the nodes on Γ and
the array, either free field or more refined depending on
what is numerically available, CBF aims at identifying
sources energies on Γ throughout

∀j ≤ N, |qj |2 =
e

H

jH
H

pp
H

Hej

∥Hej∥4
, (21)

with ej ∈ CN being the jth element of the canonical
basis.

The second method is iterative Bayesian Focusing
(iBF), a current state-of the-art algorithm initially pro-
posed by Antoni (2012). The full description of this algo-
rithm as used in the scope of this article is to be found in
Antoni et al. (2019, Algorithm 1), featuring a generalized
multivariate complex Gaussian as prior density function.
iBF was assessed as an imaging approach that provides
the full cross spectral matrix of the sources, and includes
a regularization step to deal with noisy measurements or
poorly conditioned FRFs.

In the end, the comparison study features five differ-
ent approaches to reconstruct the acoustic field:

1. CBF between N monopole sources on the mesh Γ
and the array, featuring the free-field propagation
of Eq.(2) in the transfer matrix H of Eq.(21).

2. CBF involving the analytical transfer Eq.(19) in H.

With these first two is tested the usability of CBF
for sound field synthesis and its ability to handle
non free-field FRFs.

6 J. Acoust. Soc. Am. / 3 October 2022 Chambon & al



3. iBF between N monopole sources on Γ and the ar-
ray, with free-field FRF and without any prior hy-
pothesis on the sources in terms of regularization.

This one serves at evaluating what a turnkey ver-
sion of iBF produces.

4. Galerkin ESM as described in section II, with Ns =
3N = 1926 and K = Ns−N = 1284 in a first stage,
to maintain a margin regarding Eq.(13). No prin-
cipal surfaces for the validation in comparison with
other imaging algorithms to remain general. The
equivalent sources are distributed inside the mesh
according to classical ESM literature guidelines :
half of it are placed on a 85% scaled replica of Γ
and the other half randomly located but at least
0.15a m away from the control points (see Leblanc
et al., 2010).

5. Lastly iBF again, but with the use of the analytical
FRF in H and a strong sparsity constraint (L1 reg-
ularization). It should be noted that this last ap-
proach differs from the first four as it is the only one
that features a suitable a priori on the sources. It
aims at displaying the maximum degree of accuracy
reachable on the reconstructed scattered field when
the inverse method perfectly fits with the ground
truth source distribution.

The aim of such a methodology is multiple:

� Checking the error induced by approximated FRFs
in CBF and iBF when the actual propagation is not
free field.

� Assessing the ability of CBF and iBF to benefit
from the use of a perfectly accurate transfer func-
tion.

� Evaluating Galerkin ESM comparatively to what is
reachable with blind acoustic imaging approaches
(i.e. without proper assumptions on the source dis-
tribution) and with the perfectly tuned iBF version.

C. Uncorrelated monopolar sources

The first test case consists in the reconstruction of
the acoustic field produced by Nsrc = 10 uncorrelated
monopoles randomly placed on the yellow sphere (on
Fig. 2). The cross spectral matrix (CSM) resulting from
their combined radiation at the microphones is computed
through

Spp = HsSqq (H
s)

H

, (22)

where Hs is determined according to Eq.(19) and Sqq is
set to the identity matrix in order to describe completely
uncorrelated sources of unitary strength.

Each algorithm presented in sections II and IVB is
then fed with this CSM and the sources obtained are
finally backpropagated on a circle of radius 1.5a. The
directivities resulting from this process are plotted on
Fig. 3.
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FIG. 3. (Color online) Directivity pattern of 10 uncorrelated

monopoles on a rigid sphere at ka = 1 (top) and ka = 13

(bottom), computed through various imaging algorithms. At

low frequency, both Galerkin ESM and iBF are matching with

the reference (all 4 plots are overlapped).
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This first configuration is supposed to fall in the
range of all the methods assessed, but this first bench-
mark offers interesting preliminary conclusions. Method-
wise, it seems that the overall directivity pattern is seized
by both CBF, iBF and Galerkin ESM.

It appears then that the use of the accurate FRFs
leads to an enhancement at high frequencies, dealing
with some 5 dB discrepancies for both beamforming and
Bayesian Focusing. This item is quite intuitive and shows
how the diffraction of the spherical body plays a role in
the acoustic transfer and should not be underestimated.

With respect to the classical methods, Galerkin ESM
(green dotted line Fig. 3) may be ranked at the second
place in terms of accuracy. It outperforms CBF in gen-
eral, deals with the impact of diffraction in a much better
way than iBF with free-field FRFs, but does not compete
with the latter when used with spherical transfer func-
tions and induced sparsity.

