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Observers and Disturbance Rejection Control for a
Heat Equation

Hongyinping Fenj, Cheng-Zhong Xt, and Peng-Fei Yéd

Abstract—The paper is concerned with active disturbance  Now let us explain the idea of the ADRC in a semigroup
rejection control of a heat equation. The considered heat equation setting. Suppose that is the generator of an exponentially
satisfies the Dirichlet boundary condition on one part of the stabIeCO-semigroup(etA)t>0 on a Hilbert spaceX. LetU be

boundary. On the other part of the boundary is located a - . .
Neumann boundary control. The heat equation system suffers the control Hilbert space. Consider the system described by

from both a model uncertainty in the heat flow modeling and s (1) —

an unknown external disturbance. Our control approach is a(t) = Az(t) + BIf (1) + u(®)],
based on the design of an exponentially converging observer

to estimates both the state and the unknown uncertainty. The

estimated state and the estimated uncertainty are used to build whereB : U — X is the linear control operatot, : (0, 00) —
a stabilizing feedback control law such that the closed-loop [/ is the control signal,f : (0,00) — U is an unknown

system is exponentially stabilized and the external disturbance is gisturbance supposed continuous for the momentgnel X

z(0) = zo, @

rejected is the initial state. Notice that the disturbance and the control
Index Terms—Heat equation, nonlinear boundary condition, are matched in the same channel. If a continuous function
observer, stabilization, disturbance rejection control. f . (0,00) — U approximateg’ such that
li t)— f®)|lo =0 2
. INTRODUCTION Jin [[£(8) = f(O)]v =0, )

In the past two decades, many control approaches h&le ) )
been developed to cope with the disturbances in the context (f =) € L7([0,00); U), 3)
of_ pz?\rtial differential equation (PDE) _control. In_[14] thethen the control signal can be chosen as
principle of internal model has been implemented to reject A
the disturbance generated by an exosystem. Stabilization of u(t) = —f(t) (4)

a wave equation in the face of harmonic disturbances has Lo . .
! ; : ch that the negative impact of the disturbance is asymptot-
been considered by using an adaptive control method [1

This method has been extended to solve the problem 'd’f‘"y canceled. Indeed, under the contdal (4) the controlled

the output regulation[[10]. The sliding mode control hassystem is governed by

been proposed by using an observer to stabilize an infinite- i(t) = Az(t) + B[f(t) — f(t)],
dimensional system corrupted by input disturbancés [9]. More
recently, the classical proportional and integral (PI) control
has been extended to stabilize nonlinear PDE systems fpIB is admissible for the semigroup” (see [20] or[[19] for
rejecting constant unknown disturbances [17]. However, whelefinition), then the solution of systefd (5) tends to zero as
a system suffers from model uncertainties and external dig (see [6]): lim;_, ||2(¢)[|x = 0. Hence the stabilization
turbances at the same time, the stabilization with disturbanged the disturbance rejection can be achieved by estimating
rejection becomes a challenging problem. Nevertheless, the disturbance.
active disturbance rejectior_w control (ADRC) gives a solution In the paper we consider an initial boundary heat equation
to the problem by proposing an extended state observerm@del that suffers from an uncertainty in the heat flow
estimate both the state and the disturbance and then cancefingieling and an external disturbance. We design an observer
the disturbance via a stabilizing feedback control law (se@abling us to estimate simultaneously both the model un-
[12]). For a short review on the approach, the reader is referresttainty and the disturbance by using the measurements of
to [6] and [7]. the output and the control. Based on the ADRC principle a
) . o ) dynamic output feedback control law is built to cancel the
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unknown disturbance on the boundary. However the situatithmat recovers the unknown teri in system|[(b) and then to
was different from ours for the controller design since theancel it by a feedback control law such that the state of the
the disturbance and the control were not in the same chanmébsed-loop system is exponentially stable, $eé (14) below.
As the control appears in the same channel as the disturbanc€or convenience, we write € L2 (R; L*(T'y)) if

in our paper, an extra step is required in the observer design T

to separate the effect of the disturbance from that of the / / lu(z, t)|2dldt < 0o VT > 0.

control. The contribution of our paper is an another novel o Jr,

result toward the application of the ADRC control design tQye writey, ¢ It (Ry; L2(Ty)) if w,ue € L2, (Ry; L2(Ty)).

loc loc

the heat equation system. In the future we endeavor to extgng ;s setH} (Q) = {h € HY(Q) | h(z) = 0¥ z € Ty}
0

the ADRC control strategy to the heat equation system Wit qughout the paper are supposed satisfied the following
more nonlinear uncertainties. _ conditions: Assumption | and Assumption II.
The paper is organized as follows: The mains results ak&sumption I. Letn e L2 (R,; L2(T)). We suppose that

loc

presented in Sectidnlll; their proofs are given in Secfioh I} total disturbance is constituted of model uncertainty and

and Sectiof IV contains numerical simulations. external disturbance as follows
F: L?(Q) xRy — L3(T'y)
Il. MAIN RESULTS (w,t) > F(w,t) = £(w) +n(t),

