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Computational strategies improvements for the inductive and capacitive unstructured PEEC formulation are presented in order to 
address efficiently a large frequency range of electromagnetic problems. Good accuracy on results is ensured thanks to the use of an 
adaptive Gauss integration procedure while multi-threaded Adpatative Multi Level Fast Multipole Method (AMLFMM) matrix 
compression algorithm allows to speed-up far interactions computation. This article focuses on the following two points: on the one hand, 
allowing good convergence for iterative linear systems at any frequency by the choice of an efficient preconditioner coupled with a 
suitable PEEC circuit solver and, on the other hand, the use of Model Order Reduction (MOR) techniques for solving multi frequency 
problems, allowing fast computing time. An example illustrates the performances of these approaches. 
 

Index Terms—Electromagnetic problem, Unstructured Partial Element Equivalent Circuit method, State circuit solver, Model Order 
Reduction. 

I. INTRODUCTION 

HE Partial Element Equivalent Circuit (PEEC) method has 
been shown to be well suited for the analysis of many 

electromagnetic devices, such as busbars, PCBs, integrated 
circuit interconnects, packaging and others [1]. Since the PEEC 
method is an integral volume method, it is not necessary to 
mesh the air surrounding the conductive parts. Furthermore, an 
unstructured PEEC method has been developed [2], [3], 
removing the limitation of simple geometries, thus allowing the 
modeling a wider range of applications. The major drawback of 
full matrix of interactions has been overcome thanks to efficient 
matrix compression algorithms like AMLFMM. Moreover, 
accurately integration of the interactions using adaptive and 
efficient strategies has been developed [4]. 

In this paper, inductive and capacitive unstructured PEEC 
formulation is considered (the propagation phenomena are 
neglected), by using compression technics and adaptive 
integration. But a challenge remains in term of performance 
computing when a large range of computation have to be done, 
for instance to obtain impedance matrix representation of an 
electromagnetic system on a wide frequency range. To 
overcome these difficulties, this work proposes the use of 
circuit state solvers to achieve two objectives:  

- obtain good convergence of large iterative linear systems at 
any frequency, 

- use of Model Order Reduction when solving a multi-
frequency problem, allowing fast computation time. 

II. UNSTRUCTURED PEEC FORMULATION 

We consider a set of massive conductive volume regions. 
From Maxwell equations and with the use of Lorentz gauge, the 
electric field E can be expressed with integrals depending of the 
current density J [5]. By discretizing the region with a finite 
element mesh and interpolating J with facet elements (Whitney 
2-form [4]) the problem, for frequency f, can then be 

represented as an equivalent electric circuit, whose nodes and 
branches are coming from the dual mesh [3]: 
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with ω = 2пf. R is a resistive sparse finite element matrix, L 

an inductive integral matrix and P an elastance (inverse of 
capacitance) integral matrix. I represents the branch currents 
and ∆V the potential differences on these same branches. The 
capacitive branches that connect the outer faces of the domain 
to infinity are distinct from the R+L branches coming from the 
conductive regions. Note that integral matrices L and P are not 
depending of the frequency, which allows to integrate them only 
one time when solving multi-frequency problem. 

III. CIRCUIT SOLVER AND PRECONDITIONING 

Voltage sources 𝑈௦௨  or current sources 𝐼௦௜ as well as passive 
external resistances, inductances and capacitances components 
can be easily connect to the previous circuit and complete 
previous R, L and P matrices. Then the global circuit can be 
solved by using a standard circuit solver, based on independent 
loops or independent nodes technics. In this work we have 
developed circuit solvers based on a state representation, where 
the system of equations comes in the generic form: 

 
                     ൣ𝑗𝜔[𝐸] + [𝐴]൧{𝑥} = [𝐵]{𝑢}                              (2) 

 
Where {𝑢} is an input source vector, in our case composed with 
the voltage sources 𝑈௦௨  and current sources 𝐼௦௜. An advantage is 
that there is no term multiplied by 1/jω and this can be useful 
for better convergence at any frequency. A nodal state solver, 
which uses the nodal potential V and a node-branch matrix of 
incidence N such that Nt.{V}= {ΔV} can be written as: 
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𝑁ோ௅ , 𝑁௉ , 𝑁௎ , 𝑁ூ  are partial incidence matrices respectively 

for conductive region branches, capacitive branches, voltage 
sources branches and current source branches. 𝐼ோ௅ , 𝐼௉ , 𝐼௦௨ , 𝐼௦௜   
are the corresponding branch currents. Similar system of 
equations using incidence mesh-branches matrices can be built 
for an independent loops state solver. 