It may be noticed that at both high and low frequen-
cies, iBF with correct transfer functions (yellow dashed
line) perfectly managed to reconstruct the reference di-
rectivity of the ten sources. This basically means that the
number and the disposition of the microphones allows
enough information to fully describe the acoustic field.
That being said, it should be concluded that Galerkin
ESM is by far the best performing algorithm among the
without a priori approaches even if there still are room
for improvements.

D. Correlated monopolar sources

The panel of imaging approaches is now put to the
test for the recovery of an acoustic field produced by the
same ten monopoles, but this time correlated: the CSM
and the the reference directivity pattern is obtained in
the same way as in the previous section using Eq.(22),
except that Sqq is no longer the identity matrix. Instead,
it gets defined as

Sqq = INsrc +∆Nsrc +∆
H

Nsrc
(23)

where ∆Nsrc
is an upper triangular matrix randomly

filled with 0 or 1 entries. The ten sources on the sphere
are thus either fully or not correlated one with each other,
causing a much more complex and uneven directivity pat-
tern than in the previous paragraph.

Results are plotted on Fig. 4. As expected, CBF
loses relevance when dealing with correlated sources and
fails at nailing the interference peaks. Regarding iBF,
the scattering effect of the sphere becomes of first order
at large ka number and the quality of the output is dam-
aged as long as a free field transfer function is used. In
that case, levels seem to be underestimated with respect
to the reference: inherently to their propagation model,
the identified sources are namely interferated through the
spherical mesh at the backpropagation step of the process
leading to overall lower levels because of the inappropri-
ate L2 regularization with respect to the source model.

Here again, Galerkin ESM does well as being in the
efficiency range of the optimal set-up offered by iBF with

spherical related transfer functions. Every interference
lobe is well rendered at both high and low frequencies,
only remain some local discrepancies with the reference.
This uneven aspect may likely result from a non optimal
disposition of the equivalent sources, which constitutes
the major lead for further improvements of the method.

With a view to exemplify the potential applica-
tions of Galerkin ESM, the backpropagation depicted in
Eq.(14) is achieved and displayed on Fig. 5 for correlated
monopoles (5 only for the sake of readability). Compar-
ing (a) and (b), this result highlights to what extent the
free assumption leads to misleading interpretations on
the left side of the sphere. On this test case, it appears
that iBF with accurate FRFs and Galerkin ESM only
can provide a reliable backpropagated sound field.

All in all, the conclusion regarding the numerical
test cases seems consistent. In terms of methods ranking,
it can be stated that :

� Beamforming is unusable at low frequencies for
radiated field reconstruction. The poor spatial
resolution on the identified sources leads to over
smoothed propagated fields completely blurring di-
rectivity patterns. At large ka values, the use of
accurate FRFs as steering vectors for CBF slightly
improves it but this statement remains especially
when dealing with correlated sources.

� At high frequencies, i.e. when the scattering be-
haviour of the sphere is of first order, the identifi-
cation of the outer pressure field with iBF should
be achieved with great precautions. Without any
prior knowledge on the sources nature, the generic
parametrization of the algorithm with free-field
transfer functions and L2 regularization leads to
significant inaccuracies. In practice, this means
that iBF should be used for array-based field syn-
thesis only when refined transfer functions and
funded assumptions on the sources are available.

� Galerkin stands out as a powerful alternative to
have a proper simulation of the acoustic field
around the rigid sphere without ground truth
FRFs. Discrepancies with the reference are observ-
able but local and acceptable. The peaks induced
by the scattering presence of the sphere is well mod-
eled by the kernel projection added to precondition
the free-field transfer matrices as exposed in section
II.

E. Principal Surfaces

Given its reasonable size, the spherical case used
throughout this section is ideal to evaluate the contri-
bution of principal surfaces introduced in section III.

A 5/4 scaled version of the mesh plotted in Fig. 2
was chosen as ΓW discretized in NW = N = 642 nodes.
The Λ matrix of size Ns × Ns was filled with columns
computed following Eq.(17) and it is insightful to visu-
ally check their radiative pattern as basis vector for the
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FIG. 4. (Color online) Directivity pattern of 10 correlated

monopoles on a rigid sphere at ka = 1 (top) and ka = 13

(bottom), computed through various imaging algorithms. At

low frequency, both Galerkin ESM and iBF are matching with

the reference (all 4 plots are overlapped).

Galerkin ESM inverse problem. For that purpose, the
amplitude of the pressure field radiated by the columns
of B on Γobs, i.e.

pλi

obs = GΓobs
Bi (24)

was computed for various i values and displayed in Fig.
6 with Λ being the identity matrix and Fig. 7 with Λ
issued from Eq.(17).

