
HAL Id: hal-04116728
https://cnrs.hal.science/hal-04116728v1

Submitted on 5 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact spatial correlations in single-file diffusion
Aurélien Grabsch, Pierre Rizkallah, Alexis Poncet, Pierre Illien, Olivier

Bénichou

To cite this version:
Aurélien Grabsch, Pierre Rizkallah, Alexis Poncet, Pierre Illien, Olivier Bénichou. Exact spatial
correlations in single-file diffusion. Physical Review E , 2023, 107 (4), pp.044131. �10.1103/Phys-
RevE.107.044131�. �hal-04116728�

https://cnrs.hal.science/hal-04116728v1
https://hal.archives-ouvertes.fr


Exact spatial correlations in single-file diffusion
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Single-file diffusion refers to the motion of diffusive particles in narrow channels, so that they
cannot bypass each other. This constraint leads to the subdiffusion of a tagged particle, called the
tracer. This anomalous behaviour results from the strong correlations that arise in this geometry
between the tracer and the surrounding bath particles. Despite their importance, these bath-tracer
correlations have long remained elusive, because their determination is a complex many-body problem.
Recently, we have shown that, for several paradigmatic models of single-file diffusion such as the
Simple Exclusion Process, these bath-tracer correlations obey a simple exact closed equation. In this
paper, we provide the full derivation of this equation, as well as an extension to another model of
single-file transport: the double exclusion process. We also make the connection between our results
and the ones obtained very recently by several other groups, and which rely on the exact solution of
different models obtained by the inverse scattering method.
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I. INTRODUCTION

Single-file diffusion refers to the dynamics of diffusive
particles in narrow channels with the constraint that they
cannot bypass each other. It is a fundamental model
for the subdiffusion of a tagged particle, a tracer, in a
confined environment [1, 2]. Indeed, the constraint that
the particles must remain in the same order at all times
leads to a subdiffusive behaviour of the position Xt of
the tracer at time t,

〈
X2
t

〉
∝

√
t [3], in contrast with the

normal diffusion of an isolated particle
〈
X2
t

〉
∝ t. This

prediction has been observed experimentally, at different
scales, from the motion of molecules in zeolites to the
dynamics of colloids in narrow trenches [4–6].
A central model in the study of single-file diffusion is

the Symmetric Exclusion Process (SEP). It is a model
of particles on a one-dimensional infinite lattice, which
perform symmetric random walks in continuous time,
with the constraint that each site can host at most one
particle, corresponding to a hard-core repulsion between
the particles. In this article, we will consider that, at
t = 0, each site is filled independently with probability ρ
(annealed initial condition). Beyond modelling single-file
diffusion, the SEP has become a paradigmatic model of
statistical physics, which has been the focus of numerous
works, both in the physical and mathematical literature
(see for instance Refs. [1, 2, 7, 8]). An important progress
has been achieved a few years ago with the computation
of the large deviation function of the position Xt of a
tracer [9, 10], which fully characterises the distribution of
Xt in the large time limit. This function gives access to
the large time behaviour of the cumulants of the position
of the tracer, which all display an anomalous behaviour in√
t [9, 11]. Similarly, the cumulants of an other observable,

the time integrated current through the origin Qt, have
been computed and all display the same anomalous scaling
in

√
t.

These anomalous behaviours in the SEP come from
the strong spatial correlations which arise in the single-
file geometry, due to the constraint that the particles
cannot bypass each other. These correlations are thus
fundamental quantities to analyse single-file diffusion.
Although this fact is well recognised, the determination
of these bath-tracer correlations has long remained an
open question, because they obey an infinite hierarchy
of equations, as usual in many-body problems. These
correlations have first been determined in the high and
low density limits of the SEP [12]. Recently, we have
solved this problem by finding a strikingly simple exact
closed equation satisfied by these bath-tracer correlations,
at any density [13]. We further argued that this equation
plays a central role in single-file diffusion by showing that
it also holds in out-of-equilibrium situations, and applies
to other observables like currents and other models of
single-file systems than the SEP [13].

In this article, we provide the full derivation of this key
equation for the bath-tracer correlation profiles. We also
make the connection between our results and the ones

FIG. 1. The Symmetric Exclusion Process (SEP) with
a tracer (in blue). Each particle can hop, in either direction,
with rate 1

2
, only if the neighbouring site in that direction is

empty. We denote Xt the position of the tracer at time t, and
ηr = 0 or 1 the occupation of the site r by the bath particles
(in gray).

obtained recently by other groups [14–17], which rely
on a different approach based on the inverse scattering
technique [18], and show, in fact, the very same equation
appears also in these papers, but in a different form.
Finally, we determine the bath-tracer correlations for
another model of single-file diffusion, the double exclusion
process, using a mapping between this model and the
SEP [19], giving an extra example which further confirms
the ubiquity of this equation.

The paper is organised as follows: in Section II we in-
troduce the notations and the observables. In Section III
we derive the microscopic equations for the SEP and then
deduce the hydrodynamic version of these equations, valid
in the limit of large time and large distances. We then
discuss limiting cases in Section IV before presenting in
Section V the approach that led us to the closed equation
for the bath-tracer correlations in the SEP, and the com-
putation of these correlations from this equation. We then
discuss extensions of this equation to other observables
and out-of-equilibrium situations in Section VI and to
other models than the SEP in Section VII. We finally
show that the same equation arises in various contexts
studied recently using the inverse scattering method in
Section VIII.

II. DEFINITIONS AND OBSERVABLES

We consider the SEP on a 1D infinite lattice. Initially
each site is filled independently with probability ρ ∈ [0, 1],
which is the mean density of the system, except the origin
which is always occupied by a particle, which we call the
tracer. We denote Xt the position of the tracer at time
t, with X0 = 0. The other particles are described by
a set of occupation numbers {ηi(t)}i∈Z, with ηi(t) = 1
if site i is occupied at time t and 0 otherwise. We use
the convention that the tracer is not a bath particle, so
ηXt(t) = 0 since the site occupied by the tracer cannot
host a bath particle due to the exclusion rule.

The statistical properties of the position of the tracer
are encoded in the cumulant generating function

ψ(λ, t) ≡ ln
〈
eλXt

〉
, (1)
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whose expansion in powers of λ give the cumulants κn(t),

ψ(λ, t) =

∞∑
n=1

λn

n!
κn(t) . (2)

To quantify the bath-tracer correlations, we consider the
joint cumulant generating function of the position Xt

of the tracer and of the the occupation ηXt+r(t) of the
site located at a distance r from the tracer. Since the
occupation numbers ηXt+r can only take values 0 and 1,
we can write this joint cumulant generating function as

ln
〈
eλXt+χηXt+r

〉
= ψ(λ, t) + ln (1 + (eχ − 1)wr(λ, t)) ,

(3)
where we have introduced

wr(λ, t) ≡
⟨ηXt+r(t) e

λXt⟩
⟨eλXt⟩

. (4)

The functions ψ and wr(λ, t) fully characterise the joint
cumulant generating function of (Xt, ηXt+r(t)). We call
wr(t) the generalised density profiles generating function,
since its expansion in powers of λ yields all the joint
cumulants ⟨Xn

t ηXt+r(t)⟩c between Xt and ηXt+r,

wr(λ, t) =

∞∑
n=0

λn

n!
⟨Xn

t ηXt+r(t)⟩c , (5)

which encode all the bath-tracer correlation functions.
For instance, for n = 1, ⟨XtηXt+r(t)⟩c reads

⟨XtηXt+r⟩ − ⟨Xt⟩ ⟨ηXt+r⟩ = Cov(Xt, ηXt+r) , (6)

which is the covariance between the position of the tracer
and the density of bath particles at a distance r from it.

We will show that, in the large time and large distance
limit, the density profiles wr can be determined from a
simple closed integral equation.

III. HYDRODYNAMIC LIMIT OF THE SEP
FROM THE MASTER EQUATION

A. Microscopic equations

Our starting point to derive the hydrodynamic equa-
tions for the profiles wr in the SEP is the master equa-
tion, which describes the time evolution of the probability
Pt(X, η) to observe the configuration {X, η} at time t. It
verifies

∂tPt(X, η) =
1

2

∑
r ̸=X,X−1

[
Pt(X, η

r,+)− Pt(X, η)
]

+
1

2

∑
µ=±1

{
(1− ηX)Pt(X − µ, η)− (1− ηX+µ)Pt(X, η)

}
,

(7)

where ηr,+ is the configuration η in which the occupations
of sites r and r + 1 are exchanged. In (7), the first sum

corresponds to the jumps of the bath particles, while the
second one describes the displacement of the tracer.
From this equation, we compute the time evolution

of any observable expressed in terms of the position X
and the occupations η. For instance, taking the time
derivative of the cumulant generating function (1), we
obtain

dψ

dt
=

1

⟨eλXt⟩
∑
X

∑
η

eλX∂tPt(X, η)

=
1

2

[
(eλ − 1)(1− w1) + (e−λ − 1)(1− w−1)

]
. (8)

For the GDP-generating function, we must treat sepa-
rately the cases r = ±1 and r ̸= ±1 due to the presence
of the tracer on a neighbouring site in the former case.
Combining the definition (4) with the master equation (7),
we obtain for r ̸= ±1,

∂twr =
1

2
∆wr

+
1

2

∑
µ=±1

(
eµλCµ,r+µ − Cµ,r − (eµλ − 1)(1− wµ)wr

)
,

(9)

where we have denoted ∆ur = ur+1 − 2ur + ur−1 the
discrete Laplacian and introduced the higher order corre-
lation functions

Cµ,r ≡
〈
ηXt+r(1− ηXt+µ)e

λXt
〉

⟨eλXt⟩
. (10)

Similarly, for r = ν = ±1, we obtain

∂twν =
1

2
∇νwν + eµλCν,2ν − C−ν,ν

− (e−νλ − 1)(1− w−ν)wν , (11)

where we have denoted ∇µur = ur+µ − ur the discrete
gradients. The equations (9,11) are not closed: they
involve the higher order correlations Cµ,r. In fact, we
are facing an infinite hierarchy of equations. This is
standard for many-body systems, and it constitutes the
main obstacle to get exact analytical results. Before
tackling this issue, let us first rewrite these equations
in a more convenient form. We introduce the “modified
centered correlations”,

fµ,r(λ, t) ≡ Cµ,r −

{
(1− wµ)wr−µ if µr > 0 ,

(1− wµ)wr if µr < 0 ,
(12)

which allow us to rewrite the equations (9,11) for the time
evolution of the GDP-generating function in the compact
form

∂twr =
1

2
∆wr −Bν∇−νwr +

1

2

∑
µ=±1

(
eµλfµ,r+µ − fµ,r

)
,

(13)
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for r ̸= ±1, and

∂tw±1 =
1

2
∇±w±1 +B±w±1 +

1

2

(
e±λf±1,±2 − f∓1,±1

)
.

(14)
We have denoted ν the sign of r, and

B± =
∂tψ

e±λ − 1
. (15)

We have introduced the functions fµ,r because of the
scaling with space and time of this function, discussed
below.

Finally, the GDP-generating function verifies

lim
r→±∞

wr = ρ , (16)

because the density of bath particles far away from the
tracer is not affected by the displacement of the tracer.
Having derived the microscopic equations from the master
equation of the SEP, we now turn to the hydrodynamic
description of these quantities.

B. Hydrodynamic limit at large times

At large time t, all the cumulants of the tracer present
an anomalous

√
t scaling [9, 10], leading us to define

ψ̂(λ) = lim
t→∞

ψ(λ, t)√
2t

, ψ̂(λ) =
∑
n≥1

κ̂n
λn

n!
, (17)

where κ̂n is the nth cumulant of the tracer’s position
(rescaled by

√
2t). We also need the large t scaling of the

GDP-generating function (4). Relying on observations
based on numerical simulations (see Fig. 2), we found
that they satisfy a diffusive scaling

wr(λ, t) ∼
t→∞

Φ

(
v =

r√
2t
, λ

)
, Φ(v, λ) =

∑
n≥1

Φn(v)
λn

n!
.

(18)
In addition, we will see below that this scaling form
is compatible with the known scaling of the cumulant
generating function (17). Finally, we also need the scaling
of the higher order correlation functions fµ,r (12) which
appear in the time evolution of the GDP-generating func-
tions (13,14). Relying again on numerical observations,
we infer the scaling form

fµ,r(λ, t) =
1√
2t
Fµ

(
v =

r√
2t
, λ

)
+

1

2t
Gµ

(
v =

r√
2t
, λ

)
+O(t−3/2) . (19)

As we will see below, the leading order Fµ of these corre-
lations will not be sufficient to write the long-time limit of
the bulk equation (13), we will also need the corrections
Gµ. In the following, we will drop the dependence on λ
of Φ, Fµ and Gµ for simplicity.

0 20 40 60
r

0.00
0.05
0.10
0.15
0.20
0.25

X t
X t

+
r(t

)

(a)
t = 30
t = 100
t = 300
t = 1000

0.0 0.5 1.0 1.5 2.0 2.5 3.0
r/ 2t

0.00
0.05
0.10
0.15
0.20
0.25

X t
X t

+
r(t

)

(b)
t = 30
t = 100
t = 300
t = 1000

FIG. 2. First order in λ of wr(λ, t) = ρ+ λ ⟨ηXt+r(t)Xt⟩+
O(λ2) obtained by numerical simulations of the SEP (see
Appendix B) performed on a lattice with 5000 sites and 2500
particles, at different times t = 30, t = 100, t = 300 and
t = 1000. (a) wr(λ, t) represented as a function of r. We
see that the correlations spread with time. (b) wr(λ, t) as a
function of the scaling variable r/

√
2t. The collapse of the

curves supports the scaling form (18). The same collapse holds
for higher orders in λ of wr, and for the functions fµ,r (19).

Having written the scalings at large time of all the
functions of interest, we can now turn to the derivation
of the hydrodynamic equations for the SEP. We first
straightforwardly obtain the boundary conditions at ±∞
for Φ from (16), which read

lim
v→±∞

Φ(v) = ρ . (20)

Next, we consider the equation for the cumulant generat-
ing function ψ (8). Since ψ has the anomalous scaling (17),
the l.h.s. of Eq. (8) behaves as 1/

√
t. This implies that

the r.h.s. must also vanish at order 0 in t, yielding

(eλ − 1)(1− Φ(0+)) + (e−λ − 1)(1− Φ(0−)) = 0 , (21)

which we can rewrite as

1− Φ(0−)

1− Φ(0+)
= eλ . (22)

This yields a first equation, valid in the hydrodynamic
limit, relating the values of the scaling function Φ on both
sides of the tracer. Note that corrections to the r.h.s. of
Eq. (8) must be of order 1/

√
t because ψ ∝

√
t, which is

compatible with the scaling form (18) of wr.
We now examine the bulk equation (13), describing the

time evolution of wr. Considering r of order
√
t, we get

for the l.h.s. ∂twr = vΦ′(v)/(2t) with v = r/
√
2t. On the

other hand, for the r.h.s. we first get a contribution at
order t−1/2 which must therefore vanish, and thus leads
to

(eλ − 1)F1(v) + (e−λ − 1)F−1(v) = 0 . (23)

Writing Eq. (13) at order t−1, we get

Φ′′(v) + 2

(
v +

νψ̂

eνλ − 1

)
Φ′(v) + C(v) = 0 , (24)

where ν = sign(v) and we have defined

C(v) = (eλ − 1)F ′
1(v) +

∑
µ=±1

(eµλ − 1)Gµ(v) . (25)
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Let us turn to Eq. (14) for the time evolution of w±1.
Due to the scaling form (18), the l.h.s. behaves as t−3/2.
However, the r.h.s. is of order t−1/2, which yields

0 =
1

2
Φ′(0±)+

ψ̂

e±λ − 1
Φ(0±)+

1

2

(
e±λF±1(0

±)− F∓1(0
±)
)
.