In the paper, we study an initial boundary heat equatio 1o 5 . . ) .
where the disturbance and the control appear in the sa}&]@ereg F L) > L (Fl_) IS Ioca_II_y Lipschitz continuous,
l.e., for eachd > 0 there is a positive constart > 0 such

channel. Suppose thd&2 C R™ is a bounded connected
open set with a smootl®2-boundaryI’ = Ty U I';, with that
both Ty # 0 andI'y # 0 being relatively open il and  ||¢(w;) — E(w2)|| L2(ryy < Lljwi — wa|p2ay ¥ Jwil] < 6.
ToNT; = 0. Let v be the unit outward normal vector o,
i.e.,v(z) = (vi(x), - ,vp(z)) Vo €T, and letR, = (0, c0). Assumption Il. There exists a real constaht> 0 such that
The system we consider is governed by the heat equation:|\§(w)||L2(F1) <k (1 + Hw||L2(Q))-
The first contribution of our paper is the following theorem

wi(z,t) = Aw(z,t), (z,t) € QX Ry, whose proof is postponed to Appendix.
w(z,t) =0, (z,t) €Dy x Ry, Theorem 1:) Let Assumption | be satisfied. Then for any

w € LZ (Ry;L3(Ty)) and wy € L?(R2), the system[(6)

Oyw(z,t) = Flw(z,1),t) +u(z,t), (z,t) €1 xRy, agmits a unique local mild solution € C([0,T7; L*(f2))

w(z,0) = wo(z), =€, for someT > 0. ii) If further Assumption Il is satisfied, then
the unique mild solutionv € C([0,T]; L?(2)) exists for all
y(z,t) = w(z,t), v €l xRy, ©) T > 0.ii)) If p,u e H- (Ry;L3T)) andwy € Hllo(Q)

in addition of Assumptions I-Il, then the unique mild solution
w € C([0,00); L*(Q))NC (R ; L%()) is a classical solution
to the system[{6) or0, co).

Now we present an observer to recover the total disturbance

wherew(-, t) : Q2 — R denotes the state at timeu the (input)
control, y the (output) measurementy, the initial state, and
F:L*(Q) x R — L*(T';) is an unknown nonlinear mapping
that we suppose locally Lipschitz continuous. [[h (6)(z, t)

denotes the partial derivative af(z,t) with respect tot, or E(w, ) from measuring the_ outpu;(a:,t). = w(z, f)|r, and
dw(z,t) the controlu(z,t). As the disturbance signal and the control

wi(z,t) = =47, the Laplacian operatoh defined by actionu appear in the same channel, we need synthesizing an
observer to separate the uncertainty from the control action

n 2
Aw(z,t) = wj Indeed, to separate the uncertainty from the control action,
im1 O we consider the candidate observer described by the following
and 0, w(z,t) is the normal derivative ofv at the boundary PDEs:
defined asd,w(z,t) = S0, vi(x)wy, (z,1). ve(z,t) = Av(z,t), T € Q, t >0,
Furthermore we assume that the unknown teffiin (6) v(z, )|, =0, Syv(z, t)|r, = u(z,t), t >0, @)
called total disturbance is modeled B$w, t) = £(w) + n(t),
where¢ denotes the unknown part of the heat flow model and v(z,0) = vo(x), = €L,

n the unknown external disturbance. The unknown paend gng

the controlu influence the trajectory of the system via the - -

Neumann condition that represents physically the boundary pi(x,t) = Ap(x,t), w €, >0,

heat flux to the system. p(z,t)|r, =0, p(x,t)|r, =y(x,t) —v(x,t)r,, (8)
It is easy to see that there exists a functiérsuch that the _ _

system[(B) without control (i.e. = 0) is unstable with respect p(x,0) = po(x), z €4,

to the equilibrium stationary solution. Generally speaking, thehere vy and py are the initial states that may be chosen

solutions of the control planfl(6) without control may blow ugrbitrarily. Notice that the output measuremeyits,t) =

in finite time with some boundary source terfh(see [18]). w(z,¢)|r, is known from the sensor as well as the control

The objective of the present paper is to design an obsere@nalu(x,t). These measurements are utilized in the observer.
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In the spirit of the ADRC control design, beside the observé) The plant system is exponentially stabilized: there are
for the model uncertainty a state observer is also proposedpasitive constantd, > 0 andwy > 0 such that

foll : iy -
OTOWs lw(-, )| r2(0) < Loe™ " (|lwo — vo — Pollr2(0)
Wy (z,t) = Aw(z,t), @(z,t)r, =0, +||w0||L2(Q)) vVit>0. (14)
dy(z,t)|r, = 0up(x,t)|r, +u(w,1), (9) (i) If we assume further that
11)(:17, O) = ’LDO(I)a sup HF(Oat)HL2(F1) < +00, (15)
t€[0,00)