Our preconditioning strategy consist to find approximate 
sparse matrices for [𝐴]  and [𝐸]  and to process LU 
decomposition on the sparse global matrix 𝑗𝜔ൣ𝐸௦௣௔௥௦௘൧ +

ൣ𝐴௦௣௔௥௦௘൧ for each frequency of solving. In practice we keep the 
sparse finite element matrix R or its diagonal and conserve all 
sparse incidence matrices. For integral matrices L and P, two 
strategies can be applied : keep diagonal terms or get near-
interactions terms coming from compression algorithm. This 
last approach allows to reduce the number of iterations, but can 
lead to prohibitive time computation for LU decomposition in 
presence of large systems.  

Finally, the use of preconditioned state solvers makes it 
possible to obtain a reduced number of iterations compared to 
standard circuit solvers, in particular when taking account of 
capacitive effects at low frequencies. 

IV. MODEL ORDER REDUCTION (MOR) 

Since the circuit solver is written as a state system, the global 
system of equations can be represented in a reduced state form 
[6]. For this, in addition to the matrices [𝐴][𝐸][𝐵] and the 
source vector {𝑢}, we have to define an output vector {𝑦} and 
build a matrix [𝐶] relying this output to the unknowns of the 
system such as {𝑦} = [𝐶] {𝑥}. In our case, the output vector {𝑦} 
is composed with the currents of voltage sources 𝐼௦௨  and the 
voltages of the current sources 𝑈௦௜. The model order reduction 
algorithm allows building a reduced state system 
[𝐴௥], [𝐸௥], [𝐵௥], [𝐶௥]  which can be obtained by solving the 
global system on a adapted number of frequencies [6]. The size 
of the reduced system is depending of the number of sources 
but remains small in comparison with the initial system. Its 
resolution allows the computation of output quantities {𝑦} for a 
large number of frequencies almost instantaneously, by solving 
the reduced system: 

 
 ൣ𝑗𝜔[𝐸௥] + [𝐴௥]൧{𝑥௥} = [𝐵௥]{𝑢}    {𝑦} = [𝐶௥] {𝑥௥}           (3) 

V. EXAMPLE 

We consider two volumic conductors fed by sources voltage 
(Figure 1), with capacitances circuit add in serie on the two 
sources, in order to create some resonances. Conductive regions 
are meshed with 35 000 tetrahedra. Simulations have been 
made on 100 frequencies between 100 Hz et 10 kHz. An 
iterative GMRES solver preconditioned with the diagonals of 
the integral matrices is used. The average number of iterations 
for solving the 100 linear systems is about 12 for a nodal state 

independent approach (97 000 unknowns). The use of Model 
Order Reduction needs the solving of 6 linear systems for build 
a reduced system with 8 unknowns. Figure 2 compare the real 
and imaginary current flowing in one of the two sources and 
shows that the two simulation results are very closed, the 
relative difference of current being <0.5% for all frequencies. 
Table I compares the simulation times of the two approaches.  

 

 
 

Fig. 1. Problem solve with 100 frequencies from 100Hz to 10KHz. 
 

 
Fig. 2. Current in source comparison: with or without Order Reduction (OR) 
 

TABLE I 
COMPUTATION PERFORMANCES FOR SOLVING 100 FREQUENCIES 

 Integration 
time 

Number of 
linear systems 

solved 

Linear 
systems 

total time 

Precond LU 
decomposition 

total time   
standard 140 s 100 1250 s 102 s 

MOR 140 s 6 + 100 reduced 149 s 7 s 
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