(26)
Using the relation between F1 and F−1 (23) derived pre-
viously, we get that the last term of the previous equation
vanishes, so that we obtain

Φ′(0±)± 2ψ̂

e±λ − 1
Φ(0±) = 0 . (27)

We stress that, although the microscopic equation (14)
involves the higher order correlations fµ,r, its hydrody-
namic version (27) is closed: it involves only the functions

ψ̂ and Φ of interest. Therefore, in this limit, only the bulk
equation (24) is not closed since it involves the unknown
functions Fµ and Gµ which describe higher order correla-
tion functions. Our main goal now is to find a closed bulk
equation, that would allow to break the infinite hierarchy
and compute the profile Φ.

IV. LIMITING CASES

In this Section, we consider limiting cases in which
the bulk equation (24) can be closed more easily than in
the general case, and can thus be solved for the scaling
function Φ of the GDP-generating function.
The results presented have been previously published

in Ref. [12]. We reproduce them here for completeness,
as they form the starting point of our discussion in Sec-
tion VA, and provide details on their derivation.

A. First order in λ

At lowest order in λ, the correlations fµ,r (12) take the
form

fµ,r = ⟨ηXt+r(1− ηXt+µ)⟩ − ρ(1− ρ) +O(λ) , (28)

where we have used that ⟨ηr⟩ = ρ. Since, at equilibrium,
the occupation numbers of the SEP are independent [20],
we thus have that fµ,r = O(λ). In the long time limit, this
implies for the scaling form (19) that Fµ(v) = O(λ) and
Gµ(v) = O(λ). Consequently, we find that the unknown
function C(v) = O(λ2) due to the definition (25). This
implies that the bulk equation for Φ1 is closed, and can
be written as

Φ′′
1(v) + 2vΦ′

1(v) = 0 . (29)

The solution on the two domains R± is Φ1(v) =
a± erfc(±v) for v ≷ 0, where we have used the condi-
tion Φ1(±∞) = 0 deduced from (20). We determine the

integration constants a± by using the boundary condi-
tions (27) at first order in λ,

Φ′
1(v) + κ̂2ρ = 0 ⇒ a± = ±

√
π

2
κ̂2ρ . (30)

The second cumulant κ̂2 is determined by writing Eq. (22)
at first order in λ, from which we recover the well-known
expression [2]

κ̂2 =
1− ρ

ρ
√
π
, (31)

and therefore

Φ1(v) = sign(v)
1− ρ

2
erfc(|v|) . (32)

This expression, obtained in [12], gives the large time
behaviour of the correlation function ⟨XtηXt+r⟩ −
⟨ηXt+r⟩ ⟨Xt⟩ ≡ Cov(Xt, ηXt+r), with v = r/

√
2t, in the

SEP, at arbitrary density ρ.

B. Dense limit

We now consider the high density limit ρ→ 1. In this
case, both the cumulants and the shifted GDP-generating
function Φ(v) − ρ scale as 1 − ρ (see for instance (31)
and (32) for the scaling at lowest order in λ). This leads
us to define

Φ̌(v) = lim
ρ→1

Φ(v)− ρ

1− ρ
. (33)

The unknown function C(v) (25) is defined from higher
order correlation functions, which involve product of oc-
cupation numbers at different sites. It is thus of order
(1 − ρ)2 and is subleading in the bulk equation (24) in
this limit, which becomes

Φ̌′′(v) + 2vΦ̌′(v) = 0. (34)

Solving this equation on both domains v > 0 and v <
0, combined with the condition Φ̌(±∞) = 0 deduced
from (20,33), we obtain Φ̌(v) = A± erfc(±v) for v ≷ 0.
The integration constants A± are then determined by the
boundary conditions at zero (27) in the limit ρ→ 1,

Φ̌′(0±) =
∓2ψ̂

e±λ − 1
⇒ A± =

√
π

ψ̂

e±λ − 1
. (35)

Finally, using the last condition (22), we determine ψ̂ in
terms of λ in the dense limit:

ψ̂(λ) =
2(1− ρ)√

π
sinh2

(
λ

2

)
, (36)

which coincides with the result obtained from a different
approach in [21]. Additionally, we get the profile [12]

Φ(v) = ρ+ (1− ρ)
1− e∓λ

2
erfc(±v) , (37)
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which quantify all correlation functions between the tracer
and the bath of surrounding particles ⟨Xn

t ηXt+r⟩ in the
high density regime, for large times.
Note that, in the dense limit, the microscopic equa-

tions (13,14,15) can actually be solved at all times [12].
This leads to an exact time dependent solution for both
the profiles and the generating function [22].

C. Dilute limit

Despite the particle-hole symmetry of the SEP, the low
density and the high density limit are not equivalent, be-
cause we explicitly broke this symmetry by following the
dynamics of a particle (the tracer). In order to properly
define the low density limit, one should rescale the dis-
tances by the mean distance between the particles (1/ρ)
and the time by the mean time between the interaction
of two particles (1/ρ2). We thus take ρ→ 0 with z = ρr
and τ = ρ2t fixed. We still have the same scaling variable
v = r/

√
2t = z/

√
2τ .

Since the distances scale as 1/ρ, λ scales as ρ so that
the product λXt remains of order 1. This implies that
the boundary conditions at zero (27) become

Φ′(0±) +
ψ̂

λ
Φ(0±) = 0 , (38)

and the cancellation of the velocity (22) yields

Φ(0+)− Φ(0−) = λ . (39)

In the dilute limit, the unknown function C(v) which
encodes the higher order correlations is not negligible, and
the bulk equation (24) is therefore not closed. In principle
this requires to determine these higher order correlation
functions in order to obtain C(v). Nevertheless, in [12],
a closure relation was found, which allows to determine
C(v) and thus yields a closed bulk equation,

Φ′′(v) + 2(v + ξ)Φ′(v) = 0 , ξ =
dψ̂

dλ
. (40)

Solving this equation on v > 0 and v < 0 with the
condition Φ(±∞) = ρ, we get Φ(v) = ρ+A± erfc(±(v+ξ))
for v ≷ 0. The integration constants A± are determined
by the boundary conditions at zero (38),

A± =
ρψ̂

±λ e−ξ2√
π

− ψ̂ erfc(±ξ)
. (41)

Combined with the relation (39), this gives an implicit
equation for the cumulant generating function (because

ξ = dψ̂
dλ ),

ρψ̂ erfc(ξ)

λ e−ξ2√
π

− ψ̂ erfc(ξ)
+

ρψ̂ erfc(−ξ)
λ e−ξ2√

π
+ ψ̂ erfc(−ξ)

= λ . (42)

Expanding in powers of λ using (17),

ψ̂(λ) =
∑
n≥1

κ̂n
λn

n!
, ξ =

dψ̂

dλ
=
∑
n≥0

κ̂n+1
λn

n!
, (43)

we obtain from (42) the cumulants (the odd cumulants
vanish by symmetry)

κ̂2 =
1

ρ
√
π
, κ̂4 =

3(4− π)

ρ3π3/2
, · · · (44)

which coincides with those obtained previously [23]. Fur-
thermore, we obtain the profiles Φn (18) which encore
the correlations between the displacement of the tracer
and the density of bath particles. The exact expressions
can be obtained by expanding (42) in powers of λ and
plugging the result into the solution of (40). For instance
the first profiles are found to be given by [12],

Φ0(v) = ρ , (45)

Φ1(v) =
1

2
erfc(v) , (46)

Φ2(v) =
1

2ρ
erfc(v)− 2

πρ
e−v

2

. (47)

These expressions are more complex than those obtained
in the high density regime, see Eq. (37). Nevertheless
they remain explicit at all orders in terms of the error
function and its derivatives.

V. SEP WITH A TRACER AT ARBITRARY
DENSITY

The main goal of this Section is to derive the closed
equation verified by the profile Φ in the SEP, Eq. (86)
below, which we have announced in Ref. [13]. Here we
present details of the approach that led us to obtain
this equation, and discuss its consequences, as well as its
resolution in Fourier space. We additionally provide a
numerical scheme to directly compute this profile in real
space.

A. A closed integral equation

The bulk equation (24), obtained from the microscopic
equation is valid at arbitrary density. But this equation is
not closed: it involves the unknown function C(v) which
contains the higher order correlations. Our aim is to
construct an equation for the profile Φ which is closed.
From the closed bulk equations we obtained at high

density (34) and low density (40), we guess that the
general equation at arbitrary density takes the form

Φ′′(v) + 2(v + ξ)Φ′(v) = ? , (48)

with ? a right hand side to be determined. For this new

equation to be closed, ? should be expressed in terms of
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the function Φ(v) only. From our previous results [12] re-

called in Section IV, ? vanishes in both limits ρ→ 0 and
ρ→ 1, as well as at first order in λ (because of (29)). For
this latter reason, when expanding this equation in powers

of λ, we expect that, at order n, the r.h.s. ? will act as a
source term in the equation for Φn, by involving only the
profiles Φm at lower orders m < n. Furthermore Eq. (48),
combined with the boundary conditions (20,22,27), has
to reproduce the known cumulants of the position of the
tracer [9, 10].

Finally, we have some constraints on how the different

parameters (λ, ψ̂, ξ and ρ) should appear in ? :

(C1) λ is explicitly involved in the hydrodynamic equa-
tions of Section III B only through expressions of
the form e±λ − 1, so we expect that only these
combinations appear.

(C2) In the low density equation (40), ψ̂ does not appear

explicitly, only its derivative ξ = dψ̂
dλ is involved, so

we expect the same to happen at arbitrary density.
Similarly, we do not expect other parameters, such
as the density ρ, to appear explicitly in the equation.

(C3) The equation we write should have a “proper scaling”
with time. Indeed, the bulk equation (24) (which we
aim to replace) is obtained by expanding at order
1/t the microscopic equation (9), so it should be the
same for this new equation. For instance, the func-
tions Φ, Φ′ and Φ′′ originate respectively from terms
of orders t0, t−1/2 and and t−1 in the microscopic
equations. Similarly, the scaling variable v = r/

√
2t

originates from a t−1/2 term, and the same argu-
ment holds for ξ. One can thus check that, with
these scalings, the l.h.s. of Eq. (48) indeed origi-
nates from the scaling 1/t. The same should hold

for the r.h.s. ? .

As a starting point to infer the structure of ? , we
compute its lowest order in λ. To this end, we have
computed Φ explicitly using the formalism of Macroscopic
Fluctuation Theory (MFT, see Appendix A) up to order 3
in λ included. In particular, we recover the first order Φ1,
given by (32), and the following orders are given by (A47).
Plugging the expression of Φ (A47) into the l.h.s. of (48),
we get

? =
2(1− ρ)2

ρ

(
v

4
√
2π

e−
v2

2 erfc

(
|v|√
2

)

− sign(v)
e−v

2

4π

)
λ3 +O(λ4) . (49)

The goal is now to rewrite this expression in terms of
the lowest orders of Φ, as guessed above. In particular,
we aim to rewrite the above expression in terms of Φ1,
given by (32). This cannot be done straightforwardly,
as the arguments of the error functions do not match

between (49) and (32). We need to find transformation
which, acting on Φ1 (32), changes the argument of the

error function by
√
2. This can be done by using that∫ ∞

0

dz Φ′
1(v + z)Φ′

1(−z) =
(1− ρ)2√

2π
e−

v2

2 erfc

(
v√
2

)
,

(50)
we can rewrite the r.h.s. of (49) as

? =


−λ
ρ

∫ ∞

0

dz Φ′′(−z)Φ′(v + z) +O(λ4) for v > 0 ,

−λ
ρ

∫ ∞

0

dz Φ′′(z)Φ′(v − z) +O(λ4) for v < 0 .

(51)
The constraint (C2) imposes to rewrite ρ in terms of Φ.
Since Φ(v) = ρ+O(λ), we can for instance replace ρ by
Φ(0±). This intuition is confirmed by considering the case
an in initial step initial condition (corresponding to an
initial mean density ρ− for x < 0 and ρ+ for x > 0). In
this case, we also derive in Appendix A the profiles at
first orders,

Φ0(v) =
ρ+
2

erfc(−v − κ̂1) +
ρ−
2

erfc(v + κ̂1) , (52)

Φ1(v) = κ̂2Φ
′
0(v) +

1

Φ0(0)
Φ0(v)(1− Φ0(v))

− ρ+(1− ρ+)

2Φ0(0)
erfc(−v − κ̂1)

− (ρ+ − ρ−)
2

Φ0(0)

∫ ∞

0

dz

2
√
2π

e−
1
2 (v+2κ̂1+z)

2

erfc

(
|v − z|√

2

)
,

(53)

where κ̂1 and κ̂2 can be determined explicitly, but their
expressions are not required here. Plugging these expres-
sions into the l.h.s. of (48), we obtain,

? = − sign(v)
Φ′

0(v)Φ
′
0(0)

Φ0(0)
λ

− λ
(ρ+ − ρ−)

2

Φ0(0)
∂v

(
1

2
√
2π

e−
1
2 (v+2κ̂1)

2

erfc

(
|v|√
2

))
− λ

(ρ+ − ρ−)
2

Φ0(0)

κ̂1√
2π

e−
1
2 (v+2κ̂1)

2

erfc

(
|v|√
2

)
+O(λ2) .

(54)

Notice that, from the expression of the profile Φ0 at the
lowest order (52), we have, for v > 0,∫ ∞

0

dz Φ′
0(v + z)Φ′

0(−z) =

(ρ+ − ρ−)
2

2
√
2π

e−
(v+2κ̂1)2

2 erfc

(
v√
2

)
, (55)

and a similar expression holds for v < 0. This allows us
to rewrite the r.h.s. of (54) as (after integration by parts,
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and using that ξ = κ̂1 +O(λ2)),

? = − λ

Φ0(0)

∫ ∞

0

dz Φ′′(−z)Φ′(v + z)

− 2ξ
λ

Φ0(0)

∫ ∞

0

dz Φ′(−z)Φ′(v + z) +O(λ2) , (56)

for v > 0. This equation reduces to (51) in the case of
a uniform density ρ, since in that case ξ = O(λ) and
Φ0(0) = ρ+O(λ). Using now the constraint (C1), we can
rewrite λ/Φ0(0) as (e

λ − 1)/Φ(0+) or (e−λ − 1)/Φ(0−) at
lowest order in λ. Therefore, it leads us to propose an
equation of the form

Φ′′(v)+2(v+ξ)Φ′(v) =
e−λ − 1

Φ(0−)

∫ ∞

0

dzΦ′′(−z)Φ′(v+z)

+ 2ξ
e−λ − 1

Φ(0−)

∫ ∞

0

dz Φ′(−z)Φ′(v + z) +O(λ4) , (57)

for v > 0. Note that this equation satisfies the con-
straint (C3). Using this equation in the case of the uniform
density, combined with the boundary conditions (22,27),
we can compute the cumulants predicted by this equation.

The first two cumulants κ̂2 and κ̂4 coincide with the ones
computed previously [2, 9, 11], but not the following one
κ̂6. This means that (57) is not the desired equation for
Φ.