Wher(eﬁ,ﬁ(:z:,ht) obtglneddfrom[IB(;freplaces the unknown pathe, o) the states of the closed-loop system are uniformly
F andw is the estimated state af. bounded in time, i.e.,

Theorem 2.Letn, u € H. (Ry; L*(I';)) and let Assump-
tions I-1l be satisfied. Then the observier (7)-(9) for the system  sup [[(w(-,2),v(,£), p(-, 1)) lL2(q)s < +oo.  (16)
[©) is well-posed: for each initial statéwg, vo,po, W) € t€[0,00)

Hi, () x [L*(Q)], the system[[7){9) andG) admits a (iii) The uncertainty estimated by2(-"
unique solution(w, v, p,w) € C([0,00); [L*(2)]*) and there
are positive constants andw such that

has exponential
1

convergence: givety > 0 there is a real numbdrs > 0 such
that
Jw(-,t) = (- )| L2 < Le™ " [|lwo — wol| 2(0)+ 10B(-t) — F(w(-, ), )l 2,y <

e — B >0. _wat _
l[wo —vo — PollL2(e)] ¥t =0. (10) Laye™ % [lwo — vo — Pollz2@y+ wollzaiy] ¥t >to (17)

Moreover the uncertainty recovered by the observer has expgherew, > 0 is the same as il (14).
nential convergence: for arty > 0 there exists a real number

Ly > 0 such that IIl. PROOFS OF THE MAIN RESULTS
_ Although the term F(w(x,t),¢) is unknown, the well-
18,5(:, 1) — F(w("t)’t)”H(Fl) (11) posedness of the system] (6) can be easily proved if some
< Lie™“t2|jwg — vy — Pollr2) Yt = to conditions are imposed on the total disturbadtfev(z,t),t)
. _ and the initial statew,. As we are mainly interested in the
wherew > 0 is the same as in_(10). observer design, the proof of the well-posedness for the open-

Once the total disturbance is recovered, we design a fed@RP System[(6) is postponed to the Appendix. Due to lack
back control law to stabilize systerfill (6). It is sufficient t&f SPace in this note, we give only essential ideas to the
cancel the total disturbance because stabilizing the systBFROfand the detail is referred to the related references. When
without uncertainty is trivial (if no optimal convergence ratdh® uncertainty and the disturbance are exactly known, many

is attempted). In view of{31), the controller is designed asresults known about existence and blow-up of the solution to
the heat equation with a nonlinear boundary condition. Some

u(z,t) = =0,p(x,t), x €Ty, t=0, (12) of these results may be found il [E]. [13]] [1] and the reference
therein.

wherep is the solution of the systerhl(8). Under the feedback To prove the main results we first consider the following
control law [12), the closed-loop system is described by  system:

wt('rvt) = A’LU(I, t)v w('rvt”ro = 07 { (I)t(x7t) = A(I)(.T,t), (I)(‘T’ t)|Fo = 01 (18)
&,w(w, t)|p1 = F(w(w,t), t) — 6V]5(:c,t)|p1, al/q)(xvtﬂrl = u(t)a (I)(xv O) = (I)O(I) Vz € Qv
vt(xat) = Av('rvt)a U(.I,t)|p0 = 07 where u € L%oc(Rﬁ‘;Lz(Fl))' We setX = L2(Q) throth_
~ (13) out the paper whereX is equipped with the inner product
dpv(z,t)r, = —0up(z,t)|ry, < f,9>x= [, [(x)g(z)dz. Let us defined by
Pr(w,8) = Ap(z, 1), Pz, Dlry =0, D(A) = {p € HX(Q) | plr, = 0, dyplr, =0},
ﬁ(xat”ﬂ :w(x7t)|rl _U(‘T’t)|F17 Ap:Apre D(A) (19)
completed by the initial condition It is easy to see tha#l is the generator of an exponentially
3 3 stable analytic semigroup oX. Hence0 € p(A) resolvent
(w(z,0),v(z,0), p(z,0)) = (wo(z), vo(x), Po())- set of A. It is well known (cf. [15, p.668]) that
Our main result can be stated as follows. D((—A)Y?) = H} (), (20)

2Theorem 3:'-9"277 € Hy, (Ry; L*(I'1)). Suppose thaf” :  and that(—A4)'/2 is an canonical isomorphism frod !, (2)
L7(Q) x Ry — L*(I'1) satisfies Assm;mptlons '2‘”- T2hen, foronto L2(92). We considetZ2(9) as the pivot space. Then the
ter:’etry initial Colr}?'tg;(wmdvov?i@ € l(qro () ;<| L Er?)] S‘iCh following Gelfand triple compact inclusions are valid:

atvg +po € L, andwo|r, = (vo +po)|r,, the system
(I3) admits a unique classical solutigm(t),v(t),p(t)) € Hp, (92) = D((-A)!?) = L*(Q)