A relevant point arises from the observation of these
figures and confirms the reasoning exposed in section
IVE: On the one hand, in terms of acoustic radiation,
no obvious hierarchy seems to sort the basis vector in-
side B when Λ is the identity. In other words, every
columns of Q2 share the same radiation efficiency and it
is unlikely to sample K < Ns −N of them without any
loss on the accuracy on the Galerkin ESM outcome.

On the other hand, from Fig. 7 it appears that the
power-optimized version of Λ leads to much more work-
able basis functions, with a clear ranking between the
most radiating vector at low i values and the weakest
ones at larger indices.

The quantitative assessment of this interpretation
was conducted and shown in Fig. 8. The latter exposes
the global L2 relative error on Γobs between the analyt-
ical pressure field and the one propagated by Galerkin
ESM sources, with respect to the number of columns K
selected from Λ. Simultaneously is plotted the relative
acoustic power of the equivalent sources integrated on
ΓW for rising truncation values K in the sum of Eq. (18).

It can be stated from this graph that the opti-
mized formulation of Λ drastically improves the conver-
gence speed of Galerkin ESM. On this particular test
case for example, the −13 dB error ratio is obtained
for K ≈ 0.8(Ns − N) = 1027 when B is only sampled
from Q2 while the same accuracy can be achieved with
K ≈ 0.4(Ns − N) = 513 with the power oriented ver-
sion of Λ. This earning represents a significant reduction
of the dimension of the inverse problem in Eq.(12) for
practical applications of the method.

The red lines assesses the point made above with
Eq. (18): when Eq.(17) is used for the construction of
Λ, most of the acoustic energy is concentrated in the first

coefficients of d̂ while at least 85% of them are required
to reconstruct the same energy levels when Λ is simply
the identity matrix.

F. Computational efficiency

Results above on the spherical test case were com-
puted with Python 3.7 on an Intel Core I7 8750H
(2.2 Ghz). Averaged on 25 runs of the code, 1.7 seconds
per frequency were needed for the QR decomposition,
1.2 for the BΛ calculation in Eq.(17) and 2.3 for the GB
regularized inversion.

Given the results displayed in the current section,
the fair comparison would be with iBF combined with
realistic FRFs. Considering a generic test case, iBF itself
is of the same complexity than the GB inversion but
the FRF simulation has to achieved with FEM, BEM or
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(a) (b)

(c) (d)

FIG. 5. (Color online) Acoustic pressure (amplitude) on Γobs radiated by 5 randomly correlated monopoles at ka = 13 (with a

20 dB dynamic range). (a) Analytical sound field. (b) Sound field propagated by sources identified with iBF featuring free-field

FRF. (c) Sound field propagated by sources identified with iBF featuring analytical FRF. (d) Sound field propagated by sources

identified with Galerkin ESM.

classical ESM and it is likely that in the end the overall
performance does not overrun Galerkin ESM.

V. EXPERIMENTAL VALIDATION

This last section lays out an experimental validation
of Galerkin ESM. The aim of this final point is to gauge
the behaviour of the method dealing with actual micro-
phone array measurements on a large frequency range.
The chosen case is a wooden mock-up flush mounted with
omnidirectional sources, as described on Fig. 9. The lat-
ter is modeled with triangular mesh of N = 2377 vertices.

Its characteristic length equals L = 0.77 meters, and
the planar array features M = 36 analogical microphones
placed at 12 centimetres from the sources plan. Similarly

to what was proposed in section IV, sources A and C were
fully correlated while the last one remained uncorrelated.
The measurement is a 9.84 seconds record sampled at
fs = 25600 Hz.

The session took place in a semi anechoic room with a
locally treated ground, and array signals were post pro-
cessed using the Welch periodogram with a Hann win-
dow. The block size was set to 2560 samples with a 50%
overlap to reach a 10 Hz frequency resolution up to 12800
Hz.

Since no analytical transfer function is available for
such a geometry, the relevance of this last section namely
lies in this transfer function computation step: whatever
the choice of the numerical method (ESM, BEM, FEM,
etc.), computing transfer functions involves numerical re-

10 J. Acoust. Soc. Am. / 3 October 2022 Chambon & al



(a) (b)

(c) (d)

FIG. 6. (Color online) Pressure amplitudes on Γobs radiated by the ith column of Q2Λ (Λ being the identity matrix). (a)

i = 1, (b) i = 10, (c) i = 100, (d) i = 250 and ka = 8.24 . Plots are displayed within a 30 dB dynamic range, and the red dot

indicates the maximum level location.

