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2LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France

3Altair Engineering, Meylan, France

Domain decomposition is a strategy designed to be used on parallel machines. This strategy leads to hybrid methods between
direct and iterative solvers and allows users to benefit from the advantages of both. Lately, the growing size of simulations in
electromagnetics brought to light the interest of using domain decomposition. Nonlinearity is also one of the problems specificities
where the need for an efficient solver is high. This paper provides a comparison between two techniques of domain decomposition
for solving 3D nonlinear magnetostatic problems. A test case illustrates the results that can be expected.
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I. INTRODUCTION

DOMAIN decomposition is a strategy that seeks to decom-
pose the problem into subdomains in order to be able

to process them independently by relying on parallelization.
Each subdomain will thus have its own local system to solve
and will rely on solving methods adapted to its specificities
(size, matrix properties...). For the case of nonlinear problems,
most of the time, the nonlinearity is localized. This enables
the domain decomposition method to distribute the workload
resulting from the nonlinearity on some subdomains and have
linear subdomains, where no need to calculate the tangent
operator at each Newton-Raphson step. Hence, a local non-
linear solution can be performed on smaller problems instead
of solving a much bigger global problem, while executing the
full simulation in parallel. The originality of this paper is to
provide a comparison between two non-overlapping domain
decomposition techniques developed initially to treat nonlinear
mechanics simulations. This paper details the implementation
of these methods and shows an application of its use on a 3D
contactor with nonlinear ferromagnetic materials.

II. PROBLEM DESCRIPTION

A 3D magnetostatic problem using a scalar potential for-
mulation will be considered in the reminder of this paper [1].
Using the finite element method, for a domain Ω with a magnet
as source, ferromagnetic materials and the device surrounded
by air, the system to be solved is written as

K(u)u = b(u), (1)

where
• K(u) is the finite element matrix of the magnetic scalar

potential formulation,
• u contains the values of the scalar potential at each node

of the mesh,
• b(u) is the source vector.

The Newton-Raphson iterative method is usually considered
to solve (1). This method consists of computing the tangent

matrix DK as well as the residual ru at every iteration n and
solving successive linear systems of the form

DK(un)δun = −ru(un). (2)

The residual is given by ru(u
n) = K(un)un − b(un).

III. DOMAIN DECOMPOSITION

For this study, we consider non-overlapping domain decom-
position methods. They are caracterized by the absence of a
shared surface (2D) or volume (3D) connecting neighboring
subdomains [2]. This choice was motivated by the parallel
computing capabilities that it offers.

A. FETI : Finite Element Tearing and Inteconnecting

This method was introduced by Farhat and Roux in 1991
[3]. The domain is decomposed into subdomains and each
subdomain is processed independently on a processor. The
subdomain problems are usually solved by a direct solver,
while an iterative method enables to solve a global problem
condensed on the interface between subdomains. With the use
of a proper preconditionner, it has been shown that the FETI
method is optimal for a scalar diffusion problem[4].

If the domain Ω is decomposed into Nsd subdomains, on a
subdomain s, a Poisson type problem has to be solved

(3)Ksus = bs +Bt
sλ,

where Ks, us, and bs are respectively matrix, solution and
right-hand-side relative to subdomain s, Bs is the signed
Boolean matrice that extract from the vector us its signed
restriction to the subdomain interface shared with its neighbors
(opposite signs between two neighboring subdomains) and
λ is the Lagrange multiplier vector required to enforce the
continuity conditions (4) for all couples of neighbors,

(4)
Nsd∑
s=1

Bsus = 0.



Floating subdomains need also to be defined. They are subdo-
mains without Dirichlet-type boundary conditions: the pseudo
inverse matrix K+ is then used instead of the inverse K−1.
The bases of the kernel of each matrix Ks are concatenated in
the rigid body mode matrix R. For a scalar problem the kernel
of Ks is at most of dimension 1. Ri is the restriction of R on
the interface. The problem condensed on the global interface
between subdomains can then be written as

(5)
(

F i Ri

(Ri)t 0

)(
λ
α

)
=

−
Nsd∑
s=1

BsK
+
s bs

Rtb

 ,

where α is of size the number of floating subdomains and

(6)F i =

Nsd∑
s=1

BsK
+
s Bt

s.