C([0,00); [L?(£2)]3) such that the following statements hold: = L2(Q) — D((-A)2) = H;1(Q) 1)
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where Hp. (Q) is the dual space off} (Q2) with the pivot The inequality [(ZB) implies that the inner produ€il(27)
spaceLz( ). The operatord has an extension still noted € induces an another equivalent norm to the usual oneton
L(HE (), Hp,'(9)) defined by Define the operatadl by

(Az, Z>H501(52)7H%0(Q) = —((=A)Y2z, (=A)22) x

plr=0
@ | pw={(")ecm@r dlr, =0 3
Y,z e Hp ().

8up|F1 = 8l/Q|F1

Notice thatX_,,, = HF‘O1 (Q) is the completion ofX with Alp,q) = (Ap, Ag) ¥ (p,q) € D(A). (29)

respect to the normif|l_1/2 = [[(=A)~'/2f|| ;. Similarly rpen the systeni(26) is written abstractly as
A admits also an extensiod € L£(X,X_;) where X_;

is the completion ofX with respect to the nornjf|_; = (e (5 1), 01 (-, 1)) = Al (-, 1), & (- 1),
|A=Lf|l (see [20] for more details). Moreoved is the (0(-,0), (-,0)) = (0, b0)-

generator of an exponentially stable analytic semigroup on ]
7 and H )e tAH < M,t—“e~rt for some constants Leémma 1:The operator4 defined by [29) generates an
£(2)

My, i > 0 andVa > 0, Z = X, X_y,, of X_; [16, exponentially stable analytic semigroufs® on X': there exist

p.74]. Finally D((—A)*) denotes the Hilbert space normedWo positive constanta/ and u such that

as|fllo = II(—A)*flx Ya >0 and f € D((—A)*). A < Mebt £ > 0. (31)
Define the Neumann majf € £(L?(T';), HﬁéQ(Q)) ([15,

p. 668]) by Yu = ¢ if and only if

(30)

For each(yp, ¢9) € X system [(3D) has a unique classical
solution on(0, co). Moreover, for each integen € N there
Ap=0, ¢lr, =0, 0,9|r, = u. (23) exists a real numbe#/,,, > 0 such that
3 m tA < —m ,—ut
It is important to note thaHFgO(Q) cD ((—A)”") Yo>0 A7 < Mt~ vi>0. (32)
with continuous embedding. By using the Neumann map tigoof of Lemmall: By [4, p.101,Theorem 4.6}4 generates a

system [(IB) is written as bounded analytic semigroup ot if and only if the operators
_ . et A generate bounded, semigroups ont’ for somey €
®y(t) = A®(t) + Bu(t) in Hp (), (24)  (0,Z). For any? € (0, %), we set
where B € L(L*(T'1), H,' () is given by Ay = e A (33)
w=—ATu Y ue LAT)), (25) We prove that, for some&) € (0,7/2), the operatorAy

generates aCj-semigroup of contractions owX’. Indeed,
becaused;(t) = AP — Agp = A(® — ¢) = A(® — ¢) = D(Ay) = D(A) is dense inX since Cg°(Q2) C D(A). For
A® — AYu. Notice that the extension of has been used. any (p,q) € D(Ay) = D(A), by the divergence theorem we
SetT, = e*4. The following result is well known and the have

reader may be referred to [22] for a proof. (As(p,q), (p,q)) » = eT((Ap, Aq), (p, q)) x
Proposition 1:The control operatoB is admissible for the _
semigroupT,. = e*i UQ (aApp + Aqq — Apg — Agp) dfc}
To prove Theoreril2, we study the following useful system , -
on the Hilbert spacet’ = X2: = e [frl (0vq — 9up) qdT — [, (a Vol + |VCI|2) dx
er(x,t) = Ap(z,t), @(z,t)|[r =0, + [ (Vp- VG + Vq- VD) dx} = e [ —a|[VplZ2 0
x,t) = A¢(x,t), ¢(x,t)|r, =0, 26 _
Gr(,1) 9(@,1), 9 )lr (26) —IVall72iq) + 2%e (f, VPVadz) }
V¢(I t)|F1 - al/(p(xv t)|F17 (34)
from the initial condition(y(-,0),¢(-,0) = (vo,¢0) € X, As
where X is equipped with the inner product Re [eii192§Re (/ Vqudx)}
Q
((p1,@1), (2, 42)) = /Q[Ocpl (2)pa () + q1(x)g2(x) — <cos? ([Vpl% +1Val%) . (35)
p1(@) (@) — 1 (2)pa(2)|dz, (27) by simple computations, it follow froni (35) and (34) that
Re (Ao (P, q)s (p: @) < — (= 1) cos? [|[Vp|% <

with « a positive constant such that > 1. Given a real

numbers satisfyingl < § < «, by Young's inequality we (36)