(a) (b)

(c) (d)

FIG. 7. (Color online) Pressure amplitudes on Γobs radiated by the ith column of Q2Λ (Λ being defined by Eq.(17)). (a) i = 1,

(b) i = 10, (c) i = 100, (d) i = 250 and ka = 8.24 . Plots are displayed within a 30 dB dynamic range, and the red dot indicates

the maximum level location.
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(a) (b)

FIG. 9. (Color online) Experimental set-up, from Le Maguer-

esse et al. (2018). (a) Actual disposition of the array facing

the source panel. (b) Disposition of the flesh mounted sources.

sources and may induce additional errors for complex
meshes. The Galerkin ESM proposed in this paper could
be seen as an alternative method that includes scattering
effects in the model while bypassing this transfer simula-
tion step.

With a view to recover the sound field propagated by
the three sources around the engine, the same methods
as in the previous section were applied here: CBF, iBF
and Galerkin ESM, with the difference that this time only
free field FRFs can be provided to the two first ones. The
numerical modelisation of the set up is exposed on Fig.
10.

An illustrative display of the associated synthesized
fields is given on Fig. 11, at a frequency at which scatter-
ing effects are likely to be significant (kL ratio far greater
than one).

Preliminary observations of these acoustic maps are
enlightening. As expected CBF is unsuitable to seize the
acoustic produced by the correlated sources A and C. iBF
and Galerkin ESM are in accordance on the side of the
faces with the sources but differ on the part of Γobs with

FIG. 10. (Color online) Numerical set-up for experimental

set up. The yellow surface is the control point support Γ, the

transparent grey is Γobs and the 36 black dots represent the

microphone array placed at 12 cm from the mock-up.

pressure levels scattered around the mock-up. At first
glance it seems that the acoustic shadow zones caused by
the presence of the wooden structure find its most faithful
depiction with the Galerkin ESM synthesized pressure
field.

Another quantitative evaluation on the experimen-
tal case is displayed on Fig. 12. It exposes the back-
propagated pressure level on reference microphone placed
12cm in the alignment behind the array shown on Fig. 9.
For the sake of readability, the beamforming curve was
post-processed by propagating only the three local max-
ima corresponding to the A, B and C points of the CBF
map. At low ka numbers, Galerkin ESM all three meth-
ods yield a good adequation with the measured level,
with a small edge for iBF and Galerkin ESM. However,
beamforming rapidly tends to be globally inappropriate
as frequency rises and iBF is subject to discrepancies
at specific frequency ranges compared to Galerkin ESM.
With regard to Fig. 11, this is consistent with the fact
that acoustically masked areas in Ω̄ do differ between iBF
and Galerkin ESM issued backpropagation because of the
misleading free-field propagator. Lastly, this last plot
gives a first empirical clue on the maximum frequency
reachable with the chosen number of equivalent sources
concerning our method (here approximately) 1800 Hz).
As for classical ESM, a sensitivity study will be con-
ducted in further studies to define more precise guidelines
on that specific issue.

VI. CONCLUSION

Galerkin ESM is introduced as a promising algorithm
to reproduce sound fields scattered around diffracting
bodies from array measurements. The transcription of
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(a) (b) (c)

FIG. 11. (Color online) Acoustic pressure (amplitude) backpropagated on Γobs at kL = 21 (relative levels with a 30 dB dynamic

range). (a) Sound field propagated by sources identified with CBF featuring free field FRF. (b) Sound field propagated by

sources identified with iBF featuring free field FRF. (c) Sound field propagated by sources identified with Galerkin ESM.
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FIG. 12. (Color online) Backpropagated levels on the kL = 2.8 to 48.6 frequency range.

a Neumann boundary condition as a matrix kernel in-
clusion is fully described, and integrated to the acoustic
imaging inverse problem. A sub-process dedicated to the
reordering of the kernel is also proposed to reduce the di-
mension of the resulting inverse problem, by maximizing
the overall radiation efficiency the equivalent sources.

The method is assessed first on numerical data is-
sued from correlated and uncorrelated monopoles flush
mounted on a rigid sphere. Since highly realistic FRF
can be analytically computed for such a geometry, this
case first underlines to what extent the free field assump-
tion becomes hazardous when it comes to reconstructing
pressure fields at high ka ratios. From this first bench-
marks, Galerkin ESM turns out to outperform CBF and

iBF restricted to the free field model. For the sphere
specific case, it however remains coarser than the inverse
problem supplied with analytical ground truth FRFs.

Finally on experimental data, Galerkin ESM back-
propagated maps provide insightful refinements on the
sources directivity, especially compared to what actually
used methods are likely to provide. In view of the initial
motivation of the paper, i.e. scattered sound field syn-
thesis from microphone array pressures, it appears that
the approach pursued here takes on its full relevancy on
this type of industrial application. Indeed, a complete
set of realistic transfer functions is seldom available or
at the expense of costly upstream computations, and it
has been shown that Galerkin ESM provides an efficient
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framework to grasp strongly directive patterns while by-
passing the FRF simulation step.
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