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A B-conforming time stepping volume integral formulation (VIM) for nonlinear 3D field-circuit coupled problems is presented in
this paper. The advantage of the VIM with respect to the finite element method (FEM) is that only the ferromagnetic regions have
to be discretized, thus avoiding to mesh the air. It is an appealing approach because it avoids the numerical errors that can arise
from modeling the air. An application to a current transformer is presented and compared to the FEM to validate its accuracy.

Index Terms—Equivalent circuit, nonlinear time-stepping formulation, volume integral method, field-circuit coupled problem.

I. INTRODUCTION

VOLUME integral method (VIM) is a powerful approach
to solve magnetic problems. Its main advantage is that

only ferromagnetic regions have to be discretised, thus avoiding
to mesh the air as it happens in the finite element method
(FEM). VIM is known since 1970s but it wasn’t popular
because it leads to full matrices that are computationally expen-
sive. Nevertheless, the last decade it became more accessible
as a result of matrix compression algorithms such as the fast
multipole method [1], advanced integral formulations like [2]
and the enlargement of computers RAM memory.

The VIM performs well with a coarse mesh and it is very ac-
curate in the calculation of remote electromagnetic interactions,
for instance, when the magnetic flux through external coils is
needed. This flux calculation is central in the framework of
coupled field-circuit approaches where a distinction between
electrically conductive and non-conductive media is made.
Thus, it seems natural to implement the field-circuit coupling
with a VIM method to treat magnetic phenomena and a
classical circuit method to treat coils electrically coupled with
current or voltage sources or more complex lumped electric
elements.

This paper therefore presents an original extension of the
magnetostatic formulation [4] to a general time-stepping for-
mulation for nonlinear magnetic problems coupled with circuit
equations for external coils.

II. VIM TRANSIENT FORMULATION

Let us consider a problem composed of a non-conductive
and non-linear magnetic region Ωm surrounded by an air region
which includes circuit coils Ωb (Fig. 1). The circuit coils are
coupled with lumped elements such as current sources, voltage
sources or resistive circuit elements. For the magnetic field
part, Maxwell’s equations are considered and more precisely
the Maxwell Ampere equation written as:

H = −gradVm + Hb (1)

Fig. 1: Problem with a magnetic region and two circuit coils.

where H is the magnetic field intensity, Vm is the reduced
magnetic scalar potential and Hb is the magnetic field created
by the coils expressed as Hb =

∑
khbkIbk

where hbk
is the

magnetic field created by coil k with current 1A and Ibk
is the

current of coil k.
In this paper, the field formulation is based on [4]. We con-

sider the magnetostatic integral equation with the constitutive
relation H = ν(B)B and facet elements wi (Whitney 2-form
[5]) as interpolation functions for the magnetic induction B and
as Galerkin projection test functions. The resulting discretized
integral system reads:

RmΦ+PmΦ+ LmbIb = ∆Vm (2)

with

Rmij
=

∫
Ωm

wi·νwjdΩm, Lmbik
= −

∫
Ωm

wi·hbkdΩm,

Pmij
=

1

4π

∫
Γextj

1

si

(∫
Γtot

1

sj

δνj
r

dΓtot

)
dΓext,

where Φ is the magnetic flux flowing through each facet,
∆Vm is a vector containing the Vm difference between two
adjacent elements, ν is the reluctivity of the magnetic region,
δν is the reluctivity jump between two adjacent elements, r is
the distance between the integration point and the evaluation
point, n is the normal of a facet, Γtot is the ensemble of facets
of the problem and Γext refers only to the facets that are on



the boundary of the magnetic region. Pm is written using the
assumption of ν being constant per element, which is true in
case of simplex mesh elements such as tetrahedrons.

For the circuit coupling, an additional circuit relation for
each coil is needed, linking the magnetic flux, the current, the
internal resistance and the voltage [6]:

∆Vb = RbIb +
d

dt
LbIb + µ0

d

dt

∫
Ωm

hb · MdΩm (3)

where Rb is the diagonal resistance matrix of the coils,
Lb is the self and mutual inductance matrix of the coils in
the vacuum, µ0 is the vacuum permeability and M is the
magnetization, that can be expressed as M = (ν0 − ν)B.

Assembling the magnetic field and the circuit, the final
coupled matrix system reads:[

Rm + Pm Lmb
d
dtLbm Rb + d

dtLb

] {
Φ
Ib

}
=
{
∆Vm

∆Vb

}
(4)

where Lbmkj
= µ0

∫
Ωm

hbk
· (ν0 − νj)wjdΩm is a coupling

term. External circuit elements could be easily added to the
latter matrix system to consider external electrically coupled
current sources, voltage sources or other additional lumped
circuit elements.

III. RESOLUTION STRATEGY

The equivalent electric circuit system (4) is solved using
either Kirchoff’s mesh rule or Kirchoff’s node rule. This
procedure ensures the free divergence of B.

In practice, the resolution is carried out with a θ schema
time-stepping method with a imbricated Newton-Raphson (NR)
loop to solve the non linear term. In theory, the jacobian
matrices of the system have to be computed at each NR
iteration. To avoid the computation of the integral matrix
Pm at every time step, since the hypothesis of constant
reluctance per element is set, we can integrate the matrix
Qm = 1

4π

∫
Γextj

1
si
(
∫
Γtot

1
sj

1
rdΓtot)dΓext just once, which only

depends on the geometry and multiply it by δνj at each NR
iteration.

In order to speed the computations, a matrix compression
technique can be used, such as fast multiple method on matrix
Pm. A GMRES iterative solver is then considered and it is
accelerated with a LU type preconditioner on the finite element
matrix Rm.

IV. APPLICATION

The proposed formulation bas been applied to a current
transformer to validate its accuracy. The reference is the
solution obtained with a FEM commercial software with a
mesh that has converged.

The current transformer is composed of a magnetic region, a
primary coil and a secondary coil as Fig. 2 shows. The primary
coil has 1 turn and an imposed current of 300 sin(2πft) where
t is the time and f is the frequency, 50 Hz. The secondary
coil has 980 turns and it is connected to a resistance of 63
Ω. The simulation is done for three periods, therefore t ∈
[0, 0.06] seconds, with 50 time steps per period. The magnetic
region is non linear following an isotropic analytic saturation of

Fig. 2: Current transformer geometry.

arctangent type with two coefficients: µr =100 and saturation
magnetization = 1.2 T.

The converged mesh has 52,581 tetrahedral elements in the
magnetic part of the current transformer for VIM. For FEM,
the mesh of the magnetic part is similar and there are 261,863
additional elements in the air region.

Fig. 3: Current secondary coil for VIM and FEM.

Fig. 3 shows the current of the secondary coil for FEM for-
mulation and the developed formulation. The average relative
difference between the two methods is 0.36 % thus validating
the VIM developed.
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