Therefore the operatody is dissipative inX V ¢ € (0,7/2).

have Notice that0 € p(Ay) if and only if 0 € p(A). If 0 €
I, @)% = e [IIpl% + lal%] ¥ (p.q) € &, (28) p(Ay), by the Lumer-Phillips theoreni [16, Theorem 1.4.3]
Ay generates &'y semigroup of contractions of’. So it is
wherec; = min {a — 5,1 - 4§71} > 0. sufficient to proveAd—! € L£(X).
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Indeed, for any(p, §) € X we solve want to the equation By our PropositioiI1,B is admissible for the semigroup;.
As u € H] ([0,00); L*(T'1)), the system[(43) has a unique

Alp.g) = (2 9) 37) classical solution given by
or, the PDEs .
{ Ap(il?) - ﬁ(«r), T € Q, (38) U(',t) — etAUO +/0 e(tfs)ABu(.’ S)dS,
p(x)|r =0, Similarly the PDE[[B) is written as
and o ' ' .
{ Aq(z) = §(z), =€, - { wy (-, 1) = Aw( ,t)1+ BIF(w(-,1),t) 4+ u(-,1)] )
q(2)r, = 0, dya(2)|r, = dp(@)]r, . w(-,0) = wo € Hy, ().

From the theory of elliptic equation§1[2, p.181, ThéoremeiNce; v & Hj,.([0,00); L*(T'1)), by our Theoreni]l the
IX.25], equation [(3B) has a unique solutigne H2(Q) N system [(44) admits a unique classical solution given by
H{ () such that||p|| g2(0) < ci|pllz2() for some constant A N
c1 > 0. Moreoverd,p € H'Y/2(T;) satisfies the inequality w(-t)=e¢ w0+/0 TIABIF(w(-, 5), 8) + ul-, 5)]ds.
10upll /2,y < c2llplla2(q) for somec; > 0. By the theory , ,
of elliptic eqluations [19, p.429, Proposition 13.6.16], equatio e{rge)fo;%,rrtl)ﬁlsthae 'Sr\:%rj: té?;sssfi%r;agoolztitg(:usysEem) OfEPDES
has a unique solutiop € H?(Q) N H}: (Q) such that 7~ U P
@) q Q ) ( ) Fo( ) C([O,OO);X4) ﬁcl((o,oo);X4).
lallm2@) < s (“a'/p”H%(pl) + ||‘JHL2(Q)) for somec; > 0. From the PDEs[{6) and(7)3(8), each classical solution
As the injectionH?(Q) — L?*(Q) is continuous, there exists satisfies the following:
some constant, > 0 such that _ _
, , , , dvelr, = [Oyw — Opv — 0,pl|p, = F(w,t) — ,plr,. (45)
+ < p + 1l . . - .
1Pz @) + llallza@) < o (||pHL2(Q) HqHLz(Q)) On the other hand, by exponential stability of the analytic
Hence A~! is bounded. Therefored is the infinitesimal semigroup and by[(41), given, > 0 there exists a real
generator of a bounded analytic semigroup &n(see [4, constantZs; > 0 such that, for allt > to, the following
p.101,Theorem 4.6]). Sindg< p(.A), the analytic semigroup inequality holds:
tA is exponentially stable and all the rest follows framl[16, _ -
€ P Yy [ ||al/e(t)||L2(F1) < L4e #t/QHwO — Vo —poHLz(Q). (46)

Theorem 6.13, p.74]. i
Proof of Theorem[2 Consider the linear invertible trans-So [11) follows from [[4b) and{46). To complete the proof
formation as follows: we have only to provd (46). Indeed, by Lemfa 1 and(by [19,
w I 0 0 0 w p.429, Proposition 13.6.16] the following inequalities hold for
somekK; > 0,:=1,2,3:
N AR | A Z
‘ A 10ve®lpar,) < Kale(®) 2y
Let consider the following PDEs < K (| Ae(t) || 2y + lle®)llL2@))
et(z,t) = Ae(z,t), e(z,t)|lr =0, < K (Kvgtileiﬂt/2 + Meiﬂt) H€0||L2(Q)
7t = A 7t 3 3 t = 07 — —
Et(x ) E(x ) E(I )|Fo (41) < K2 (thol —i—M) e ut/QHeOHLZ(Q) V> to.
Ove(z,t)|r, = dve(z,t)|r,, .
Hence the proof of Theoreh 2 is complete. O
(e(,0),e(x,0)) = (eo(z),e0(x)), = €Q. Remark 1:If we are only interested in estimating in (),
It is easy to see thatw(z,t),v(z,t),p(z,t),d(z,t) is a another simpler observer thed (F}-(8) is described by:
unique classical solution of the system of PDESs [6)-(9) if and Wz, t) = Ad(z,t), 2 € Q, >0,
only if (w(z,t),v(z,t),e(x,t),e(z,t)) is that of the system of . .
PDEs [6), [¥) and(41). So it is equivalent to study existence, w(z,t)|ry =0, w(z,t)|r, = wlr,, (47)
unigueness and regularity of the solution to the latter system w(x,0) = wo(z),

of PDEs.
By our Lemmall, for any(eo,c0) € X the system wherew is the estimate of state. However, in this observer

