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A B-conforming time stepping volume integral formulation (VIM) for nonlinear 3D field-circuit coupled problems is presented in this paper. The advantage of the VIM with respect to the finite element method (FEM) is that only the ferromagnetic regions have to be discretized, thus avoiding to mesh the air. It is an appealing approach because it avoids the numerical errors that can arise from modeling the air. An application to a current transformer is presented and compared to the FEM to validate its accuracy.

I. INTRODUCTION

V OLUME integral method (VIM) is a powerful approach to solve magnetic problems. Its main advantage is that only ferromagnetic regions have to be discretised, thus avoiding to mesh the air as it happens in the finite element method (FEM). VIM is known since 1970s but it wasn't popular because it leads to full matrices that are computationally expensive. Nevertheless, the last decade it became more accessible as a result of matrix compression algorithms such as the fast multipole method [START_REF] Greengard | A fast algorithm for particle simulations[END_REF], advanced integral formulations like [START_REF] Canova | Integral solution of nonlinear magnetostatic field problems[END_REF] and the enlargement of computers RAM memory.

The VIM performs well with a coarse mesh and it is very accurate in the calculation of remote electromagnetic interactions, for instance, when the magnetic flux through external coils is needed. This flux calculation is central in the framework of coupled field-circuit approaches where a distinction between electrically conductive and non-conductive media is made. Thus, it seems natural to implement the field-circuit coupling with a VIM method to treat magnetic phenomena and a classical circuit method to treat coils electrically coupled with current or voltage sources or more complex lumped electric elements.

This paper therefore presents an original extension of the magnetostatic formulation [START_REF] Le-Van | A volume integral formulation based on facet elements for nonlinear magnetostatic problems[END_REF] to a general time-stepping formulation for nonlinear magnetic problems coupled with circuit equations for external coils.

II. VIM TRANSIENT FORMULATION

Let us consider a problem composed of a non-conductive and non-linear magnetic region Ω m surrounded by an air region which includes circuit coils Ω b (Fig. 1). The circuit coils are coupled with lumped elements such as current sources, voltage sources or resistive circuit elements. For the magnetic field part, Maxwell's equations are considered and more precisely the Maxwell Ampere equation written as: In this paper, the field formulation is based on [START_REF] Le-Van | A volume integral formulation based on facet elements for nonlinear magnetostatic problems[END_REF]. We consider the magnetostatic integral equation with the constitutive relation H = ν(B)B and facet elements w i (Whitney 2-form [START_REF] Bossavit | Whitney forms: A class of finite elements for three dimensional computations in electromagnetism[END_REF]) as interpolation functions for the magnetic induction B and as Galerkin projection test functions. The resulting discretized integral system reads:

H = -gradV m + H b (1)
R m Φ + P m Φ + L mb I b = ∆V m (2) 
with

R mij = Ωm w i •νw j dΩ m , L mb ik = - Ωm w i •h bk dΩ m , P mij = 1 4π Γext j 1 s i Γtot 1 s j δν j r dΓ tot dΓ ext ,
where Φ is the magnetic flux flowing through each facet, ∆V m is a vector containing the V m difference between two adjacent elements, ν is the reluctivity of the magnetic region, δν is the reluctivity jump between two adjacent elements, r is the distance between the integration point and the evaluation point, n is the normal of a facet, Γ tot is the ensemble of facets of the problem and Γ ext refers only to the facets that are on the boundary of the magnetic region. P m is written using the assumption of ν being constant per element, which is true in case of simplex mesh elements such as tetrahedrons.

For the circuit coupling, an additional circuit relation for each coil is needed, linking the magnetic flux, the current, the internal resistance and the voltage [START_REF] Huang | General integral formulation of magnetic flux computation and its application to inductive power transfer system[END_REF]:

∆V b = R b I b + d dt L b I b + µ 0 d dt Ωm h b • MdΩ m (3)
where R b is the diagonal resistance matrix of the coils, L b is the self and mutual inductance matrix of the coils in the vacuum, µ 0 is the vacuum permeability and M is the magnetization, that can be expressed as M = (ν 0 -ν)B.

Assembling the magnetic field and the circuit, the final coupled matrix system reads:

R m + P m L mb d dt L bm R b + d dt L b Φ I b = ∆V m ∆V b ( 4 
)
where

L bm kj = µ 0 Ωm h b k • (ν 0 -ν j )w j dΩ m is a coupling term.
External circuit elements could be easily added to the latter matrix system to consider external electrically coupled current sources, voltage sources or other additional lumped circuit elements.

III. RESOLUTION STRATEGY

The equivalent electric circuit system (4) is solved using either Kirchoff's mesh rule or Kirchoff's node rule. This procedure ensures the free divergence of B.

In practice, the resolution is carried out with a θ schema time-stepping method with a imbricated Newton-Raphson (NR) loop to solve the non linear term. In theory, the jacobian matrices of the system have to be computed at each NR iteration. To avoid the computation of the integral matrix P m at every time step, since the hypothesis of constant reluctance per element is set, we can integrate the matrix In order to speed the computations, a matrix compression technique can be used, such as fast multiple method on matrix P m . A GMRES iterative solver is then considered and it is accelerated with a LU type preconditioner on the finite element matrix R m .

Q m = 1 4π Γext j 1 si ( Γtot

IV. APPLICATION

The proposed formulation bas been applied to a current transformer to validate its accuracy. The reference is the solution obtained with a FEM commercial software with a mesh that has converged.

The current transformer is composed of a magnetic region, a primary coil and a secondary coil as Fig. 2 shows. The primary coil has 1 turn and an imposed current of 300 sin(2πf t) where t is the time and f is the frequency, 50 Hz. The secondary coil has 980 turns and it is connected to a resistance of 63 Ω. The simulation is done for three periods, therefore t ∈ [0, 0.06] seconds, with 50 time steps per period. The magnetic region is non linear following an isotropic analytic saturation of The converged mesh has 52,581 tetrahedral elements in the magnetic part of the current transformer for VIM. For FEM, the mesh of the magnetic part is similar and there are 261,863 additional elements in the air region. 
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 1 Fig. 1: Problem with a magnetic region and two circuit coils.
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 11 dΓ tot )dΓ ext just once, which only depends on the geometry and multiply it by δν j at each NR iteration.

Fig. 2 :

 2 Fig. 2: Current transformer geometry.
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 3 Fig. 3: Current secondary coil for VIM and FEM.
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 3 Fig.3shows the current of the secondary coil for FEM formulation and the developed formulation. The average relative difference between the two methods is 0.36 % thus validating the VIM developed.