Having introduced convolutions when going from order
2 to order 3 in λ, we can try to add double convolutions
to go beyond these orders, such as∫ ∞

0

dz

∫ ∞

0

dz′ Φ′(z + z′ + v)Φ′(−z)Φ′(−z′) , (58)

or ∫ ∞

0

dz

∫ ∞

0

dz′ Φ′(z + v)Φ′(−z − z′)Φ′(z′) . (59)

Note that these are the only double convolutions that
respect two features found in (57): (i) the sum of the
arguments of the Φ′s is v, and (ii) the arguments of Φ′

do not change sign inside the integration domains. One
could then expect to find different combinations of these
terms, with different prefactors (e±λ − 1)/Φ(0±). After
trying several of these combinations, we found that the
equation (valid for v > 0)

Φ′′(v) + 2(v + ξ)Φ′(v) =
e−λ − 1

Φ(0−)

∫ ∞

0

dz Φ′′(−z)Φ′(v + z) + 2ξ
e−λ − 1

Φ(0−)

∫ ∞

0

dz Φ′(−z)Φ′(v + z)

+
(eλ − 1)(e−λ − 1)

Φ(0+)Φ(0−)

∫ ∞

0

dz

∫ ∞

0

dz′Φ′′(−z−z′)Φ′(z+v)Φ′(z′)− (e−λ − 1)2

Φ(0−)2

∫ ∞

0

dz

∫ ∞

0

dz′Φ′′(z+z′+v)Φ′(−z)Φ′(−z′)

+ 2ξ
(eλ − 1)(e−λ − 1)

Φ(0+)Φ(0−)

∫ ∞

0

dz

∫ ∞

0

dz′ Φ′(−z − z′)Φ′(z + v)Φ′(z′)

− 2ξ
(e−λ − 1)2

Φ(0−)2

∫ ∞

0

dz

∫ ∞

0

dz′ Φ′(z + z′ + v)Φ′(−z)Φ′(−z′) +O(λ6) , (60)

properly reproduces all the known cumulant κ̂n for n ≤
6 [9]. The structure of this equation leads us to introduce
the two functions

Ω±(v) = ∓e±λ − 1

Φ(0±)
Φ′(v) = 2ψ̂

Φ′(v)

Φ′(0±)
for v ≷ 0 ,

(61)

where we have used the boundary condition (27) in the
last equality. Equation (60) then takes the more compact
form

Ω′
+(v) + 2(v + ξ)Ω+(v) =

∫ ∞

0

dz Ω′
−(−z)Ω+(v + z) + 2ξ

∫ ∞

0

dz Ω−(−z)Ω+(v + z)

−
∫ ∞

0

dz

∫ ∞

0

dz′ Ω′
−(−z − z′)Ω+(z + v)Ω+(z

′)− 2ξ

∫ ∞

0

dz

∫ ∞

0

dz′ Ω−(−z − z′)Ω+(z + v)Ω+(z
′)

−
∫ ∞

0

dz

∫ ∞

0

dz′ Ω′
+(z + z′ + v)Ω−(−z)Ω−(−z′)− 2ξ

∫ ∞

0

dz

∫ ∞

0

dz′ Ω+(z + z′ + v)Ω−(−z)Ω−(−z′) +O(λ6) .

(62)
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In order to extend this structure to arbitrary order in λ,
it is convenient to introduce a matrix operator L , defined
as

L =

(
L++ L+−
L−+ L−−

)
, (63)

where the four blocks are integral operators:

(L++f)(v) =

∫ ∞

0

dz Ω−(−z)f(v + z) , (64a)

(L+−f)(v) = −
∫ ∞

0

dz Ω+(v + z)f(−z) , (64b)

(L−+f)(v) = −
∫ ∞

0

dz Ω−(v − z)f(z) , (64c)

(L−−f)(v) =

∫ ∞

0

dz Ω+(z)f(v − z) . (64d)

To show that this operator indeed produces the structure
of Eq. (62), let us apply it to the column vector (Ω+ 0)T,

L

(
Ω+

0

)
=


∫ ∞

0

dz Ω−(−z)Ω+(v + z)

−
∫ ∞

0

dz Ω−(v − z)Ω+(z)

 . (65)

The first component is the second term in the r.h.s of (62).
Applying L a second time, we get for the first component,∫ ∞

0

dz

∫ ∞

0

dz′ Ω+(z + z′ + v)Ω−(−z)Ω−(−z′)

+

∫ ∞

0

dz

∫ ∞

0

dz′ Ω−(−z − z′)Ω+(z + v)Ω+(z
′) , (66)

which corresponds to the last terms in the second and
third line of Eq. (62). The other terms in (62) can also
be expressed similarly using integration by parts. Finally,
using that Ω+(0) = Ω−(0) by definition (see Eq. (61)),
we can rewrite (62) as

2vΩ+(v) + (∂v + 2ξ)

[
(1 + L )−1

(
Ω+

0

)
(v)

]
1

+Ω+(v)

[
(1 + L )−1

(
Ω+

0

)
(0)

]
1

= O(λ6) . (67)

We assume that this structure holds true at all orders in
λ, which leads us to propose the equation at all orders in
λ,

2vΩ+(v) + (∂v + 2ξ)

[
(1 + L )−1

(
Ω+

0

)
(v)

]
1

+Ω+(v)

[
(1 + L )−1

(
Ω+

0

)
(0)

]
1

= 0 . (68)

At this stage, the step from (67) to (68) is a guess. We
will argue below in Section VE that (68) is actually exact
since, as a byproduct of this equation, we recover all

the cumulants that were computed previously in [9, 10].
We will further argue in Section VIIIB, that, since the
discovery of this equation in [13], it has been proved
recently in [16], in an equivalent form written below. This
confirms that our guess, in the step from (67) to (68), is
not an approximation and is actually exact. Following
the same procedure for v < 0, we obtain

2vΩ−(v) + (∂v + 2ξ)

[
(1 + L )−1

(
0
Ω−

)
(v)

]
2

+Ω−(v)

[
(1 + L )−1

(
0
Ω−

)
(0)

]
2

= 0 . (69)

These equations are closed, and allow for a numerical
determination of Ω+ and Ω−. Nevertheless, they are
rather complicated, and we now look for a simpler version
of these equations. To do so, it is instructive to look for
a perturbative solution again. By definition (61), Ω± is

small when ψ̂ is small. Writing the first orders of the

solution of (68,69) in terms of ψ̂ instead of λ, we find that
the solution can be conveniently expressed as

Ω±(v) =
(
ω eξ

2
)
Ω

(1)
± (v) +

(
ω eξ

2
)2

Ω
(2)
± (v)

+
(
ω eξ

2
)3

Ω
(3)
± (v) +O(ω4) , (70)

where we introduced the parameter ω, which is defined

from ψ̂ by

ω = 2
√
πψ̂+

√
2π ψ̂2+

2π3/2

9
(9−4

√
3)ψ̂3+O(ψ̂4) . (71)

It takes a simpler form by inverting the series

ψ̂ =
ω

2
√
π
− ω2

4
√
2π

+
ω3

6
√
3π

+O(ω4) . (72)

In addition,

Ω
(1)
± (v) =

1√
π
e−(v+ξ)2 , (73a)

Ω
(2)
± (v) = − 1

2
√
2π

e−
1
2 (v+2ξ)2 erfc

(
± v√

2

)
, (73b)

Ω
(3)
± (v) =

1

4
√
3π

e−
1
3 (v+3ξ)2

[
erfc

(
±
√

2

3
v

)

+erfc

(
± v√

6

)
− 4T

(
v√
3
,
√
3

)]
, (73c)

where T is Owen’s T-function defined by [24]

T(h, a) =
1

2π

∫ a

0

e−
h2

2 (1+x2)

1 + x2
dx . (74)

From these expressions, we notice that we can express

Ω
(2)
+ from Ω

(1)
± as

Ω
(2)
+ (v) = −

∫ ∞

0

Ω
(1)
+ (v + z)Ω

(1)
− (−z)dz . (75)



10

Similarly, Ω
(3)
+ can be expressed in terms of the previous

orders as

Ω
(3)
+ (v) = −

∫ ∞

0

Ω
(2)
+ (v + z)Ω

(1)
− (−z)dz

−
∫ ∞

0

Ω
(1)
+ (v + z)Ω

(2)
− (−z)dz . (76)

We can thus write from these first orders a compact
equation verified by Ω+(v),

Ω+(v) +

∫ ∞

0

Ω+(v + z)Ω−(−z)dz = ωeξ
2

Ω
(1)
+ (v) , (77)

with Ω
(1)
+ (v) given by (73a). Proceeding similarly with

Ω−(v), we get

Ω−(v)+

∫ ∞

0

Ω+(z)Ω−(v−z)dz =
ω√
π
e−(v+ξ)2+ξ2 . (78)

These two coupled equations can be mapped onto two
independent linear equations, upon analytic continuation
of Ω+ to v < 0 and Ω− to v > 0 [25]. This finally gives
two Wiener-Hopf integral equations,

Ω+(v) +

∫ 0

−∞
dz K(v − z) Ω+(z) = K(v) , (79)

Ω−(v) +

∫ ∞

0

dz K(v − z) Ω−(z) = K(v) , (80)

with the Gaussian kernel

K(v) ≡ ω√
π
e−(v+ξ)2+ξ2 . (81)

The parameter ω is determined by the boundary condition
at the origin, which is a consequence of the definition of

Ω± (61), Ω+(0) = Ω−(0) = 2ψ̂.

B. Summary of the equations

We have found that the rescaled derivatives of the
generalised density profiles,

Ω±(v) = 2ψ̂
Φ′(v)

Φ′(0±)
for v ≷ 0 , (82)

obey the simple bilinear equation

Ω±(v) +

∫ ∞

0

Ω±(v ± z)Ω∓(∓z)dz = K(v) , (83)

with the kernel

K(v) ≡ ω√
π
e−(v+ξ)2+ξ2 , (84)

where the parameter ω is determined from the boundary
condition

Ω+(0) = Ω−(0) = 2ψ̂ , (85)

which is a consequence of the definition (82). The bilinear
equation (83) is actually equivalent to the linear one [25]

Ω±(v) +

∫
R∓

dz K(v − z) Ω±(z) = K(v) , (86)

upon analytical continuation of Ω+ to v < 0 and Ω−
to v > 0. This equation is completed by the boundary
relations, derived above from microscopic considerations,

Φ′(0±)± 2ψ̂

e±λ − 1
Φ(0±) = 0 , (87)

lim
v→±∞

Φ(v) = ρ , (88)

1− Φ(0−)

1− Φ(0+)
= eλ . (89)

Together, these equations fully determine the generalised
density profile Φ(v), as we discuss below. But first, let us
make a few comments on these main results.

C. Discussion

First, although Eqs. (83,86) have been shown to hold
true up to order 3 in λ for the profiles Φ (and reproduce
the cumulants up to order 6), we argue below that these
equations are valid at any order in λ and are thus actually
exact. In fact, since the publication of [13], this has
been shown by solving the MFT equations in [16] (see
Section VIII B below).

Second, we would like to stress that Wiener-Hopf equa-
tions arise in various contexts. A first example concerns
the persistence (decay of the survival probability) of dis-
crete time random walks [26]. A second one can be found
in the study of the large deviations of the KPZ equa-
tion [27]. Actually, in this latter case, the Wiener-Hopf
equation was interpreted in terms of the persistence of a
random walk, giving the authors a simple way to prove
the equivalence between two (linear and bilinear) integral
equations. Here, a similar interpretation can be used to
derive the linear equation (86) from the bilinear equa-
tion (83). More precisely, we can write

Ω±(v) = −
∑
n≥1

(−ωeξ
2

)np±n (v) , (90)

where

p+n (v) = P(X0 = 0, X1 < 0, . . . , Xn−1 < 0, Xn = v) ,
(91)

with Xn the position after n step of a random walker,
whose Gaussian stationary increments are given by

Xn+1 −Xn = ηn , ηn i.i.d., P(η) =
e−(η+ξ)2

√
π

. (92)

Importantly, we stress that this interpretation of Ω±
provides a clear meaning to the analytic continuation of
Ω± to R∓ which appear in Eq. (86).
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D. Solving the Wiener-Hopf equations for the
profiles and the cumulants

The solution of the Wiener-Hopf equations (86) can be

expressed in terms of the half Fourier transforms Ω̂
(±)
ν of

Ω± (and their analytic continuations), defined as

Ω̂(±)
ν (k) ≡

∫
R±

dv Ων(v) e
ikv , ν = ± . (93)

The solution of (86) is given in [28] for the Fourier trans-

forms Ω̂
(±)
∓ of the analytic continuations of Ω± to R∓,

Ω̂
(±)
∓ (k) = exp

[
−1

2
ln(1 + K̂(k))

∓ 1

2iπ
−
∫ ∞

−∞

ln(1 + K̂(u))

u− k
du

]
− 1 , (94)

where −
∫
denotes a principal value integral, and

K̂(k) ≡
∫ ∞

−∞
K(v)eikvdv = ω e−

1
4 (k+2iξ)2 . (95)

The Fourier transforms Ω̂
(±)
± in the other domain are

deduced by taking the Fourier transform of (86),

Ω̂
(±)
± (k) = K̂(k) + Ω̂

(∓)
± (k)(1 + K̂(k)) . (96)

By using that 1 + K̂ = exp ln(1 + K̂), we obtain

Ω̂
(±)
± (k) = exp

[
1

2
ln(1 + K̂(k))

∓ 1

2iπ
−
∫ ∞

−∞

ln(1 + K̂(u))

u− k
du

]
− 1 . (97)

We can rewrite this solution in a more compact form as

Ω̂
(±)
∓ (k) = exp

[
∓ 1

2iπ

∫ ∞

−∞

ln(1 + K̂(u))

u− k ± i0+
du

]
− 1 , (98)

or alternatively

Ω̂
(±)
± (k) = exp

[∫
R±

dx

2π
eikx

∫ ∞

−∞
du e−iux ln(1 + K̂(u))

]
−1.

(99)

With this last form, inserting the expression of K̂ (95)
and expanding in powers of ω, we get∫

R±

dx

2π
eikx

∫ ∞

−∞
du eiux ln(1 + K̂(u))

= −Z±

(
ω, ξ − ik

2

)
, (100)

with

Z± (ω, ξ) =
1

2

∑
n≥1

(−ω eξ
2

)n

n
erfc

(
±
√
n ξ
)
. (101)

With the definitions (93) of the Fourier transforms, this
explicitly gives∫ ∞

0

Ω+(v)e
ikvdv = exp

[
−Z+

(
ω, ξ − ik

2

)]
− 1 , (102)

∫ 0

−∞
Ω−(v)e

ikvdv = exp

[
−Z−

(
ω, ξ − ik

2

)]
−1 . (103)

These expressions are convenient to get perturbative ex-
pansions in powers of λ, as we will see below. For arbitrary
values of λ, the expressions (98,99) are more practical.
For instance, setting k = ±is in (98) and letting s→ ∞,
we get

Ω̂
(±)
± (±is) ≃

s→∞

1

2πs

∫ ∞

−∞
ln(1 + K̂(u))du , (104)

while on the other hand, from the definition (93) we have

Ω̂
(±)
± (±is) ≃

s→∞

1

s
Ω±(0) =

1

s
2ψ̂ , (105)

where we have used that Ω±(0) = 2ψ̂ from the definition
of Ω± (82). Combining these two asymptotic results, we
get

ψ̂ =
1

4π

∫ ∞

−∞
ln(1 + K̂(u))du . (106)

Using the expression of K̂ (95) and expanding in powers
of ω, this becomes

ψ̂ = − 1

2
√
π
Li 3

2
(−ω) , (107)

where Liν(z) =
∑
n≥1 z

n/nν is the polylogarithm func-
tion. This expression is consistent with the first orders
obtained previously (71). It relates the parameter ω and

the cumulant generating function ψ̂. Since ξ = dψ̂
dλ , one

can thus think of Ω± as parametrised by ψ̂. At this stage,

the function ψ̂(λ) is not known. It can be determined in
the following way:

1. The integration of Ω± on R± with the boundary
conditions at infinity (88) gives a relation between
Φ(0+) and Φ′(0+), and between Φ(0−) and Φ′(0−).
It can be obtained by setting k = 0 in (102,103):∫ ∞

0

Ω+ = 2ψ̂
ρ− Φ(0+)

Φ′(0+)
= exp [−Z+(ω, ξ)]− 1 , (108)

∫ 0

−∞
Ω− = 2ψ̂

Φ(0−)− ρ

Φ′(0−)
= exp [−Z−(ω, ξ)]− 1 . (109)

2. Combining these relations with the boundary con-
ditions (87) yield Φ(0+) and Φ(0−), parametrised

by λ and ψ̂ (via ω and ξ):

Φ(0+) = ρ
eλ − 1

eλ − e−Z+(ω,ξ)
, (110)
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Φ(0−) = ρ
e−λ − 1

e−λ − e−Z−(ω,ξ)
. (111)

3. Using finally the relation (89) which relates Φ(0+)
and Φ(0−), we obtain the cumulant generating func-

tion ψ̂(λ).

We now illustrate how this procedure can be applied to
obtain the cumulants and the profiles Φn at lowest orders
in λ.

