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Decreasing Spherical Harmonic Functions (DSHF) provide a natural base for the magnetic scalar potential far enough from the
sources. This multipolar expansion orders the magnetic field according to its decreasing rate and spatial periodicity. Unfortunately,
this representation is not valid close to the sources. In this paper we will construct a basis for double-layer potential distributions
on a surface, as close to the sources as needed, which is valid next to the sources while exhibiting a multipolar expansion property.

Index Terms—Double-layer potential, multipolar expansion, near magnetic field computation, spherical Harmonic Functions.

I. INTRODUCTION

OUTSIDE any surface enclosing magnetic sources, if the
exterior volume is simply connected, the magnetic field

derives from a scalar potential ϕ that verifies Laplace equation
∆ϕ = 0. In spherical coordinates, far enough from the sources,
we can express this potential (and the associated field) in their
multipolar expansion using the Decreasing Spherical Harmonic
Functions (DSHF) [1]:

(1)ϕ(r, θ, φ) =

∞∑
k=1

k∑
m=−k

akmY m
k (θ, φ)/rk+1.

For a chosen center of expansion, the spherical harmonic
coefficients akm depend only on the source, Y m

k (θ, φ)/rk+1

being the DSHF of order k and degree m with the typical
spatial decreasing law 1/rk+1. Because of this decreasing law
any desired level of precision can be achieved at any distance
by truncation of the DSHF basis.

Due to its expression with only a few degrees of freedom,
this representation is commonly used to solve inverse problem
[2] or to get a compact model of complex sources in the context
of numerical methods coupling [3], [4].

However, this representation is only valid outside the Bril-
louin Sphere (BS), the smallest sphere which encloses all
sources [5]. As a consequence, the BS limits the use of the
DSHF representation when the field must be determined close
to sources that are located in a volume with a dimension
smaller or greater than the others [3], [4].

In this paper we propose a method to construct a basis of
distributions for double-layer potentials on an arbitrary surface
closer than the BS which produce a valid field inside the BS
while producing a field with similar decreasing property as the
DSHF outside the BS.

II. A MULTIPOLAR BASIS ON ARBITRARY SURFACES

A. Layer potentials

Let S be any arbitrary surface which encloses all the sources.
We can find a double-layer potential τ (equivalent to a normal
dipoles distribution) on this surface that produces the same
magnetic field (and scalar potential) outside the surface [1].

The scalar potential is then expressed at any exterior point
P using Green function’s normal derivative ∂nG, with:

(2)ϕ(P ) =

∫
M∈S

τ(M) ∂nG(P,M) dS

The Green’s function for any two points M and P in 3D is:

(3)G(P,M) =
1

4π

1

∥PM∥
.

B. Construction of the multipolar basis

From the harmonic decomposition of (2), we choose an
initial basis for the double-layer potential defined by the pro-
jection of the base of increasing spherical harmonic functions
on the surface S:

(4)τ0km(r, θ, φ) = rkY m
k (θ, φ)

If the surface S has some regularities, the family of distri-
bution τ0km remains a basis of the distributions for the double
layer potential [6].

This basis produces the same field as the DSHF in ([?]) if
S is a sphere, but has no noticeable multipolar properties in
other cases.

With this starting basis, we use the inner product defined in
[7]:

(5)⟨τ1|τ2⟩ =
∫
M∈S

σ[τ1](M)τ2(M)dS

Where σ[τ1] is the single-layer potential on the surface S
that produces the same field as τ1 outside of S.

Using the inner product (5) we orthonormalize the basis τ0km
to get the new the basis τkm using Gram-Schmidt method. The
distributions of τ0km are orthonormalized from the lowest order
k.

This orthonormalization process induces an orthogonality
property between the initial basis and the orthonormal one,
the distribution of the new orthonormal basis are orthogonal to
all the previous distributions of the initial basis.

As the spherical harmonic coefficients ak′m′ of the multi-
polar expansion of any distribution τkm are given by:

(6)ak′m′ =
〈
τ0k′m′ |τkm

〉
,

All the spherical harmonic coefficients ak′m′ of order k′

strictly lower than k are set to 0. Thus, the scalar magnetic



potential produced by the new ditribution τkm presents no
contribution of order strictly inferior to k, meaning that the
spatial decreasing law is at least 1/rk+1. This property is
illustrated in 2D on Fig 1, using the order k spatial periodicity
of the circular harmonic field.

Fig. 1. 2D spatial representation of a fourth order source vector (k = 4), field
lines (red) produced by the distribution on a non-circular surface S (blue),
before the orthonormalization (left) and after (right).

In the extended paper, further theoretical development on the
validity of this basis will be presented as well as another basis
for multipolar single-layer potential. Both multipolar bases
properties will be compared.

III. NUMERICAL APPLICATION

We consider a numerical model of a simplified ship hull
mock-up, with one dimension higher than the others (4.4 m×
0.65 m × 0.6 m). The magnetic hull, placed in a low uniform
vertical field (−15.92 A/m), is magnetized and produces its
own field in the surroundings (magnetic anomaly).

We enclose the mock-up in a box (4.5 m× 0.75 m× 0.7 m)
which defines the surface S where the double-layer potential is
located. The expected distribution (or reference distribution),
shown in figure 2, can be determined using (2) on the surface
S. We will then project this expected equivalent double-layer
potential of the anomaly on the new layer harmonics basis.

Fig. 2. Mock-up and visualisation of the reference distribution for double-
layer potential on the box.

The box is meshed with 2400 quadrangles (2402 nodes) so
the reference distribution is represented with 2401 degrees of
freedom by linear nodal shape functions. For the multipolar
basis the number of degrees of freedom is K(K + 2) with

K the order for the truncation, here the maximum amount of
degrees of freedom is 168 (K = 12).

For the results, the relative error presented is the absolute
difference between the module of the field produced by the
reference distribution and the one produced by the layer
harmonic truncated basis, divided by the maximum (on the
computation surface) of the module of the field produced by
the reference distribution.

A. Results outside the Brillouin Sphere
We compute the field produced by the layer harmonics on a

sphere of radius 12.5 m. As expected, only the lowest orders
are needed to correctly describe the field. In particular, the
first order of the surface bases reconstructs the field with an
error lower than 3%, with the associated decreasing law of a
magnetic dipole.

B. Results inside the Brillouin Sphere
We compute the field produced by the layer harmonics on

a rectangle of dimensions 2 m × 7 m along x and y axis and
located 1 m below the box. Results (Table I) show that the
field close to the mockup, inside the BS, is obtained with a
precision lower than 1% with a maximum truncation order for
the surface basis, superior or equal to 8. This means that only
80 layer harmonic coefficients must be determined to describe
the field so close to the mock-up, which is very convenient for
a future purpose of identification of these terms by solving an
inverse problem from close field measurements.

TABLE I
MAXIMUM RELATIVE ERROR ON THE PLANE INSIDE THE BS AGAINST THE

MAXIMUM ORDER OF TRUNCATION

Order for the
truncation

maximum relative
error (%)

Order for the
truncation

maximum relative
error (%)

1 22.6 7 1.6
2 16.3 8 0.8
3 8.5 9 0.9
4 6.3 10 0.8
5 5.4 11 0.6
6 3.9 12 0.4
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