@) admits a unique classical solutio@(-,t),=(-,t)) € 42) the (_effects of the control and the unknpwn disturbance
C(]0, 0); X) N C((0, 00); X) such that F are mixed _toggther. We choodéd (D-(S),_ mstead(@),
to enable estimating the unknown pdrt It is essential to
[(e(,t), (1)l < Me™[(eo,20) |l V>0, (42) estimate the unknow# to stabilize the closed-loop, S€E3).

whereM > 0 andy > 0 are defined in{31). This proves{10).0" the case where the control and the uncertainty are not
The PDE [[7) can be written as located in the same channel, the interested reader is referred

_ B to [22].
() = Av(, 1) + Bu(-,t) in Hp'(9), (43) _Proof of Theorem [3 Notice that(w,v,p) given in [I3)
v(-,0) = . is the whole state of the closed-loop system. For the stability
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of the closed-loop system, we consider the new gtate, ¢) Similar to the proof of Theorerl] 2, we also have](46).
obtained by the invertible transformation as follows: Thus [IT) can be obtained from {45) afd](46). The proof of
w I 0 0 w Theoren{B is complete. O
. Remark 2:The restriction on the initial condition that,
P = I —-I O v . (48) 1 - 1 . )
7 5 Hp, (), (vo + po) € Hp,(€2) and (vo + po)lr, = wolr, is
e I -1 -1 P A 0 0T . .
o _ needed in our proof that the solution is a classical solution.
Then the new state satisfies the following PDE: Without the restriction we can not prove that the solution is
(z,t) = Ae(z, 1), e(z,t)|r =0, a classical one. An example of model uncertainty is the non-
local uncertainty such a§(w(-,t))(x) = [, w(s,t)ds - 5(x)
wt(‘rat) = Aw(xat)v w(l',t)h‘o =0, (49) for g € LQ(Fl).

&,w(:z:, t)|F1 = 81/8(:67 t)|r1 ’

and IV. NUMERICAL SIMULATIONS

pe(x,t) = Ap(z,t), p(a,t)[r, =0, (50) In this section, we present some numerical simulations for

dyp(z,t)|r, = F(w(z,t),1), the closed-loop systeni (113) to demonstrate our theoretical
results visually. Similar to[[22], we consider a 2D example
with the space domain

{ e(z,0) = wo(x) —vo(x) — po(), (51) Q= {(21,22) € R2[1 < 2% + 22 < 9},
w(z,0) = wo(z), pz,0) =wo(x) — vo(x). Ty = {(x1,562) c R2|x§ 4 xg _ 1} : (55)

completed by the initial condition

As mentioned abovew(x, t), v(z,t), p(x,t)) is a unique clas- 2 2 9
sical solution of [IB) if and only if(w(x,t), p(z, t), e(z, t)) Ty = {(e1,22) € R¥Jai + a3 = 9}

via (48) is a unique solution of PDES (49)-{51). Note that th€he initial state and the total disturbance are chosen as
original closed-loop systen_(IL3) is a nonlinear system, while
the transformed systerfi (49)-{50) having a triangle structure| w(z1,x2,0) =2 (\/I% + 2% — 3> (1 [23 + 23 — 1)
is essentially linear. Indeed, in_(50) the nonlinear tefm
becomes an inhomogeneous term of a linear system. < 43 329 )

By Lemmal[l, we have ( -

3
ad)t ol b

v(z1,22,0) =0, p(x1,22,0) =0,

[(e( 1), w(- 1) llx < Me™"|[(e0, wo)||lx ¥t > 0. (52)
Thus the inequality[{14) is proved. (This implies that the

F(w(zx1,22,t),t) = sinarctan oy n(t),

control plant is exponentially stabilized.) T
The PDE [(BD) is written as ] (56_)
where n(t) = Zsin~'[sin(10t — Z)] is the sawtooth dis-
pi(t) = Ap(t) + BIF(w(-, 1), 1)], (53) turbance. The example is a slight modification of the ex-
p(0) = po. ample in [22] (with the boundary condition dny changed