E. Expansions in powers of λ

1. For the cumulants

Inserting the expansion of ψ̂ in powers of λ (17) into
Eq. (107), we obtain the expansion of ω in powers of λ,

ω =
√
πκ̂2λ

2 +

√
π

12
(κ̂4 + 3

√
2πκ̂22)λ

4 + · · · . (112)

Note that the odd order cumulants vanish, as expected.
We also have by definition

ξ =
dψ̂

dλ
= κ̂2λ+ κ̂4

λ3

6
+ · · · . (113)

Plugging these expansions into the expressions (110,111)
give Φ(0±) in terms of the cumulants. Inserting these
results into the last relation (22), we obtain the cumulants

κ̂2 =
1− ρ

ρ
√
π
, (114)

κ̂4 =
(1− ρ)

π3/2ρ3

(
12(1− ρ)2 − π(3− 3(4−

√
2)ρ+ (8− 3

√
2)ρ2)

)
. (115)

κ̂6 =
(1− ρ)

π5/2ρ5

(
30π

(
2
(
9
√
2− 20

)
ρ2 +

(
60− 18

√
2
)
ρ− 15

)
(1− ρ)2

− π2
(
8
(
−17 + 15

√
2− 5

√
3
)
ρ4 +

(
480− 300

√
2 + 80

√
3
)
ρ3

+5
(
−114 + 45

√
2− 8

√
3
)
ρ2 − 45

(√
2− 6

)
ρ− 45

)
+ 1020(1− ρ)4

)
. (116)

These expressions coincide with the cumulants computed
by Bethe ansatz in Ref. [9]. This is expected, since we have
constructed our starting equation (60) to reproduce these
cumulants. We have computed the next cumulants, up to
order 10 (this number is arbitrary, one can go further at
the cost of longer computational time), by implementing
the procedure described above with Mathematica. These
cumulants also coincide with those obtained from Ref. [9].
This provides a strong nontrivial validation of our integral
equations (83,86). We have thus found an alternative
parametrization for the cumulant generating function to
the one obtained in [9]. We will show below that we
can actually recover the exact same parametrization of
Ref. [9], and thus providing automatically the exact same
cumulants as in [9], at arbitrary order.

2. For the generalised profiles

Having obtained the cumulant generating function ψ̂(λ),
we can go further than [9] and obtain the profiles Φn which
encode the bath-tracer correlations. Indeed, we have the

expression of ξ = dψ̂
dλ and ω in terms of λ, via Eq. (107).

We thus have Ω±(v) in terms of λ from the solution
of (86). We then obtain Φ(v) by integration of Ω±, with
the definition (82):

Φ(v > 0) = ρ+
Φ(0+)

eλ − 1

∫ ∞

v

Ω+(z)dz , (117)

Φ(v < 0) = ρ+
Φ(0−)

e−λ − 1

∫ v

−∞
Ω−(z)dz , (118)

where we have used the boundary conditions at infin-
ity (88). Note that we have already obtained the expres-
sions of Φ(0±), given by (110,111), in the derivation of



13

0.0 0.5 1.0 1.5 2.0 2.5 3.0
v = r/ 2t

0.00
0.05
0.10
0.15
0.20
0.25

n(
v)

n = 1

(a)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

v

0.8
0.6
0.4
0.2
0.0

n = 2

(b)

= 0.25
= 0.5
= 0.75

0.0 0.5 1.0 1.5 2.0 2.5 3.0
v

0.0
0.1
0.2
0.3
0.4
0.5

n = 3

(c)

3 2 1 0 1 2 3
v

0.3

0.4

0.5

0.6

= 0.5
= 0.57

(v)(d)

MFT (num.)
Theory

FIG. 3. SEP. Generalised density profiles (GDP) of order (a) n = 1 at density ρ = 0.5, (b) n = 2 at densities ρ = 0.25, 0.5 and
0.75, and (c) n = 3 at density ρ = 0.5. The solid lines correspond to simulations of the SEP (see Appendix B), performed at
time t = 3000 on a lattice of 5000 sites. The averaging is performed over 108 realisations. The dashed lines are the theoretical
predictions (120,121,122). (d) GDP-generating function at ρ = 0.5 and λ = 0.57 (actually, in the algorithm we specified ξ = 0.4
as input to go beyond the perturbative regime near ξ = 0 but keep a reasonable convergence time), obtained from solving
numerically the Wiener-Hopf equation (86) (dashed line, see Section VE3), compared to the numerical solution (red solid line)
of the MFT equations (see Section VIII below) obtained from the algorithm described in [29].

the cumulants. Therefore, expanding (117), we get the profiles

Φ0(v > 0) = ρ , (119)

Φ1(v > 0) =
1− ρ

2
erfc(v) , (120)

Φ2(v > 0) =
(1− ρ)(1− 2ρ)

2ρ
erfc(v)− 2

π

(1− ρ)2

ρ
e−v

2

, (121)

Φ3(v > 0) = (1− ρ)
2(3 + π)ρ2 − (12 + π)ρ+ 6 + πρ(1− ρ)

2πρ2
erfc(v)

+ 3(1− ρ)2
2(1− ρ)v −

√
π(1− 2ρ)

π3/2ρ2
e−v

2

− 3(1− ρ)2

4ρ
erfc

(
v√
2

)2

, (122)

Φ4(v > 0) = (1− ρ)(1− 2ρ)
24(1− ρ)2 − π(3(1− 2ρ)2 + 4(1− ρ)(1− 2ρ) + 18ρ(1− ρ)− 4)

2πρ3
erfc(v)

+ 4(1− ρ)2
3
√
π(1− ρ)(1− 2ρ)v − 4(1− ρ)2(4 + v2) + π(5(1− ρ)(1− 2ρ) + 3(1 +

√
2)ρ(1− ρ)− 2)

π2ρ3
e−v

2

+ 12
√
2
(1− ρ)3

πρ2
e−

v2

2 erfc

(
v√
2

)
− 3

(1− ρ)2(1− 2ρ)

2ρ2
erfc

(
v√
2

)2

. (123)

Φ5(v > 0) = −
(1− ρ)

(
π2ρ4 + 440(1− ρ)4 + 30π

(
2ρ
((
2
√
2− 3

)
ρ− 2

√
2 + 6

)
− 3
)
(1− ρ)2

)
240π2ρ4

erfc(v)

+
(1− ρ)2

24π5/2ρ4

[
4
√
π(1− ρ)2

(
19ρ+ (4ρ− 2)v2 − 11

)
+ 12π

(
ρ
((

2
√
2− 5

)
ρ− 2

√
2 + 8

)
− 2
)
(1− ρ)v

−3π3/2(1− 2ρ)
(
2ρ
((√

2− 3
)
ρ−

√
2 + 5

)
− 3
)
+ 4(1− ρ)3v

(
2v2 + 27

)]
e−v

2

+
(1− ρ)3 (

√
π(1− 2ρ)− 2(1− ρ)v)

2
√
2π3/2ρ3

e−
v2

2 erfc

(
v√
2

)
+

(1− ρ)2
(
π
(
2ρ2 − 4ρ+ 1

)
− 12(1− ρ)2

)
32πρ3

erfc

(
v√
2

)2

− (1− ρ)3

4
√
3π ρ2

∫ +∞

v

dz e−
z2

3

[
erfc

(√
2

3
z

)
+ erfc

(
z√
6

)
− 4T

(
z√
3
,
√
3

)]
, (124)

with the Owen-T function defined in (74). The expres- sions for v < 0 can be deduced by the left/right sym-
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metry Φ(−v,−λ) = Φ(v, λ) which implies Φn(−v) =
(−1)nΦn(v). The first few profiles Φn are represented in
Fig. 3, compared to numerical simulations of the SEP.
The small discrepancy in Fig. 3(b) for ρ = 0.25 is due to
finite size effects in the numerical simulations. This effect
becomes smaller when increasing the system size and the
time of the simulation, which both strongly impact the
computational time.

The first order profile Φ1(v) gives the long-time asymp-

totics of the covariance Cov(Xt, ηXt +r), with v = r/
√
2t,

see Eq. (6). For v > 0, this covariance is positive, indi-
cating that an increase of Xt (displacement towards the
right) is correlated with an increase of the occupation
of the sites in front of the tracer. The profile Φ1 thus
provides a quantitative measurement of the ”jam” that
forms in front of the tracer when it moves in a given
direction (see Fig. 3(a)).

Similarly, the second order profile Φ2(v) is the long time
limit of Cov(X2

t , ηXt+r). It measures the correlations be-
tween the amplitude of the fluctuations of the tracer, and
the density around it. This function is negative, meaning
that these two quantities are anti-correlated. This can be
interpreted in the following way: a decrease of the occu-
pation of the sites around the tracer gives more space for
the tracer to fluctuate and thus increases its fluctuations.
Surprisingly, when the mean density of particles becomes
less than 1/2, Φ2 becomes non-monotonic, indicating that
this anti-correlation effect is stronger at a given distance
(rescaled by

√
t) from the tracer.

3. Conservation relation and numerical resolution

Using the expressions above for the profiles, one can
check that the conservation relation∫ ∞

0

(Φ(v)− ρ)dv −
∫ 0

−∞
(Φ(v)− ρ)dv = ρξ (125)

holds up to O(λ6). We have further checked numerically
that this relation holds non-perturbatively in λ.
This relation is particularly useful to implement a nu-

merical computation of the profile Φ(v) from the closed
Wiener-Hopf equation (86). Indeed, we have an explicit
analytical solution (102,103) only in Fourier space, and
inverting it to real space can be difficult. Numerically, it
is much more stable and faster to solve directly in real
space by using the following procedure:

1. Select an initial ”guess” for the values of ω and ξ;

2. Discretise the Wiener-Hopf equations (86) and solve
them for Ω±(v);

3. We then need to determine the parameters λ and ρ.
They can be deduced from Ω±(v) from (117,118),
but that introduces two new parameters, Φ(0+) and
Φ(0−). One relation between them is given by the
cancellation of the velocity (89). In principle, the

last relation needed is ξ = dψ̂
dλ , since ψ̂ = Ω+(0)/2 is

known. However, this relation is not practical to use
because we cannot easy compute the derivative with
respect to λ. This last equation is however conve-
niently replaced by the conservation relation (125),
which can be used straightforwardly;

4. Finally, having determined all the parameters, the
profile Φ(v) is obtained from (117,118).

This procedure can be implemented easily thanks to the
conservation relation (125). We have used it to plot
the profile Φ(v) for an arbitrary value of λ, as shown in
Fig. 3(d).

VI. EXTENSIONS TO OTHER SITUATIONS
AND OBSERVABLES IN THE SEP

Although we have focused on the example of tracer
diffusion in the SEP with a mean density ρ, our closed
equations (86) can be applied to various other situations
involving single-file diffusion, as we announced in Ref. [13].
Here, we describe explicitly the extension to other situa-
tions and observables within the SEP, give exact expres-
sion for the profiles Φ and discuss some of the physical
consequences of these results. We present extensions to
other models than the SEP in the next Section.

A. SEP with an initial step density profile

We consider a SEP with a mean initial step density ρ+
for v > 0 and ρ− for v < 0, which constitutes a paradig-
matic example of a system that remains out-of-equilibrium
at all times. The tracer is initially placed at the origin.
The microscopic equations of Section III A are unchanged,
and so is the hydrodynamic limit of Section III B. The
boundary relations at the origin (87,89) are unchanged.
Only the boundary condition at infinity (88) is changed
into

lim
v→±∞

= ρ± (126)

to take into account the imbalance of density.
In this case, we found that the closed equations (86)

still apply. Indeed, by following the procedure described
at the end of Section VD, we obtain the cumulants κ̂n
of the position of the tracer, which coincide with those
computed using Bethe ansatz in Ref. [9]. In this case,
the left/right symmetry is broken by the difference of
density on the two domains x > 0 and x < 0, so the
odd cumulants are now nonzero. For instance, the first
cumulant is obtained from the solution of the equation

ρ−

1 +
√
π κ̂1eκ̂

2
1 erfc(−κ̂1)

=
ρ+

1−
√
π κ̂1eκ̂

2
1 erfc(κ̂1)

,

(127)
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and the higher order cumulants have explicit expressions
in terms of κ̂1. For instance,

κ̂2 = κ̂21

(
2πe2κ̂

2
1 κ̂1 erfc

(√
2κ̂1

)
−
√
2π

+
4πe2κ̂

2
1 κ̂1ρ+

(
ρ2+ − 3ρ−ρ+ + 2ρ−

)
(ρ− − ρ+)

3

)
, (128)

in agreement with [9].

Our procedure additionally yields the generalised den-
sity profiles, for instance

Φ0(v) =
ρ+
2

erfc(−v − κ̂1) +
ρ−
2

erfc(v + κ̂1) , (129)

Φ1(v) =
2
√
πeκ̂

2
1 κ̂1ρ− (1− ρ+)− (ρ−ρ+)

2

2 (ρ− − ρ+)
erfc (κ̂1 + v)

−
e−(κ̂1+v)

2
(
4
√
πe2κ̂

2
1 κ̂31

(
(ρ− − ρ+)

3
erfc

(√
2κ̂1
)
+ 2ρ+

(
ρ2+ + ρ− (2− 3ρ+)

))
− 2

√
2κ̂21 (ρ− − ρ+)

3
)

2 (ρ− − ρ+)
2

+
1

2

√
πeκ̂

2
1 κ̂1 (ρ+ − ρ−)

(
4T

(√
2κ̂1,

κ̂1 + v

κ̂1

)
− 4T

(
2κ̂1 + v,

v

2κ̂1 + v

)
+ erfc

(
2κ̂1 + v√

2

)
− erfc (κ̂1)

)
, (130)
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FIG. 4. SEP with an initial step density. Generalised
density profiles (GDP) of order (a) n = 1 and (b) n = 2 for a
step of density ρ− = 0.7 and ρ+ = 0.2. Solid lines: result of the
simulations, computed at t = 1500 on a lattice with 2000 sites,
with the averaging performed over 108 realisations. Dashed
lines: analytical predictions obtained from the resolution of
the Wiener-Hopf equation (86). For instance Φ1(v) is given
by (130).

for v > 0 and κ̂1 > 0. Similar expressions can be written
for κ̂1 < 0. The values of Φn(v < 0) can be obtained by
the symmetry Φ(−v, λ, ρ+, ρ−) = Φ(v,−λ, ρ−, ρ+). The
first two profiles Φn for n = 1 and 2 are represented in
Fig. 4.

Unlike the case of the flat initial density, the profiles
Φn are no longer symmetric or anti-symmetric, but their
physical meaning remains the same. Φ1(v) again measures
the covariance between Xt and ηXt+r at large times. For
v > 0 and close to 0, it is still positive, indicating that a
displacement of the tracer towards the right leads to an
increase of the density of particles in front of the tracer.
Surprisingly, unlike the case of the flat density, Φ1(v > 0)

changes sign at a given distance (rescaled by
√
t) from the

tracer. This indicates that for v larger than this critical
value, the effect is inverted: a displacement of the tracer
towards the right is correlated with a decrease of the
density. This unexpected behaviour is fully quantified
by our computation of the generalised profile Φ1, and is
stressed by the inset in Fig. 4(a).

B. Another observable: the integrated current
through the origin

We consider another observable which has been the
focus of many studies in single-file diffusion [8, 29, 30]: the
integrated current Qt thought the origin. It corresponds
to the total number of particles that jumped across the
origin from left to right, minus the number from right to
left, up to time t. Microscopically, it is defined as

Qt =
∑
r≥1

(ηr(t)− ηr(0)) . (131)

We are interested in the cumulant generating function of
this observable,

ψQ(λ) =
√
2t ψ̂Q = ln

〈
eλQt

〉
, (132)

and the generalised density profiles for the current, which
we define as

wQ;r(t) =

〈
ηr e

λQt
〉

⟨eλQt⟩
. (133)
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These profiles measure the correlation between the inte-
grated current Qt and the density at a distance r from
the origin. At large time, they behave as

wQ;r(t) ≃
t→∞

ΦQ(v) =
∑
n≥0

ΦQ;n(v)
λn

n!
, v =

r − 1
2√

2t
,

(134)
where the − 1

2 has been introduced such that wQ;1(t) ≃
Φ(0+) while wQ;0(t) ≃ Φ(0−) for t→ ∞.