B. Newton-Krylov-Schur methods

The Newton-Krylov-Schur (NKS) methods can be imple-
mented straightforwardly: at each Newton-Raphson iteration,
the FETI method is considered to solve the tangent linear
system (2). As in FETI, the Schur complement in NKS
describes the interface problem. The global problem is never
assembled and the residual computation is partitioned on the
subdomains [5].

C. Schur-Newton-Krylov

The Schur-Newton-Krylov (SNK) methods were developed
based on the observation that NKS methods do not take advan-
tage of domain decomposition to solve the nonlinear problem,
but only to solve the resulting tangent linear systems. In SNK
methods the global nonlinear problem is decomposed into
small nonlinear problems with continuity conditions imposed
on the interface unknowns across the subdomains, resulting in
a condensed nonlinear interface problem with tangent system

(7)
(
DF i Ri

(Ri)t 0

)(
δλ
δα

)
=

(
−rλ
0

)
.

Problem (7), just as (6), is solved using a preconditioned
conjugate projected gradient (PCPG) algorithm as in [3]. The
algorithm of SNK methods is summarized in Algorithm 1.

IV. APPLICATION

Both NKS and SNK algorithms have been implemented in
Altair FluxTM software [6]. They have been tested and com-
pared to the standard Newton-Raphson method commonly used
for this type of simulations. The linear solver used in Newton
Raphson by default is a direct solver (LU factorisation). The
test case is illustrated in Fig. 1 and represents a 3D magnetic
contactor. It was decomposed into 4 subdomains: 1 air (linear),
2 upper pallet (nonlinear), 3 magnet (linear) and 4 E shape
(nonlinear). The size of the test case is 2432 nodes.

Table I sums up the results. An adaptive convergence criteria
has been used to obtain less PCPG iterations with a Dirichlet
preconditioner [4]. The project was solved using 4 cores.

Algorithm 1 SNK with FETI algorithm
Require: n = 1, λ0 = Ri(RitRi)−1Rtb

while ∥δλn∥/∥λn∥≤ tolg do
Ks(u

n
s ) = bs(u

n
s )−Bt

sλ
n
s ▷ Solve local NL problems

p = 1;un1

s = (Ri)tαn
s

while δu ≤ tolNR do
Solve DKs(u

np

s )δpu = bps(u
np

s )−Bt
sλ

n
s

unp+1

s ← unp

s + δpu
p← p+ 1

end while
rnλ ←

∑Nsd

s=1 Bsu
n
s ▷ Compute residual

Solve FETI interface problem with PCPG
λn+1 ← λn + δλn

αn+1 ← αn + ((Ri)tRi)−1(Ri)t(−DF i(λn)δλn − rnλ)
n← n+ 1

end while

Fig. 1. Contactor test case with nonlinear materials.

TABLE I
RESULTS COMPARISON FOR THE CONTACTOR TEST CASE

Item NR NKS SNK
Max local NL iterations / / 5
Global NL iterations 6 6 7
Speedup 1 1.3 0.4
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problèmes symétriques définis positifs,” PhD thesis. Paris 6, 2014.

[3] C. Farhat, and F. X. Roux, “A method of finite element tearing and
interconnecting and its parallel solution algorithm,” International journal
for numerical methods in engineering 32 (1991), pp. 1205–1227.

[4] C. Farhat, J. Mandel, and F. X. Roux, “Optimal convergence properties of
the FETI domain decomposition method,” Computer methods in applied
mechanics and engineering 115 (1994), pp. 365–385.

[5] J. Pebrel, C. Rey, and P. Gosselet, “A nonlinear dual-domain decompo-
sition method: Application to structural problems with damage,” Interna-
tional Journal for Multiscale Computational Engineering 6.3 (2008).

[6] Altair Engineering, “Altair FluxTM,” https://www.altair.com/flux.


	Introduction
	Problem description
	Domain decomposition
	FETI : Finite Element Tearing and Inteconnecting
	Newton-Krylov-Schur methods
	Schur-Newton-Krylov

	Application
	References