] . from Neumann to Dirichlet). Since the classical derivative of

By our Lemmalllw(-,) € C([0,00); L*(Q)) is a classical the sawtooth disturbance does not exist, the boundedness
solution and uniformly bounded in time. We claim that ibssymption for the derivative of total disturbance that is
(e0,wo) € D((—A)'/?) (satisfied by the condition imposedrequired in the conventional ADRC is never satisfied. For
on (wo, vo, Po)), thenw(-, t) is Holder continuous fronD, o) nymerical discretization, we first convert the 2D annuitis
to L(Q) with exponent; (see a proof from Lemm&l 2 nto a rectangle by the polar coordinate transformation, and
in Appendix). Since{(w) is locally Lipschitz continuous then convert it back to the original coordinates for numerical
from L2(Q) to L*(T'y), it follow that £(w(-,?)) is globally \ajyes (see[22] for the polar coordinate transformation). The
Holder continuous fromj0, o) to L2(I'y) with exponent;. packward Euler method in time and the Chebyshev spectral
By 1 € Hj, (Ry; L*(I')) this implies thatF'(w(-,¢),t) IS method for polar variables are used to discretize transformed
Holder continuous from0,0c) to L*(I'). By [16, p.113, system. Here, we take the grid size = 21 for ~, the grid size
Corollary 2.11] and[[15, p.668], we prove that the PIDE] (5(9N — 40 for 6, and the time stept = 10—, The numerical
or (53) has a unique classica_ll solution_(m 00). I—_|ence the algorithm is programmed with Matlab [18].
closed-loop system has a unique classical solution. The the final state of closed-loop systeml(13) is plotted in

It sup,cp, [F(0,8)ll12ry) < oo, then [[n(#)|z2ry) IS Figure[d. The disturbance and its estimation under the polar
bounded (see Assumption I). Therefdf& (w(-,¢),t)|[L2(r,)  coordinates are plotted in Figufk 2. In order to demonstrate the

is bounded or{0, oc). By exponential stability ot and the dynamic evolution of the closed-loop system, the state trace
admissibility of B, it follows from [21, Lemmal.1] that for evolutionw(0, z2, )

po = 0 and some constardi; > 0

’LU(O,ZCQ,t), T2 € [_37_1]3 t> 07 (57)
sup [[p(+ )l r2) < Lal[F(w(-, t), D) Loy ;p2(ry))- (54)
teRy is plotted in Figurd13(b); the disturbance estimation result at

So [18) can be obtained by (54, {52),1(53) and (48). (z1,22) = (0,—3) is shown in Figuré&l3(a).
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From these FigureSI[1-3 we observe that the state of té callw € C(]0,T]; X) a classical solution of(38) if it is
control plant is stabilized effectively despite the presence ofaamild solution and if the following three properties hold:
total disturbance. Notice that(x,, x2, t) converges to zero as (a) w(t) is continuously differentiable fronf0, T') to X;

t — oo, butv(zy, z2,t) andp(zy, z2,t) do not (see Figurel1). (b) w(t) + A~ B[F(w(t),t) + u(t)] € D(A) Vt € (0,T);

Figure[2 shows that the disturbance estimation is effecti¢e) the equation{38) is satisfiedt € (0, 7).

and the dynamic evolution is smooth. This is the contribution Proof of Theorem [d: (i) Similar to [16, p.184, The-

of our paper because here we have removed the derivativem 1.2] and [[21, Proposition 1.1] the integral equation

boundedness assumption for the total disturbance term frda8) has a unique local solutiom € C([0,7];X) as

the conventional ADRC. The disturbance trace estimation aitlis admissible forT;. Indeed, without loss of generality

the state trace in Figufg 3 also validate effectiveness of tive may taken = 0. For the sake of simplicity we set

proposed control method. g(t) = Ti_yowo + ft T;_sBu(s)ds. By the admissibility

of B, if u € LlOC(RJr,L (T'1)) we haveg € C([0,T]; X)

VT > 0 (see [20]). Let us takeg > 0, 6y > 0, and

0 < Atg < 1 and let us consider the bounded closed set
= {w e C([to, to + Ato]; X) | [|w — gllso < 01} where

lw = gl = SUDycry 10+ ar [lw(t) — g(t)l|x. Define the
I RN SR nonlinear mappingA : Sy — C([to,to + Ato]; X) by

@ w(z1,x2,3). (b) v(z1,22,3). (©) p(z1,2,3). Alw(t)) = g(t) + ftto T:_sB&(w(s))ds. It is easy to check

that, for anyw;,ws € Sy and some constants,,, Ls, > 0,

[Aw1(t)) = g()llx < Kioll€(wi ()l L2 ((t0,8);22(m1))
< Ky, Miv/ Aty, (60)
: [A(wi(t)) = Awa(t)) | x < KioLs, v/ Atollwr — w2, (61)
Lo W i w where M; = SUPweSy,s€lto,to+1] [€(w(s)lL2(r,)- By taking
il L Sl > Aty = min{1,67/(K, M1)?,1/(v2K:,M;)?}, the mapping
R TR PR A becomes a strict contraction froy, into S,. Hence the
(a) Disturbance. (b) Estimation. (c) Estimation error. equationw(t) = A(w(t)) or (89) admits a unique solution