We again define the functions Ω±(v) by

Ω±(v) = 2ψ̂Q
Φ′
Q(v)

Φ′
Q(0

±)
. (135)

We have checked that these two functions still verify the
integral equations (86), but with the kernel (84) with
ξ = 0:

K(v) =
ωQ√
π
e−v

2

. (136)

This still implies

ψ̂Q = − 1

2
√
π
Li 3

2
(−ωQ) . (137)

The functions Ω± are thus given by the solution (102,103),
with ξ = 0.

In order to use this solution to deduce the profiles
ΦQ(v), we need the boundary conditions satisfied by ΦQ.
In order to derive them, we follow the same approach
we used for the tracer in Sections IIIA and IIIB. First,
we write the time evolution of the cumulant generating
function from the master equation,

∂t ln
〈
eλQt

〉
=

1

2

[
(eλ − 1)

〈
η0(1− η1)e

λQt
〉

⟨eλQt⟩

+(e−λ − 1)

〈
η1(1− η0)e

λQt
〉

⟨eλQt⟩

]
. (138)

Similarly, we obtain the microscopic equations for the
generalised profiles, which we write as

∂twQ;0 = (e−λ−(e−λ−1)wQ;0)
∂t ln

〈
eλQt

〉
e−λ − 1

+
wQ;−1 − wQ,0

2
,

(139)

∂twQ;1 = (eλ− (eλ− 1)wQ;1)
∂t ln

〈
eλQt

〉
eλ − 1

+
wQ;2 − wQ;1

2
.

(140)
Taking the long time limit of these equations, with the
scalings (132,134), we obtain at leading order

ΦQ(0
+)(1− ΦQ(0

−))

ΦQ(0−)(1− ΦQ(0+))
= eλ , (141)

Φ′
Q(0

−) = 2ψ̂Q

(
1

1− eλ
− ΦQ(0

−)

)
, (142)

Φ′
Q(0

+) = −2ψ̂Q

(
1

1− e−λ
− ΦQ(0

+)

)
. (143)

In order to get the cumulants of the current, we follow
the procedure described at the end of Section VD. From
the solution (102,103) of the integral equations (79,80)
with ξ = 0, we get∫ ∞

0

Ω+ = 2ψ̂Q
ρ+ − ΦQ(0

+)

Φ′
Q(0

+)
=
√
1 + ωQ − 1 , (144)

∫ ∞

0

Ω− = 2ψ̂Q
ΦQ(0

−)− ρ−
Φ′
Q(0

−)
=
√
1 + ωQ − 1 . (145)

Combined with the boundary conditions (142,143), we
obtain

ΦQ(0
+) =

1√
1 + ωQ

(
ρ+ +

1−
√
1 + ωQ

e−λ − 1

)
, (146)

ΦQ(0
−) =

1√
1 + ωQ

(
ρ− +

1−
√
1 + ωQ

eλ − 1

)
. (147)

Using these expressions into the last boundary condi-
tion (141), we obtain a simple expression for ωQ,

ωQ = ρ−(1− ρ+)(e
λ − 1) + ρ+(1− ρ−)(e

−λ − 1) . (148)

Together with (137), this recovers the result of Derrida
and Gerschenfeld [8, 30] for the cumulant generating

function ψ̂Q of the current through the origin. Further-
more, we additionally obtain the profiles ⟨ηr(t)Qnt ⟩c ≃

t→∞
ΦQ;n(v) which measure the correlations between the cur-
rent and the density in the hydrodynamic limit. For
instance,

ΦQ;1(v) =
ρ(1− ρ)

2
erfc(v) , (149a)

ΦQ;2(v) =
ρ(1− ρ)(1− 2ρ)

2
erfc(v) , (149b)

ΦQ;3(v) =
ρ(1− ρ)(1− 3ρ+ 3ρ2)

2
erfc(v)

− 3
ρ2(1− ρ)2

4
erfc

(
v√
2

)2

. (149c)

These profiles are shown in Fig. 5, and present similar
features to the ones obtained above for the tracer.
The closed integral equations (86), which we have ob-

tained in the context of the study of a tracer, therefore
still apply for another observable, which is the integrated
current through the origin. It is only required to change
the boundary conditions satisfied by Φ at the origin.

C. Another observable: a generalized current

We now consider another observable, which is the gen-
eralised current studied in [9, 10], defined as

Jt(x) =
∑
r≥1

(ηr+x(t)− ηr(0)) . (150)
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FIG. 5. Current in the SEP. Generalised density profiles
(GDP) ΦQ;n(v) describing the correlations between the density
and the current, at orders (a) n = 1 and (b) n = 3, at density
ρ = 0.5. We do not show the profile n = 2 because it is
zero for this density. Solid lines: GDP computed from the
simulations of the SEP, at time t = 900. The averaging is
performed over 108 realisations. Dashed lines: theoretical
predictions (149a,149c).

It measures the difference between the number of particles
to the right of the position x at time t and the number
of particles initially on the positive axis at t = 0. This
quantity can be used to locate a tracer [9, 10], since
Jt(Xt) = 0, which means that the number of particles to
the right of the tracer is conserved.
In order to apply our formalism to this observable,

we consider the time evolution of its cumulant generat-
ing function, ∂t ln

〈
eλJt(x)

〉
. However, when doing so we

encounter one difficulty: for x ̸= 0, J0(x) ̸= 0 and is ran-
dom. This differs from the case of the integrated current
through the origin Qt, for which Q0 = 0, and the case of
the displacement Xt of a tracer, taken by definition to be
X0 = 0. In order to circumvent this problem, we consider
a slightly different observable,

Jt(xt) , with xt = ⌊ξ
√
2t⌋ (151)

the integer part of ξ
√
2t, with a constant ξ which cor-

responds to the large time limit of xt/
√
2t. Since at

t = 0, x0 = 0, this new observable vanishes at initial time,
J0(x0) = 0. We thus consider the cumulant generating
function

ψ̂J(λ) = lim
t→∞

1√
2t

ln
〈
eλJt(xt)

〉
, (152)

and the generalised profiles

wJ;r(t) =

〈
ηxt+r(t)e

λJt(xt)
〉〈

eλJt(xt)
〉 . (153)

Let us first consider the time evolution of the cumulant
generating function. It is the sum of two contributions:

(i) At times tn = (n/ξ)2/2, the increment of xt+n =

xt−n +1 causes a change of Jt(xt), depending on the
occupation ηx

t
−
n
+1 of the site that is ”leaving” the

sum (150) at tn. Therefore,〈
eλJt(xt+ )

〉
=
〈
eλJt(xt− )−ληxt+1

〉
, for t = tn . (154)

Taking the logarithm, and using that ηx = 0 or 1,
we get

ln
〈
eλJt(xt)

〉∣∣∣
t=t+n

= ln
〈
eλJt(xt)

〉∣∣∣
t=t−n

+ ln(1 + (e−λ − 1)wJ;1) . (155)

(ii) Between two increments of xt, the stochastic dy-
namics of the SEP, given by

∂t ln
〈
eλJt(xt)

〉
=

1

2

[
(eλ − 1)

〈
ηx(1− ηx+1)e

λJt(xt)
〉〈

eλJt(xt)
〉

+(e−λ − 1)

〈
ηx+1(1− ηx)e

λJt(xt)
〉〈

eλJt(xt)
〉 ]

, (156)

for t ̸= tn.

We can combine these two contributions, by writing,

∂t ln
〈
eλJt(xt)

〉
=

1

2

[
(eλ − 1)

〈
ηxt

(1− ηxt+1)e
λJt(xt)

〉〈
eλJt(xt)

〉
+(e−λ − 1)

〈
ηxt+1(1− ηxt)e

λJt(xt)
〉〈

eλJt(xt)
〉 ]

+
∑
n

δ(t− tn) ln[1 + (e−λ − 1)wJ;1(t)] , (157)

At large times, we can replace the sum over the delta
functions by the continuous density of jumps, which is
ξ/
√
2t:

∂t ln
〈
eλJt(xt)

〉
=

1

2

[
(eλ − 1)

〈
ηx(1− ηx+1)e

λJt(xt)
〉〈

eλJt(xt)
〉

+(e−λ − 1)

〈
ηx+1(1− ηx)e

λJt(xt)
〉〈

eλJt(xt)
〉 ]

+
ξ√
2t

ln[1 + (e−λ − 1)wJ;1(t)] . (158)

Similarly, we can write the equation satisfied by the time
evolution of the profiles. For instance,

∂twJ;0 =
e−λ − (e−λ − 1)wJ;0

e−λ − 1

(
∂t ln

〈
eλJt(xt)

〉
− ξ√

2t
ln[1 + (e−λ − 1)wJ;1(t)]

)
+
wJ;−1 − wJ;0

2

+
ξ√
2t

(
e−λwJ;1

1 + (e−λ − 1)wJ;1
− wJ;0

)
. (159)

We can now take the hydrodynamic limit, with the scal-
ings

ln
〈
eλJt(xt)

〉
≃

√
2t ψ̂J(λ, ξ) , (160)



18

wJ;r(t) ≃
t→∞

ΦJ

(
v =

r − 1
2√

2t
, ξ, λ

)
, (161)

which we will denote by ΦJ(v) for simplicity. Note that
we have again shifted the positions by 1

2 so that wJ;0
corresponds to ΦJ(0

−) and wJ;1 to ΦJ(0
+). With these

scalings, Eqs. (158,159) yield

ΦJ(0
+)(1− ΦJ(0

−))

ΦJ(0−)(1− ΦJ(0+))
= eλ , (162)

Φ′
J(0

±) = ∓2Ψ

(
1

1− e∓λ
− ΦJ(0

±)

)
, (163)

where we have denoted

Ψ = ψ̂J − ξ ln[1 + (e−λ − 1)ΦJ(0
+)] . (164)

We have noticed that, if we use this new Ψ to define

Ω±(v) = 2Ψ
Φ′
J(v)

Φ′
J(0

±)
, (165)

these functions again verify the closed integral equa-
tions (86), with the same kernel (84). Indeed, the so-
lution (102,103), combined with the boundary conditions
for ΦJ yield

ωJe
ξ2 = ρ−(1−ρ+)(eλ−1)+ρ+(1−ρ−)(e−λ−1) , (166)

and thus

ψ̂J = − 1

2
√
π
Li 3

2
(−ωJ)+ξ ln[1+(e−λ−1)ΦJ(0

+)]. (167)

Combining this expression with the value

(e−λ−1)ΦJ(0
+) = (1+ρ+(e

−λ−1))eZ+(ωJ ,ξ)−1 (168)

obtained from (102) at k = 0, we finally get

ψ̂J(λ, ξ) = ξ ln[1 + (e−λ − 1)ρ+]

−
∑
n≥1

(−ωJeξ
2

)n

2n

(
e−nξ

2

√
nπ

− ξ erfc(
√
nξ)

)
. (169)

This expression coincides exactly with the result of
Ref. [9, 10]. That supports the exactness of our main
equations (86), nonperturbatively in λ.

VII. EXTENSION TO OTHER SINGLE-FILE
SYSTEMS

We now argue that the closed integral equations (86),
which we have derived for the SEP, can be applied to
other models of single-file systems. The applicability of
this equation to the KMP model and the random average
process (see below) was already mentioned in Ref. [13].
Here, we give a detailed analysis of these two models,
including explicit analytical expressions, as well as a new
application to another model of single-file diffusion: the
double exclusion process.

FIG. 6. The different models of single-file diffusion consid-
ered in this paper. (a) The Kipnis-Marchioro-Presutti
(KMP) model. Each site hosts a continuous variable, which
represents an energy or a mass. At random times, a site can
exchange energy with its neighbour such that the total energy
of the two sites is randomly redistributed between the two.
(b) The random average process (RAP). Particles on a
continuous line can hop, at random times, to a random fraction
of the distance to the next particle (either to the left or to the
right). (c) The double exclusion process (DEP). Parti-
cles on a lattice can hop, at random times, in either direction,
only if the two nearest neighbouring sites in that direction
are free. It corresponds to an exclusion model in which the
particles have a volume that occupies two sites (illustrated by
the light gray area represented around the particles).

A. Hydrodynamic description of single-file systems
in terms of two transport coefficients

At large time and large distances, a single-file system
can be described within the framework of fluctuating hy-
drodynamics [31]. The basic idea of this approach is to
describe the system by a density ρ(x, t) and a current
j(x, t), which are both random due to the underlying
stochastic dynamics of the model (e.g. the random hops
of the particles in the SEP). Then, the current j is ap-
proximated by a stochastic perturbation of the average
current,

j = −D(ρ)∂xρ−
√
σ(ρ) η , (170)

where η(x, t) is a Gaussian white noise, with unit variance,
uncorrelated in space and time. The density then evolves
according to the continuity equation

∂tρ = −∂xj = ∂x

[
D(ρ)∂xρ+

√
σ(ρ) η

]
. (171)

All the microscopic details of the models are encoded
into two transport coefficients: the diffusion coefficient
D(ρ) and the mobility σ(ρ). These coefficients can be
conveniently defined for a system of finite size L, placed
between two reservoirs at density ρ1 and ρ2 [32]. We
denote Qt the number of particles transferred from left to
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Model D(ρ) σ(ρ)

Symmetric exclusion process [33] D0 2D0ρ(1− ρ)

Hard Brownian particles [33] D0 2D0ρ

Kipnis-Marchioro-Presutti [34] D0 σ0ρ
2

Random average process [35, 36]
µ1

2ρ2
1

ρ

µ1µ2

µ1 − µ2

Double exclusion process [37, 38]
D0

(1− ρ)2
2D0ρ(1− 2ρ)

1− ρ

TABLE I. The transport coefficients D(ρ) and σ(ρ) for the
different models presented in this paper. D0 is the diffusion
coefficient of an individual particle, σ0 = 2aD0 with a the lat-
tice constant of the KMP model [34], and µk are the moments
of the probability law of the jumps in the RAP [36].

right up to time t. The transport coefficients are defined
from the first two moments of Qt as

lim
t→∞

⟨Qt⟩
t

=
D(ρ)

L
(ρ1 − ρ2) for ρ1 − ρ2 small, (172)

lim
t→∞

〈
Q2
t

〉
t

=
σ(ρ)

L
for ρ1 = ρ2 = ρ. (173)

These coefficients have been computed for various models
of single-file systems. We list in Table I their expressions
for the different models we consider in this paper, and
represented in Fig. 6.

We consider a tracer, at position Xt, which can be
determined from the density ρ(x, t) as [11]∫ Xt

0

ρ(x, t)dx =

∫ ∞

0

(ρ(x, t)− ρ(x, 0)) dx . (174)

This equation expresses that the number of particles to the
right of the tracer is conserved. We define the cumulant
generating function and the generalised profiles

ψ(λ) = ln
〈
eλXt

〉
, wr(λ, t) =

〈
ρ(Xt + r, t)eλXt

〉
⟨eλXt⟩

.

(175)
We also consider another observable, the integrated

current through the origin

Qt =

∫ ∞

0

(ρ(x, t)− ρ(x, 0)) dx . (176)

Its cumulant generating function and the corresponding
profiles are given by

ψQ(λ) = ln
〈
eλQt

〉
, wQ;r(λ, t) =

〈
ρ(r, t)eλQt

〉
⟨eλQt⟩

. (177)

B. Modified equations in the case of constant
diffusion and quadratic mobility

We have obtained a closed equation for the SEP, corre-
sponding to D(ρ) = 1

2 and σ(ρ) = ρ(1− ρ). These results
can be extended to any single-file system with D(ρ) = D0

constant and σ′′(ρ) constant with σ(0) = 0. A procedure
to deduce this model from the SEP is given in Ref. [19].
Here, we only give the resulting equations.

1. For the position of the tracer

At large times, the cumulant generating function of the
position of the tracer behaves as

ψ(λ, t) ∼
t→∞

ψ̂(λ)
√
4D0t . (178)

The generalised profiles (175) also have a diffusive scaling

wr(λ, t) ∼
t→∞

Φ

(
v =

r√
4D0t

, λ

)
. (179)

We again define the functions

Ω±(v) = 2ψ̂
Φ′(v)

Φ′(0±)
, (180)

which now verify the bilinear integral equations

Ω±(v) = K(v)+
σ′′(0)

4D0

∫
R∓

Ω±(v± z)Ω∓(∓z)dz , (181)

equivalent to the linear ones

Ω±(v) = K(v) +
σ′′(0)

4D0

∫
R∓

Ω±(z)K(v − z)dz , (182)

with the kernel still given by Eq. (84). The profile Φ can
then be deduced by integration of Ω±, with the boundary
conditions

Φ′(0±)∓ ψ̂
σ′′(0)

2D0

Φ(0±)

e∓
σ′′(0)λ
4D0 − 1

= 0 , (183)

2σ′(0) + σ′′(0)Φ(0+)

2σ′(0) + σ′′(0)Φ(0−)
= e

σ′′(0)λ
4D0 , Φ(±∞) = ρ± . (184)

The solution of the integral equations (182) can be
straightforwardly deduced from (102,103), and reads

∫ ∞

0

Ω+(v)e
ikvdv =

4D0

σ′′(0)

(
1−

exp

[
−Z+

(
−σ

′′(0)

4D0
ω, ξ − ik

2

)])
, (185)
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∫ 0

−∞
Ω−(v)e

ikvdv =
4D0

σ′′(0)

(
1−

exp

[
−Z−

(
−σ

′′(0)

4D0
ω, ξ − ik

2

)])
, (186)

with Z± given by Eq. (101). In particular, setting k =
±is and letting s → +∞, we obtain the expression of

Ω±(0) = 2ψ̂, thus,

ψ̂ =
2D0

σ′′(0)
√
π
Li 3

2

(
σ′′(0)

4D0
ω

)
. (187)

2. For the current through the origin

Similarly as we did in Section VIB, we can also obtain
similar equations for the study of the integrated current
through the origin (176). The cumulant generating func-
tion scales as

ψQ(λ, t) = ln
〈
eλQt

〉
∼

t→∞
ψ̂Q(λ)

√
4D0t , (188)

and the profiles (177) as

wQ;r(λ, t) ∼
t→∞

ΦQ

(
v =

r√
4D0t

, λ

)
. (189)

Defining Ω± as in (135), these functions again satisfy
the integral equation (182), with a kernel K(v) deduced
from (84) by setting ξ = 0 and replacing ω by ωQ:

K(v) =
ωQ√
π
e−v

2

. (190)

This parameter ωQ can be related to ψ̂Q by

ψ̂Q =
2D0

σ′′(0)
√
π
Li 3

2

(
σ′′(0)

4D0
ωQ

)
. (191)

The profiles can again be deduced by integration of the
solution Ω± of (182), with the boundary conditions

Φ′
Q(0

±) = ∓2ψ̂Q

(
σ′(0)

2D0

1

1− e∓
σ′(0)
2D0

λ
+
σ′′(0)

4D0
ΦQ(0

±)

)
,

(192)

ΦQ(0
+)(2σ′(0) + σ′′(0)ΦQ(0

−))

ΦQ(0−)(2σ′(0) + σ′′(0)ΦQ(0+))
= e

σ′(0)
2D0

λ . (193)

C. The Kipnis Marchioro Presutti model

As a first application of the generalised equation (182),
we consider the Kipnis Marchioro Presutti (KMP)
model [39, 40]. It is a mass transfer model, which de-
scribes a one dimensional lattice where each site contains
a continuous variable which represents a mass. At ran-
dom times, the total mass of two neighbouring sites is

randomly redistributed (uniformly) between the two sites.
See Fig. 6(a). This system is described by the transport
coefficients

D(ρ) = D0 , σ(ρ) = σ0ρ
2 , (194)

with σ0 = 2aD0 where a is the lattice spacing [34]. It is
a model with constant diffusion and quadratic mobility,
so it falls into the category studied in Section VIIB and
we can directly apply the results obtained there.

1. Position of a tracer

The KMP model is not a particle model, but one can
still define the position of a tracer using Eq. (174). It
represents a fictitious wall that separates the system into
two regions in which the mass is conserved.
Following the procedure described in Section VD, we

obtain the cumulants of the position of this tracer. For
instance, in the case ρ+ = ρ− = ρ,

κ̂
(KMP)
2 =

σ0
2D0

√
π
, (195)

κ̂
(KMP)
4 =

(
12 +

(
3
√
2− 8

)
π
)
σ3
0

8D3
0π

3/2
. (196)

We additionally get the generalised density profiles,

Φ
(KMP)
1 (v) =

ρσ0
4D0

erfc(v) , (197)

Φ
(KMP)
2 (v) =

ρσ2
0

4D2
0

(
erfc(v)− 2

π
e−v

2

)
, (198)

Φ
(KMP)
3 (v) =

ρσ3
0

32D3
0

(
2

(
1 +

6

π

)
erfc(v)−24

√
π − v

π3/2
e−v

2

+ 3 erfc

(
v√
2

)2
)
. (199)

These profiles are represented in Fig. 7.

2. Integrated current through the origin

Following an approach similar to Section VIB, we find
that

ωQ =
σ0ρ

2λ2

2D0
, (200)

which, combined with (191) yields

ψ̂
(KMP)
Q (λ) =

D0√
πσ0

Li 3
2

((
σ0ρλ

2D0

)2
)
. (201)
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FIG. 7. KMP. Generalised density profiles Φ
(KMP)
n (v)/ρ at orders (a) n = 1, (b) n = 2 and (c) n = 3 (the density ρ plays no

role in this model). Solid lines: result of the simulations of the KMP model (see Appendix B) at time t = 900 on 500 sites.
Dashed lines: theoretical predictions (197,198,199). (d) GDP-generating function at ρ = 1 and λ = 0.7, obtained from solving
numerically the Wiener-Hopf equation (182) (dashed line), compared to the numerical solution (red solid line) of the MFT
equations (see Section VIII below).

This expression coincides with the one given in [30]. We
additionally obtain the profiles

Φ
(KMP)
Q;1 (v) =

ρ2σ0
4D0

erfc(v) , (202a)

Φ
(KMP)
Q;2 (v) =

ρ3σ2
0

4D2
0

erfc(v) , (202b)

Φ
(KMP)
Q;3 (v) =

3ρ4σ4
0

32D3
0

(
2 erfc(v) + erfc

(
v√
2

)2
)
.

(202c)

Note that, for this model, σ′(0) = 0, so the boundary
condition (192) is ill-defined. We have used the boundary
condition deduced from (192) by taking the limit σ′(0) →
0,

Φ′
Q(0

±) = −2ψ̂Q

(
1

λ
± σ′′(0)

4D0
ΦQ(0

±)

)
. (203)

With this relation, the definitions of Ω± take the form

Ω±(v) = 2ψ̂Q
Φ′
Q(v)

Φ′
Q(0

±)
= −

Φ′
Q(v)

1
λ ± σ′′(0)

4D0
ΦQ(0±)

. (204)

D. The random average process

The random average process (RAP) is a model of parti-
cles on an infinite line, at positions xk(t), with an initial
mean density ρ [35, 41, 42]. Each particle can randomly
jump to a fraction of the distance to the next particle,
either to the left or to the right, with rate 1

2 . See Fig. 6(b).
In the hydrodynamic limit, only the first two moments
µ1 and µ2 of the distribution of this random fraction are
relevant, so that the transport coefficients only depend
on these moments [35, 36]:

D(ρ) =
µ1

2ρ2
, σ(ρ) =

1

ρ

µ1µ2

µ1 − µ2
. (205)

These coefficients do not fall into the category of Sec-
tion VIIB, so we cannot use the integral equation (182)

in this case. However, this model is known to be equiv-
alent to a mass transfer model [35, 41, 43, 44], which,
in the hydrodynamic limit, becomes equivalent to the
KMP model [36], associated with the transport coeffi-
cients (194), with

D0 =
µ1

2
, σ0 =

µ1µ2

µ1 − µ2
. (206)

This duality relation that allows to map a model of single-
file system onto another has recently been extended to
any transport coefficients D and σ [19]. Here, it allows
us to obtain results on the RAP by studying the KMP
model, which obeys the closed equation (182).

Under this duality, the density field ρ(RAP)(x, t) of the
RAP can be expressed in terms of the one of the KMP
ρ(KMP)(k, t) as [19]

ρ(RAP)(xk(t), t) =
1

ρ(KMP)(k, t)
, (207)

with xk(t) the position of the particle with label k at time
t, which can be expressed from the density as

xk(t) = x0(t) +

∫ k

0

ρ(KMP)(k′, t)dk′ , (208)

with x0 the position of the tracer, defined from (174). This
transformation can be inverted, to express the position
x0(t) of the tracer in terms of the density ρ(KMP) [19, 36]:

x0(t) =

∫ 0

−∞
(ρ(KMP)(k′, t)− ρ(KMP)(k′, 0))dk′ . (209)

Thanks to the conservation of the total number of parti-
cles, it can be expressed in terms of the integrated current

Q
(KMP)
t through the origin in the KMP model,

x0(t) = −Q(KMP)
t . (210)

Therefore, one can easily relate the cumulant generating
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functions since

ψ̂(RAP)(λ) = lim
t→∞

1√
4D(ρ)t

ln
〈
eλx0(t)

〉
=

√
D0

D(ρ)
lim
t→∞

1√
4D0t

ln
〈
e−λQ

(KMP)
t

〉
= ρ ψ̂

(KMP)
Q (−λ) . (211)

Note that, due to the relation (207), and the RAP having
mean density ρ, the KMP model has mean density 1/ρ.

The cumulant generating function ψ̂
(KMP)
Q must thus be

evaluated at this density. From (201), this gives

ψ̂(RAP)(λ) =
ρ(µ1 − µ2)

2µ2
√
π

Li 3
2

((
µ2λ

ρ(µ1 − µ2)

)2
)
. (212)

The generalised profiles can be also obtained from the
relation (207). Indeed, in the large time limit, the averages
in Eqs. (175,177) are dominated by a single realisation of
the field ρ(x, t), the typical realisation (see Appendix A).
Since all realisations verify (207), so does the typical one,
which we denote ρ⋆. Hence,

Φ(RAP)

(
v =

r(k)√
4D(ρ)t

)
≃

t→∞
ρ
(RAP)
⋆ (x0(t) + r(k), t)

=
1

ρ
(KMP)
⋆ (k, t)

≃
t→∞

1

Φ
(KMP)
Q (u = k/

√
4D0t)

, (213)

where we have defined

r(k) ≡ xk(t)− x0(t) =

∫ k

0

ρ
(KMP)
⋆ , (214)

which becomes

v(u) =
r(k)√
4D(ρ)t

=

√
D0

D(ρ)

∫ u

0

Φ
(KMP)
Q (u′)du′ . (215)

Together with (213), expanding this relation in powers of
λ, we can compute the profiles of the RAP from the ones
obtained above on the KMP model (202), but evaluated
at the density 1/ρ. This gives for instance

Φ
(RAP)
1 (v) =

µ2

2(µ1 − µ2)
erfc(v) , (216)

Φ
(RAP)
2 (v) =

µ2
2

2πρ(µ1 − µ2)2

(
π erfc(v)2 − 2e−v

2

− 2π

(
1 + v

e−v
2

√
π

)
erfc(v) + 2e−2v2

)
, (217)

Φ
(RAP)
3 (v) =

3

4π2

µ3
1

ρ2(µ1 − µ2)3

(
π2 erfc(v)3+2

√
πve−3v2

− π2

(
4 +

2v(3− v2)√
π

e−v
2

)
erfc(v)2 + 2(4π +

√
πv)e−v

2

+(2π2+2π(3−2v2)e−2v2+2π(2v2+4
√
πv−3)e−v

2

) erfc(v)

− 4(2π +
√
πv)e−2v2

)
. (218)

These profiles are represented in Fig. 8.

E. The double exclusion process

The double exclusion process (DEP) is an exclusion
process in which the particle on site k can jump to site
k + 1 only if sites k + 1 and k + 2 are empty or to site
k − 1 only if sites k − 1 and k − 2 are empty [45]. It thus
corresponds to an exclusion process with particles that
occupy the volume of two sites. See Fig. 6(c). By imposing
that the n neighbouring sites must be empty, we can also
more generally define a n-exclusion process. These kind
of models have for instance been used to model biological
systems [46]. Here we focus on the double exclusion case,
but the following can be adapted to n-exclusion. We
consider annealed initial conditions for the DEP of mean
density ρ, namely particles are placed at random among
configurations where there is at least one empty site in
front of each particle (note that necessarily ρ ≤ 1/2). The
transport coefficients of the DEP are [37, 38]

D(ρ) =
D0

(1− ρ)2
, σ(ρ) = 2D0

ρ(1− 2ρ)

1− ρ
. (219)

We can map the SEP to the DEP at the microscopic
level by adding a site in front of every particle. This
mapping can also be performed at the macroscopic level
[19]. Here we summarize the main ideas of the mapping,
which we perform in the reference frame of the tracer
particle.

At the macroscopic level, let us denote, with x = r/
√
t,

Φ(SEP)(x) ≃
t→∞

〈
η
(SEP)
Xt+r

eλXt

〉
⟨eλXt⟩

, (220)

Φ(DEP)(x) ≃
t→∞

〈
η
(DEP)
Xt+r

eλXt

〉
⟨eλXt⟩

. (221)

A relation between these two profiles can be obtained
in the following way. If we look at a position x in the
SEP (in the reference frame of the tracer particle), it will
correspond to a position x+ n(x) in the DEP, with n(x)
the number of particles in the SEP between the tracer
(at position Xt) and the position Xt + x, which is thus
the number of sites added to go to the DEP. It can be
written as

n(x) =

∫ x

0

Φ(SEP)(z)dz . (222)
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FIG. 8. RAP. Generalised density profiles Φ
(RAP)
n (v)ρn−1 at orders (a) n = 1, (b) n = 2 and (c) n = 3 (the density ρ plays no

role in this model). Solid lines: result of the simulations of the RAP (see Appendix B) at time t = 4000 with 5000 particles.
Dashed lines: theoretical predictions (216,217,218). (d) GDP-generating function at ρ = 1 and λ = 0.33, obtained from solving
numerically the Wiener-Hopf equation (182) and using the mapping (213) (dashed line), compared to the numerical solution
(red solid line) of the MFT equations (see Section VIII below).

Next, we need to relate the density of particles in the SEP
and in the DEP at that position. If the microscopic SEP is
at a local density ρSEP = N

L (N particles on L sites), then
when we map to the DEP by adding a site in front of each
particle, the density becomes ρDEP = N

L+N = ρSEP

1+ρSEP
.

Writing this relation for the generalised profiles yields

Φ(DEP)(x+ n(x)) =
Φ(SEP)(x)

1 + Φ(SEP)(x)
. (223)

This relation holds because, in the long time limit, the
averages in (220,221) are dominated by a single realisa-
tion of the density for each model, and these densities
verify (223).

We can expand (223) in orders of λ to get the general-
ized density profiles for the DEP from those of the SEP
given in Section VE2. At lowest orders, we get

Φ
(DEP)
0 (x) =ρ , (224)

Φ
(DEP)
1 (x) =

1

2
(1− ρ)(1− 2ρ)erfc(v) , (225)

Φ
(DEP)
2 (x) =

(1− ρ)(1− 2ρ)

4πρ

(
2
√
πρ(1− 2ρ)v e−v

2

erfc(v)

− 2ρ(1− 2ρ)e−2v2 − 2(1− 2ρ)(2− ρ)e−v
2

+π erfc(v)((2ρ− 1)ρ erfc(v)− 3ρ+ 1)) ,
(226)

where v = x/
√
4D(ρ) = x(1 − ρ)/

√
4D0. The profile

Φ
(DEP)
3 can be written similarly, but the expression is

rather cumbersome so we do not reproduce it here. These
profiles are represented in Fig. 9.