) ) . _ w € C([to,to + Atgl; X). As to is arbitrary, the process
Flg. 2: Disturbance and estimated disturbance under po@‘n be repeated to extend the solution to the maximal in-

Fig. 1: The final state of systeri {13).

coordinates. terval of existence{O,Tmam). Moreover, if Tma < 0o, then
lim, - Jlw(t)] =
(i) Similar to [16, p 199, Theorem 3.3], if Assumption Il
s e s is satisfied, then the mild solution is global. Indeed, for every
e: IJ T > 0, by takingty, = 0 and by [59) there is a constant
Z, <o K7 > 0 such that
~: E" ~ lw®)lx < ll9®)lx + Krll€(w(-)llrz(o.;z2(ry))-  (62)
~1 \V i By using Assumption I1,[{(62) implies that

o
4
2
i

15 2 25 3

’ R lw®)]* <2 sup flg(®)]* + 4K%k2/ (1+ [lw(s)]1?) ds
(a) Disturbance estimation &b, —3).  (b) w(0, z2,t), —3 < x2 < —1. te[0,T] 0
By the Gronwall type lemmaljw(t)||> < Mpe*57%° T holds
for some constand/; > 0. As T > 0 is arbitrary, the unique
solution exists or(0, ).

(iii) We claim that ifn, v € H} (R4, L*(I'1)) andw, €
APPENDIX H{ (), then the unique mild solutiow € C([0,T]; L*())
Holder continuous fronj0, 7] into X with exponentv =

Fig. 3: Disturbance estimation at the point, z2) = (0,—3)
and the state trace evolution on the segm{@itx [—3, —1].

Using the notation introduced ifi {119) we write the syste

/2, or, |lw(t) — w(s)||x < Hult — s|*/? Vt,s € [0,T]
PDE (8) abs.tractly as and for some constant/,, > 0. By using the claim, we
{ w(t) = Aw(t) + BlF(w(t),t) + u(t)] (58) Prove thatly(t) = = [y AT, B[E(w(s)) — E(w(t))]ds is in

w(0) = wo. C((0,7); X). Indeed let us fixr € (0,1/4). It is well-known

For the sake of simplicity we séF, = ¢4 and X = L2(). that .(_A)%_UT € L(L*(I'), X). By B = —AT, Lipschitz
GivenT > 0, we callw € C([0,7]; X) a mild solution of Continuity of ¢ and Hdlder continuity ofw, the following
(G9) if it satisfies the following integral equation for everynequalities hold true:

t e [0,T): [T ()] x <

w(t) = Tywo + /OtwrtSB[F<w<s>,s>+u<s>>st. (59) /OtH(—Aﬁ*"Tts(—A)i"T[é(w(S))—ﬁ(w(t))]Hde
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t
< / Myt — 5)" 57K ||€(w(s)) — E(w(t))] (e ds
4M1K1L1Hw) Ao
Hencel, € C((0,7); X).

1—4o
Without loss of generality set always = 0. The mild
solution satisfies the integral relation

t
g/ MK L Hy(t — s)" 1 9ds = (
0

w(t) = Trwp —l—/o T,—sB[{(w(s)) + u(s))]ds. (63)

We set I(t) = Tywo + fot T:_sBu(s)ds. By ar]alyticity
of the semigroup andu € H} _(Ry;L*(I1)), L(t) =
ATywo + TeBu(0) + [y Tr—oBuy(s)ds € C((0,T); X). By
direct computations(t) L(t) + Ty B&(w(t)) + (1),
where I (t) is defined above. Hencé(-) € C((0,7T); X).
By direct computations it is easy to check thaft) +
A'Bl¢(w(t)) + u(t)] = Tywo + AT Blu(0) + &(w(t))]+
AL I, Bu/(s)ds + Il(t)} € D(A)Vt > 0 anddi(t) =
Aw(t) + Bl (w(t)) +u(t)] Yt > 0. Hencew(t) is a classical
solution on(0, 7).

Let us prove the claim. Put(t) = w(t + h) — w(t) Vt €
[0,7] andh > 0. It is easy to check that

E(t) = Tt(Th - I)wo + Ig(t) + I4(t) +

h t
/ Tiyph—sBE(w(s))ds + / T;_sBe(s)ds, (64)
0 0

where I3(t) = [T, Bu(t + s)ds and I,(t) = (T —
1) [} Ty_sBu(s)ds. By the analyticity anduy € D((—A)'/?)
there is some constaiify; > 0 (depending ori") such that

ITe(Th — Dwoll + 3 (O)[] + [ La(@)]] +

h
/ Ty n_sBE(w(s))ds|| < KovVh. (65)
0

By the Gronwall type lemma it follows fron{ (64)-(65) that

lle(t)|| < K2v/h. So the claim is proved.

If further Assumption Il is satisfied, then the classical

solution is global. O

Lemma 2:Consider the subsystem PDE{49) ahd (51) with
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