VIII. COMPARISON WITH THE RESULTS
OBTAINED BY INVERSE SCATTERING

Since the publication of [13], several works have ob-
tained exact results for the integrated currents in differ-
ent single-file systems [14–16] with a quadratic mobility
σ(ρ). As we show below, these solutions can also be

used to obtain information about the generalised density
profiles, which characterise the correlations between the
current and the density of particles. Importantly, all
these results on single-file diffusion can be recast into
the equation (181). In this Section we demonstrate that
the details of the problem under consideration are only
encoded in the kernel K.

Note that this equation in the Fourier domain also ap-
peared in Ref. [27] in a different context, for the study
of the Kardar-Parisi-Zhang (KPZ) equation (see Sec-
tion VIIIC).
The works [14–17] rely on the formalism of Macro-

scopic fluctuation theory (MFT), which is a deterministic
rewriting of the fluctuating hydrodynamics presented in
Section VIIA. In this formalism, all amounts to the reso-
lution of the MFT equations

∂tq = ∂x[D(q)∂xq]− ∂x[σ(q)∂xp] , (227)

∂tp = −D(q)∂2xp−
1

2
σ′(q)(∂xp)

2 , (228)

where p is a conjugate field introduced to enforce the
continuity relation (171). Actually, the MFT solution at
final time q(x, T ) coincides with the generalised density
profile (177), as we show in Appendix A,

Φ(v) = q(x =
√
2v, t = T ) . (229)

The knowledge of the MFT solution q(x, t) therefore al-
lows the determination of the profile Φ(v). Until recently,
the MFT equations had only been solved for the model of
hard Brownian particles [11] (corresponding to a linear σ).
The recent works [14–16] constitute major achievements
in the context of MFT: by applying the inverse scattering
method [18], the authors have solved these equations for
a quadratic σ. For a related system of equations, a break-
through had been performed previously in the study of
the weak noise theory of the KPZ equation [27]. Actually,
we show in Section VIIIC that the solution obtained in
the recent work [17], which encompass the previous re-
sults both on MFT [14–16] and on the KPZ equation [27],
can also be rewritten in terms of the equation (181). Re-
lated equations also arise in mean field games, see for
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FIG. 9. Generalised density profiles Φ
(DEP)
n (v) at orders (a) n = 1, (b) n = 2 and (c) n = 3 at density ρ = 0.25. Solid

lines: result of the simulations of the DEP (see Appendix B) at time t = 3000 on 20000 sites. Dashed lines: theoretical
predictions (225,226). (d) GDP-generating function at ρ = 0.25 and λ = 0.4, obtained from solving numerically the Wiener-Hopf
equation (182) and using the mapping (223) (dashed line), compared to the numerical solution (red solid line) of the MFT
equations (see Section VIII below).

instance [47] in which the conserved quantities of similar
equations are characterised.

A. Comparison with Bettelheim, Smith and
Meerson

In Ref. [14], Bettelheim, Smith and Meerson have solved
the MFT equations (227,228) for the KMP model (see
Section VIIC), corresponding to

D(ρ) = 1 , σ(ρ) = 2ρ2 , (230)

for a specific initial condition

q(x, 0) =W δ(x) . (231)

Unlike our study on the SEP, which was performed on a
fluctuating initial condition picked from the equilibrium
distribution (annealed), this is a fixed initial condition
(quenched), which corresponds to having a massW placed
on site 0 at t = 0.

They have obtained that the Fourier transforms of the
MFT profile at final time T (taken to be T = 1 without
loss of generality),

Q±(k) = −λ
∫
R±

q(−z, 1)eikzdz (232)

satisfy the following closed equation [14]

ik(Q+(k) +Q−(k))− (ik)2Q+(k)Q−(k) = −λike−k
2

.
(233)

In order to make the link with Eq. (181), we perform an
integration by parts in the definition (232),

ikQ±(k) = ±λq(0∓, 1)+(1∓λq(0∓, 1))Ω̂∓ (−2k) , (234)

with

Ω̂±(k) =

∫
R±

eikvΩ±(v)dv , (235)

where we have used the definition given previously for

Ω±(v) = −2
∂vq(x = 2v, 1)
1
λ ± q(0±, 1)

, (236)

which is identical to our previous definition of Ω± for
the KMP model (204). With the relation (234), the
equation (233) becomes

Ω̂+(k) + Ω̂−(k)− Ω̂+(k)Ω̂−(k) =
1

2
λike−k

2/4 , (237)

where we have used that

(1 + λq(0+, 1))(1− λq(0−, 1)) = 1 , (238)

which is given in the Supplementary Material of Ref. [14]
and is equivalent to (193). Taking the inverse Fourier
transform of (237), we obtain the bilinear equations (181),
with the kernel

K(v) = λ
v e−v

2

√
π

. (239)

Finally, the work of Bettelheim and collaborators is a
proof that the Eq. (181) also describes the generalised
density profiles for the flux in the KMP model, with the
quenched initial condition (231).

Recently Bettelheim et al have extended their inverse
scattering resolution of the MFT equations to the case of
the generalised current defined in Section VIC. Follow-
ing the same derivation as above, we can show that the
Eq. (181) still holds for this observable, with the kernel

K(v) = λ(v − ξ)
e−(v−ξ)2

√
π

, (240)

with ξ defined in Section VIC. This further extends the
range of applications of Eq. (181).

B. Comparison with Mallick, Moriya and Sasamoto

Soon after the work of Bettelheim et al, Mallick, Moriya
and Sasamoto have solved the MFT equations for the
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SEP [16], corresponding to

D(ρ) = 1 , σ(ρ) = 2ρ(1− ρ) , (241)

using the inverse scattering method. As we proceed to
show, they provide a proof that our Eq. (83) for the
integrated current in the SEP is exact, as claimed in
Section VIB.

In [16], an equation is obtained for the derivative of the
MFT profile at final time

û±(k) =

∫
R∓

u(x, T )e−2ikx , u(x, T ) ∝ ∂xq(x, T ) ,

(242)
which reads

û+(k) + û−(k) + û+(k)û−(k) = ωQe
−4k2T , (243)

with ωQ given by (148). In fact, it can be shown that

u(x, T ) = ± ∂xq(x, T )
1

1−e∓λ − q(0±, T )
, for x ≷ 0 , (244)

which corresponds to

u(x, T ) =
1

2
√
T
Ω±

(
v =

x√
4T

)
, (245)

with the definition of Ω± (135) and the boundary condi-
tions (142,143). In the Fourier domain, this yields

Ω̂±(k) =

∫
R±

eikvΩ±(v)dv = û∓

(
− k

4
√
T

)
. (246)

With these relations, Eq. (243) becomes

Ω̂+(k) + Ω̂−(k) + Ω̂+(k)Ω̂−(k) = ωQe
−k2/4 . (247)

Taking the inverse Fourier transform, we get that Ω±
satisfy the equations (83), equivalent to (86), with the
kernel K given by (136).
The work of Mallick and collaborators [16] therefore

proves that the closed integral equations (86) which we
have obtained from a guess (see Section VA and Ref. [13]),
are indeed exact.

Interestingly, Mallick et al have also obtained an exact
expression for a different observable: the MFT profile at
initial time t = 0. Indeed, it is not an initial condition
because we consider an annealed situation: the SEP is at
equilibrium at t = 0, so the occupations of the sites ηi(0)
are random. These occupations are also correlated with
the current at time T . For instance, a fluctuation of the
initial condition that has more particles on the left of 0
than on the right will relax with time, leading to a higher
current than on average. This is what measures the MFT
profile at t = 0. More explicitly, it can be shown (see
Appendix A) that

q(x, t = 0) =

〈
ηr(0)e

λQT
〉

⟨eλQT ⟩
, x =

r√
T
. (248)

Defining similarly

Ω̄(v) = ∓ωQ
A±

∂xq(x, 0) for v ≷ 0 , v =
x√
4T

, (249)

with ωQ given by (148) and

A± = σ(ρ±)
e∓λ − 1

2

√
1 + (e±λ − 1)ρ∓
1 + (e∓λ − 1)ρ±

. (250)

It can be shown that this function obeys the exact same
equation (83), with the same kernel K (136). This pro-
vides one more observable for which this Wiener-Hopf
equation holds.

C. Comparison with Krajenbrink and Le Doussal

Before the inverse scattering technique was applied to
the MFT equations, Krajenbrink and Le Doussal have
successfully used it to solve the weak noise theory of
the Kardar-Parisi-Zhang (KPZ) equation [27, 48]. More
recently, they have constructed a system of equations
which interpolates between the one of the weak noise
KPZ equation and the MFT equations of the KMP model
(or more generally, models with a quadratic σ(ρ)) [17],

∂tQ = ∂2xQ+ 2β∂x(Q
2R) + 2gQ2R , (251)

∂tR = −∂2xR− 2β∂x(QR
2) + 2gQR2 , (252)

with initial and terminal boundary conditions

Q(x, 0) = δ(x) , R(x, 1) = Λ δ(x) . (253)

In the MFT context, these conditions arise for any model
with quadratic σ(ρ) for annealed initial conditions around
a step density profile [17]. For β = 0 these equations ap-
pear in the weak noise theory of the KPZ equation, solved
in [27], while for g = 0 and β = −1, these correspond to
the MFT equations of the KMP model solved in [14].
We now check that the solution obtained in [17] can

be rephrased into the Wiener-Hopf equation (181), with
a kernel written below. In Ref. [17], it is shown that the
half Fourier transforms,

Q̂±(k) =

∫
R±

Q(x, 1)e−ikxdx , (254)

satisfy the equation

(1− αQ̂−(k))(1− αQ̂+(k)) = 1− α e−k
2

, (255)

with α = (g + iβk)Λ. Since the system of equa-
tions (251,252) no longer describes only MFT equations,
we have to extend the definition of Ω± involved in the
desired Wiener-Hopf equation, as

Ω±(v) = −Λ
g + β∂x

1∓ ΛβQ(0±, 1)
Q(x = 2v, 1) . (256)
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Taking the Fourier transform of this definition, it gives
the relation

Λ(g + iβk)Q̂±(k) = ±ΛβQ(0±, 1)

− (1∓ ΛβQ(0±, 1))Ω̂±(−2k) . (257)

Which, combined with Eq. (255), yields

Ω̂+(k) + Ω̂−(k) + Ω̂+(k)Ω̂−(k) = −Λ

(
g − iβ

k

2

)
e−

k2

4 ,

(258)
where we have used that [17]

(1− βΛQ(0+, 1))(1 + βΛQ(0−, 1)) = 1 . (259)

Taking the inverse Fourier transform, we obtain that Ω±
are solution of the bilinear equations (181), with the kernel

K(v) = − Λ√
π
(g − βv)e−v

2

. (260)

In particular, for β = 0, describing the weak noise the-
ory of the KPZ equation, the Wiener-Hopf equations (181)
are also involved, as previously obtained in [27].

IX. CONCLUSION

In this paper, we have provided details on the derivation
of the Wiener-Hopf equations for the correlation profiles
in the SEP, either in their bilinear form (83) or their
linear form (86), obtained in [13]. We have showed that
this exact same equation applies to other situations and
models of single-file diffusion, such as the KMP model
which is not a model of particles but a mass transfer
model, and the random average process which is a model
of particles hopping on the continuous line. We have
also presented a new application to the double exclusion
process, which is a lattice model in which the particles
have a volume which occupies two sites. The fact that
this equation applies to such a variety of models points
towards its universality.
We have compared our approach with the recent re-

sults obtained by using the inverse scattering method [14–
17, 27], and shown that these results can be rephrased
into the same Wiener-Hopf equation (86), upon modifica-
tion of the kernel K. This further emphasises the wide
range of applications of this equation, and makes it a
new promising tool to investigate further questions in
single-file diffusion and beyond.

Appendix A: Computations at lowest orders from
Macroscopic Fluctuation Theory

Macroscopic Fluctuation Theory [49–53] is a coarsed-
grained description of a single-file system at large time
and large distances. The system is then described by a

continuous density field ρ(x, t), which evolves stochasti-
cally in time. All the microscopic details of the model
are encoded in the two transport coefficients D(ρ) and
σ(ρ) defined in Section VIIA. For the SEP, D(ρ) = 1

2
and σ(ρ) = ρ(1− ρ). The probability to evolve from an
initial profile ρ(x, 0) to a final profile ρ(x, T ) at time T
is given by the functional integral over the all the possi-
ble time evolutions, and over a conjugate field H which
enforces the continuity relation between the current and
the density [30]:

P(ρ(x, 0) → ρ(x, T )) =

∫
D[ρ(x, t)]D[H(x, t)] e−S[ρ,H] ,

(A1)
where the action S reads

S[ρ,H] =

∫ ∞

−∞
dx

∫ T

0

dt

(
H∂tρ+D(ρ)∂xρ∂xH

− σ(ρ)

2
(∂xH)2

)
. (A2)

The initial condition is also random, and distributed as

P[ρ(x, 0)] ≃ e−F [ρ(x,0)] , (A3)

where

F [ρ(x, 0)] =

∫ ∞

−∞
dx

∫ ρ(x,0)

ρ0(x)

dz
2D(z)

σ(z)
(ρ(x, 0)−z), (A4)

and ρ0(x) is the mean density of the system at position
x at t = 0.
This formalism has been used to compute the first cu-

mulants of a tracer in Ref. [11]. The cumulant generating
function can indeed be expressed as

〈
eλXT

〉
≃
∫

D[ρ(x, 0)]

∫
D[ρ(x, t)]D[H(x, t)]

exp [−(S[ρ,H] + F [ρ(x, 0)]− λXT [ρ])] , (A5)

where XT [ρ] is the position of the tracer at time T , ob-
tained from the density field ρ(x, t) by imposing conser-
vation of the density to the right of the tracer,∫ XT [ρ]

0

ρ(x, T )dx =

∫ ∞

0

(ρ(x, T )− ρ(x, 0)) dx . (A6)

By rescaling the time t by T and the position x by√
T , one can see that the terms in the exponential in

Eq. (A5) are proportional to
√
T . Therefore, for large

T , the functional integrals are dominated by the optimal
realisation (q, p) of the fields (ρ,H) which minimize the
action S + F − λXT . This yields the equation [11]

∂tq = ∂x[D(q)∂xq]− ∂x[σ(q)∂xp] , (A7)

∂tp = −D(q)∂2xp−
1

2
σ′(q)(∂xp)

2 , (A8)
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with the condition at t = T for p,

p(x, t = T ) = B Θ(x−XT [q]) , B =
λ

q(Y, T )
, (A9)

and the initial condition for q, expressed in terms of
p(x, t = 0):

p(x, 0) = B Θ(x) +

∫ q(x,0)

ρ0(x)

dr
2D(r)

σ(r)
, (A10)

with ρ0(x) the mean initial profile.

As shown in Ref. [12], the generalised density profiles (4)
can be also be computed using MFT, since

wr(λ, T ) ≃

∫
D[ρ(x, 0)]

∫
D[ρ(x, t)]D[H(x, t)] ρ(XT [ρ] + r, T ) e−(S[ρ,H]+F [ρ(x,0)]−λXT [ρ])∫

D[ρ(x, 0)]

∫
D[ρ(x, t)]D[H(x, t)] e−(S[ρ,H]+F [ρ(x,0)]−λXT [ρ])

. (A11)

Evaluating again the integrals with a saddle point estimate
for T → ∞, we find the same optimal fields (q, p), and
thus

wr(λ, T ) ≃ q(XT [q] + r, T ) = Φ

(
v =

r√
2T

, λ

)
. (A12)

The goal is to compute the profile q(x, T ) of MFT at lowest
orders in λ and deduce the corresponding profiles Φ. We
only consider the case of the SEP, which corresponds to
the coefficients D(ρ) = 1/2 and σ(ρ) = ρ(1 − ρ). As in
Ref. [11], we solve perturbatively the MFT equations by
expanding them in powers of the parameter B, defined
in (A9), as

p(x, t) =
∑
n≥1

Bnpn(x, t) , q(x, t) =
∑
n≥0

Bnqn(x, t) .

(A13)
We also define

Y = XT [q] =
∑
n̸=1

BnYn . (A14)

We now distinguish two cases, depending on the initial

condition, and we set T = 1 without loss of generality.

1. Flat initial density

We consider the case of a flat initial mean density
ρ0(x) = ρ. The solution for the lowest orders has been
computed in [11], and reads

q0(x, t) = ρ , (A15)

p1(x, t) =
1

2
erfc

(
−x√

2(1− t)

)
, (A16)

q1(x, t) =
ρ(1− ρ)

2

[
erfc

(
−x√

2(1− t)

)
− erfc

(
−x√
2t

)]
,

(A17)

Y1 =

√
2

π
(1− ρ) , (A18)

p2(x, t) = −Y1K(x|1− t) +
1− 2ρ

8
erfc

(
x√

2(1− t)

)
erfc

(
−x√

2(1− t)

)
, Y2 = 0 , (A19)

q2(x, t) =
ρ(1− ρ)(1− 2ρ)

4

[
erfc

(
x√
2t

)
+ erfc

(
x√
2t

)
erfc

(
x√

2(1− t)

)
− 4Y1

1− 2ρ
K(x|1− t)

]
, (A20)

p3(x, t) =
(1− 2ρ)2

24

[
− erf

(
x√

2(1− t)

)
erfc

(
−x√

2(1− t)

)
− 12Y1

1− 2ρ
K(x|1− t)

]
erfc

(
x√

2(1− t)

)

− 1

2

(
Y 2
1 x

1− t
+ (2ρ− 1)Y1

)
K(x|1− t) + u(x, t) , (A21)
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q3(x, t) =
ρ(1− ρ)(1− 2ρ)2

12

[
erfc

(
x√
2t

)
− erfc

(
x√

2(1− t)

)]

+
ρ(1− ρ)

2
Y1K(x|1− t)

(
− x

1− t
Y1 + (1− 2ρ)− (1− 2ρ) erfc

(
x√
2t

))
+ h(x, t) , (A22)

where

K(x|t) = e−
x2

2t

√
2πt

(A23)

is the heat kernel, u(x, t) and h(x, t) satisfy the following
inhomogeneous heat equations

∂tu = −1

2
∂2xu+ q1(∂xp1)

2 , (A24)

∂th =
1

2
∂2xh− ρ(1− ρ)∂2xu+ ∂x(q

2
1∂xp1) , (A25)

with the boundary conditions

u(x, 1) = 0 , (A26)

h(x, 0) = − 1

3ρ(1− ρ)
q1(x, 0)

3 + ρ(1− ρ)u(x, 0) . (A27)

In Ref. [11], these equations were not computed analyti-
cally, but instead studied numerically in order to compute
the fourth cumulant κ̂4. These equations can actually be
studied to obtain the solution u(x, t = 1) at final time,
which is the only time we need to get Φ, as shown in
Eq. (A12). We make the transformation

h(x, t) = − 1

3ρ(1− ρ)
q1(x, t)

3 + ρ(1− ρ)u(x, t)

+ ρ2(1− ρ)2h̃(x, t) , (A28)

inspired by the form of the initial condition (A27). By
combining the equations (A24,A25), we obtain an equa-

tion on h̃ only:

∂th̃ =
1

2
∂2xh̃− 1

ρ3(1− ρ)3
q1 (∂xq1 − ρ(1− ρ)∂xp1)

2
,

(A29)
which explicitly gives

∂th̃ =
1

2
∂2xh̃

− e−
x2

t

4πt

[
erfc

(
x√

2(1− t)

)
− erfc

(
x√
2t

)]
, (A30)

with h̃(x, 0) = 0 by construction. The solution can be

written as the sum of two terms h̃(x, t) = h̃1(x, t)+h̃2(x, t),

where

h̃1(x, t) = −
∫ ∞

−∞
dy

∫ t

0

dt′K(x− y|t− t′)

e−
y2

t′

4πt′
erfc

(
y√

2(1− t′)

)
, (A31)

h̃2(x, t) =

∫ ∞

−∞
dy

∫ t

0

dt′K(x− y|t− t′)

e−
y2

t′

4πt′
erfc

(
y√
2t′

)
. (A32)

Let us first consider the function h̃1. In order to compute
it, we introduce another function,

H̃1(x, t;Y ) = −
∫ ∞

−∞
dy

∫ t

0

dt′K(x− y|t− t′)

e−
y2

t′

4πt′
erfc

(
y − Y√
2(1− t′)

)
, (A33)

so that H̃1(x, t; 0) = h̃1(x, t). Since we only need to
compute the profile at final time t = 1 thanks to (A12),

we will focus on H̃1(x, t;Y ). Taking a derivative with
respect to Y and performing the Gaussian integrals over
y, we obtain

∂Y H̃1(x, 1;Y ) = −
∫ 1

0

dt′
e
− (2−t′)x2+2t′xY +(2−t′)Y 2

4(1−t′)

4π3/2
√
t′(1− t′)

.

(A34)
This integral can be evaluated by Mathematica (upon
performing the change of variables t′ → 1− t′), and reads

∂Y H̃1(x, 1;Y ) = −e−
1
4 (x+Y )2

4
√
π

erfc

(
|x− Y |

2

)
. (A35)

We can then integrate over Y to obtain

h̃1(x, 1) = −
∫ 0

−∞

e−
1
4 (x+Y )2

4
√
π

erfc

(
|x− Y |

2

)
dY . (A36)

This last integral can be performed using the using the
tables given in [24], and we obtain, for x > 0,

h̃1(x, 1) =
1

4
erfc

(
x√
2

)
− 1

8
erfc

(x
2

)2
. (A37)
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For h̃2 (A32), we can perform the integral over y using
again [24],

h̃2(x, 1) =

∫ 1

0

dt′
e−

x2

2−t′

4π
√
t′(2− t′)

erfc

(
x

√
t′

(2− t′)(6− 4t′)

)
. (A38)

We have not been able to evaluate this integral analytically.
However, this representation allows for a very precise
numerical computation, for various values of x. We have
thus used a semi-numerical procedure to evaluate this
integral, which we now discuss. We have computed a
list of values of h̃2(x, 1) for 100 points between 0.1 and 2.
Fitting this list of points with a few functions we expect
to find, such that powers of erfc( x√

2
), we obtain

h̃2(x, 1) ≃ 0.16666666666666677 erfc

(
x√
2

)
+ 8.21189× 10−16 erfc

(
x√
2

)2

− 0.041666666666667136 erfc

(
x√
2

)3

. (A39)

This is a numerical result, which we can consider to yield
an analytical result, since

0.16666666666666677− 1

6
≃ 1.11× 10−16 , (A40)

0.041666666666667136− 1

24
≃ 4.72× 10−16 , (A41)

which are of the same order as the precision of the nu-
merical evaluation of the integral (A38). Therefore, we

consider that

h̃2(x, 1) =
1

6
erfc

(
x√
2

)
− 1

24
erfc

(
x√
2

)3

, (A42)

for x > 0 (since the fit is performed on positive values of
x). Combining these expressions with the definition (A28),
we obtain for x > 0,

h(x, 1) =
1

12
erfc

(
x√
2

)
− 1

8
erfc

(x
2

)2
. (A43)

Using a similar approach for x < 0, we finally find that

h(x, 1) = sign(x)

(
1

12
erfc

(
|x|√
2

)
− 1

8
erfc

(
|x|
2

)2
)
.

(A44)
Combined with the expression (A22), this completes the
resolution of the MFT equations (at t = 1) at order 3 in
λ.

Note that, in this procedure, we have used a fit to deter-
mine an integral, so the result is not fully analytic. This
expression is used to obtain (49) in the main text, from
which is deduced (51). Nevertheless, this last equation
can be obtained fully analytically by considering the case
of a step initial density (see below), from which (56) is
deduced.

The last step is to relate B and λ. This cannot be done
from the relation (A9) because q(x, T ) is discontinuous at
x = Y . In Ref. [11], the relation between these parameters
was obtained by optimising the action with respect to
B. This procedure is rather complex, so here we use a
shortcut. Y = XT [q] is the position of the tracer in the
optimal configuration q. From the fonctional integral, it
is given by

XT [q] ≃

∫
D[ρ(x, 0)]

∫
D[ρ(x, t)]D[H(x, t)]XT [ρ] e

−(S[ρ,H]+F [ρ(x,0)]−λXT [ρ])∫
D[ρ(x, 0)]

∫
D[ρ(x, t)]D[H(x, t)] e−(S[ρ,H]+F [ρ(x,0)]−λXT [ρ])

≡
〈
XT eλXT

〉
⟨eλXT ⟩

=
d

dλ
ln
〈
eλXT

〉
, (A45)

which is the derivative of the cumulant generating function
of XT , computed in [9, 10]. This result directly gives the
expansion of Y = XT [q] in powers of λ, which combined
with (A14) yields

B =
λ

ρ
+

(
(1− ρ)2

πρ3
− (1− ρ)(1− 2ρ)

6ρ3

)
λ3 +O(λ4) .

(A46)
Finally, using the relation (A12) between q and Φ, we

obtain for the first orders

Φ(v) = ρ+ λ
1− ρ

2
erfc(v)

+ λ2
(
(1− ρ)(1− 2ρ)

4ρ
erfc(v)− 1− ρ

πρ
e−v

2

)
+λ3

(
(1−ρ)2(3 + π)ρ2 − (12 + π)ρ+ 6 + πρ(1− ρ)

12πρ2
erfc(v)

+ (1− ρ)2
2(1− ρ)v −

√
π(1− 2ρ)

2π3/2ρ2
e−v

2

− (1− ρ)2

8ρ
erfc

(
v√
2

)2
)

+O(λ4) , (A47)
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for v > 0. The expression for v < 0 can be deduced by
replacing v → −v and λ→ −λ.

2. Step initial density

We now consider the case of an initial step density

ρ0(x) =

{
ρ+ for x > 0 ,
ρ− for x < 0 .

(A48)

At lowest order, the MFT equations give

q0(x, t) =
ρ+
2

erfc

(
− x√

2t

)
+
ρ−
2

erfc

(
x√
2t

)
, (A49)

from which we deduce Y0 solution of∫ Y0

0

q0(x, 1)dx =

∫ ∞

0

(q0(x, 1)− q0(x, 0)) dx . (A50)

At first order, we get

p1(x, t) =
1

2
erfc

(
Y0 − x√
2(1− t)

)
, (A51)

while q1 is solution of

∂tq1 =
1

2
∂2xq1 − ∂x(q0(1− q0)∂xp1) , (A52)

with

q1(x, 0) = q0(x, 0)(1− q0(x, 0))(p1(x, 0)−Θ(x)) . (A53)

We define

q1(x, t) = q0(x, t)(1− q0(x, t))p1(x, t) + q̃1(x, t) , (A54)

which is solution of

∂tq̃1 =
1

2
∂2xq̃1 − (∂xq0)

2p1 , (A55)

with

q̃1(x, 0) = −ρ+(1− ρ+)Θ(x) . (A56)

The equation can be solved by treating Y0, which appears
in p1, as a parameter, and differentiating with respect to
Y0. This gives, for t = 1:

∂Y0
q̃1(x, 1) =

(ρ+ − ρ−)
2

4
√
π

e−
1
4 (x+Y0)

2

erfc

(
|x− Y0|

2

)
.

(A57)
Integrating over Y0, and adding the contribution of the
initial condition, we finally get

q1(x, t = 1) = q0(x, 1)(1− q0(x, 1))Θ(x− Y0)

− (ρ+ − ρ−)
2

∫ ∞

Y0

dz

4
√
π
e−

1
4 (x+z)

2

erfc

(
|x− z|

2

)
− ρ+(1− ρ+)

2
erfc

(
− x√

2t

)
. (A58)

Since q0 is continuous, we can actually use (A9) to deduce

B =
λ

q0(Y0, 1)
+O(λ2) , (A59)

which combined with (A45) yields Y1 =
√
2κ̂2q0(Y0, 1).

Finally, from (A12) we get

Φ0(v) =
ρ+
2

erfc(−v − κ̂1) +
ρ−
2

erfc(v + κ̂1) , (A60)

with κ̂1 = Y0/
√
2, and

Φ1(v) = κ̂2Φ
′
0(v) +

1

Φ0(0)
Φ0(v)(1− Φ0(v))

− ρ+(1− ρ+)

2Φ0(0)
erfc(−v − κ̂1)

− (ρ+ − ρ−)
2

Φ0(0)

∫ ∞

0

dz

2
√
2π

e−
1
2 (v+2κ̂1+z)

2

erfc

(
|v − z|√

2

)
,

(A61)

where the second cumulant κ̂2 is given in [9, 10], but its
exact value is not required here, since the term involving
κ̂2 will cancel in (56).

Appendix B: Numerical simulations

Here we provide some details on the microscopic sim-
ulations performed for the different systems presented
in the paper. Most of these explanations were already
presented in Refs. [12, 13].

1. Symmetric exclusion process

The SEP simulations are performed on a periodic ring
of size L = 5000 sites, with N = ρL particles at average
density ρ. The particles are initially placed uniformly at
random. The particle jumps are implemented as follows: a
particle is chosen uniformly at random, with one direction
(left and right with equal probabilities). If the chosen
particle has no neighbour in this direction, the jump
is performed, otherwise it is rejected. In both cases,
the simulation time is incremented by a random number
chosen from an exponential distribution of rate N .
We iterate this process until the wanted final time is

reached. We keep track of a particle (the tracer) and calcu-
late the moments of its displacement and the generalized
density profiles.

2. Kipnis-Marchioro-Presutti model

On each site of a periodic lattice of length L = 500, we
place a continuous energy variable εi > 0. The variables
are initialized according to the equilibrium measure, which
is a product of exponential laws of parameter ρ = 1
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(the variables represent energies, so this corresponds to
a Boltzmann distribution). Similarly as in the SEP, we
choose a site n according to the uniform distribution on
integers between 1 and L, then we compute the sum of
energy variables at sites n and n + 1 and we randomly
redistribute it between these sites. The first site receives a
random fraction of the energy sampled from the uniform
distribution on the real interval [0, 1] and the other site
receives the remainder. The simulation time is increment
by a random number following an exponential distribution
of rate L.
Initially we define the position of the tracer to be 0.

We fix a site b = ⌊L/2⌋ and we denote e the sum of the
variables on sites between 0 and b at initial time. At
further times, the position of the tracer is the site x such
that the sum of the variables on sites between x and b
plus the total current (since initial time) between sites
b and b + 1 is equal to e. If x is greater than b + 1 we
count the variables negatively. This corresponds to the
definition (A6) in the hydrodynamic description in the
limit of large L. We averaged the observables of interest
over 109 simulations.

3. Random-average process

To simulate the RAP, we place N = 10000 particles
at positions xi on a periodic ring of length L = 10000.
When a particle jumps in a given direction, it travels a
random fraction following the uniform law on [0, 1] of the
distance to the next particle. At equilibrium, the particles
are distributed according to the following law [44], where
we define the gaps gi = xi+1 − xi.

PN,L({gn}) ∝
N∏
n=1

1
√
gn

δ

(
N∑
n=1

gn − L

)
. (B1)

This can be rephrased in terms of variables Gn =
√
gn.

The vector (G1, . . . , GN ) is uniformly distributed on the

N -dimensional sphere of radius
√
L. To sample this distri-

bution, we simply draw N independent gaussian variables
Xi with zero mean and unit variance and we consider

gi = G2
i = L

X2
i

N∑
n=1

X2
n

. (B2)

The data we use in our plots have been averaged from
8 · 106 simulations.

4. The double exclusion process

We simulate a periodic system of L = 2000 sites and N
particles. Initially, the equilibrium measure is sampled the
following way: we place at random N particles on a ring
of L−N sites uniformly among all possible configurations,
then we add a site in front of each particle. The dynamics
is then simulated the same way as the SEP. We chose a
particle according to the uniform law among all particles,
and a direction (left or right with probability 1/2). The
difference compared to the SEP is that here the jump is
performed only if the two neighbouring sites in the chosen
direction are empty, otherwise it is rejected. In both cases
the simulation time is incremented by a random number
sampled from an exponential distribution of rate N .

Initially, one particle is chosen to be the tracer (defin-
ing the position 0 on the ring) and its displacements
are followed during all the dynamics. We perform 108

simulations.
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