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Prediction and experimental 
evidence of the optimisation 
of the angular branching process 
in the thallus growth of Podospora 
anserina
Clara Ledoux, Florence Chapeland‑Leclerc, Gwenaël Ruprich‑Robert, Cécilia Bobée, 
Christophe Lalanne, Éric Herbert* & Pascal David

Based upon apical growth and hyphal branching, the two main processes that drive the growth 
pattern of a fungal network, we propose here a two-dimensions simulation based on a binary-
tree modelling allowing us to extract the main characteristics of a generic thallus growth. In 
particular, we showed that, in a homogeneous environment, the fungal growth can be optimized 
for exploration and exploitation of its surroundings with a specific angular distribution of apical 
branching. Two complementary methods of extracting angle values have been used to confront the 
result of the simulation with experimental data obtained from the thallus growth of the saprophytic 
filamentous fungus Podospora anserina. Finally, we propose here a validated model that, while being 
computationally low-cost, is powerful enough to test quickly multiple conditions and constraints. It 
will allow in future works to deepen the characterization of the growth dynamic of fungal network, in 
addition to laboratory experiments, that could be sometimes expensive, tedious or of limited scope.

Filamentous fungi are characterized by their ability to form an interconnected hyphal network, the mycelium, 
based upon some key cellular processes, i.e. hyphal tip (or apex) growth, branching and hyphal fusion (also 
known as anastomosis), thus conferring a great flexible morphology and a remarkable capacity of adaptation to 
very diverse ecosystems1. In particular, saprophytic fungi, known as short-range foragers, evolve in a highly com-
petitive habitat and thus appear to be highly challenged by resource-limited and patchy environment, combined 
to a fierce competition with other organisms2. Then, these fungi must adapt their growth and have always to find 
a compromise between the need to occupy the space potentially threatened by other organisms (colonization) 
and the need to optimally draw resources from where the thallus has developed (densification). Previous studies 
have reported that hyphal tips at the biomass edge could be associated with exploration while hyphal tips behind 
the biomass front could be most associated with resource exploitation3. In the same way, Lew4 described the 
apical cells (or leading hyphae) from the fungal network as the first cells to invade new territory and are gener-
ally engaged in nutrient acquisition and sensing of the local environment. However, until now, the way a fungus 
optimizes its growth through an efficient compromise between the maximization of the surface occupancy and 
the increasing production of length is still unclear.

For many years—a review can be found in5—mathematical modelling and measurement of specific quantita-
tive parameters through the use of image analysis have greatly contributed to a better understanding of fungal 
network expansion and topology. Usually, these approaches attempt to explore the fungal development in two 
or three dimensions, in order to define some specific macroscopic and microscopic observable and to describe, 
explain and predict development of the fungal network in various more or less constraining environments. It 
was shown in3 that, in the saprophytic fungus Rhizoctonia solani, translocation (nutrient transport) was mainly 
diffusive in homogeneous environment, when growth experiments were compared to a detailed mathematical 
modell; in the latter case, translocation was considered to have both diffusive and metabolically-driven com-
ponents. Falconer et al.6 demonstrated that fungal phenotype could be modelled as an emergent phenomenon 
resulting from the interplay between local processes involved in nutrient uptake and remobilization of internal 
resources, and macroscopic processes associated with their transport. In order to enlarge the spatio-temporal 
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scale of the hyphal growth of the brown rot fungi Postia placenta7,8, proposed a lattice-based system derived from 
the biological mechanisms of hyphal development and then a three variables Partial Differential Equation model 
for predicting fungal growth derived from microscopic mechanisms. As highlighted in9, lattice-based modelling 
allows for the inclusion of fundamental biological processes of the thallus growth, as anastomosis, branching or 
translocation while maintaining a decent computation duration. However, even if the regular imposed geometry 
can be of different form, it is expected to impact the global thallus geometry and consequently its functionality, 
i.e. the comportment and interaction (effects) with the environment. It is then desirable to develop a lattice-free 
approach, in which the thallus is described as a collection of line segments. The lack of constraint on the hyphal 
growth orientation dramatically increases the computational complexity and can be cumbersome to implement. 
These lead to ignore crucial processes like anastomosis (see for example10). More recently, using high compu-
tational resources, Vidal-Diez de Ulzurrun et al.11 described a three-dimensional lattice-free fungal growth 
model that is able to simulate both the biological processes driving fungal growth and the hyphal response to 
environmental stimuli, and that can be compared to growth features obtained in vitro.

Recently, we have developed an automated and reproducible experimental device to track the hyphal network 
construction of the filamentous saprophytic fungus Podospora anserina constrained to grow on the planar surface 
of a Petri dish, in a standard environment of in vitro growth12. Such a system allowed us to monitor time series 
of images of the fungal thallus. The acquisition step was followed by a robust image analysis process, leading to 
the extraction of a set of reproducible quantitative parameters, as the total length of the mycelium, the number of 
nodes or vertices (i.e. hyphal fusion and branching points), and the number of apexes. Such a systematic spatial 
and temporal exploration enabled us to estimate a set of key physiological features of the fungal network, such 
as the branching dynamics and more generally the spatio-temporal patterns of the network.

This biological system is obviously far from the in vivo growth of a saprophytic fungus such as P. anserina. 
However, it constitutes an excellent starting point to describe the thallus growth using mathematical concepts 
and languages. Indeed, the objective of our mathematical modelling is to reduce a complex biological system to 
a simpler model, which is able to partly reproduce, or even better predict, the real system. A recurrent question 
is then to find the optimal degree of simplification for such a model, which should be neither too simple to avoid 
straying from realistic predictions, nor too complex to solve using numerical methods7. We report in this work a 
two-dimension lattice-free model that aims to capture the main characteristics of the thallus growth. This model 
relies on a binary tree growth with short computation time, and it allows for testing multiple hypotheses and 
configurations quickly. As it is commonly accepted that the growth pattern of mycelium results from two main 
processes, apical growth and branching1, we focused on these two parameters to simulate the fungal growth. 
We propose to deepen the characterization of the growth dynamic of the P. anserina fungal network through 
the construction of a growth model for this fungus and then to confront these simulation approaches with angle 
measurements. Two complementary methods for extracting angle values have been used. The first one consists 
in direct empirical measurements of angles from apical branching based on a selected collection of nodes. The 
second one relies on a Geographic Information System (GIS) approach in which all nodes are considered (api-
cal and lateral branching). Our results allow us to compare the distribution of apical angular values with the 
two competing but vital processes of densification and extension, on a standard culture medium, assumed to be 
homogeneous and optimal for the fungal growth. We can thus show that far from being random, they correspond 
on average to an optimal configuration. Beyond this work, the final model presented here could be a powerful 
tool in future studies for predicting the mycelial growth over a larger spatial scale and under various and more 
fine-grained conditions or constraints than most in vitro experiments could afford.

Results
Simulation.  Network topology.  There are different types of complex networks allowing for the characteri-
zation of branching network13,14: (1) Random networks for which the connections between the nodes are random 
and are free from the physical distance that separates them; (2) Totally interconnected networks which allow all 
the nodes to be linked together; (3) Freescale networks which are characterized by a number of connections 
between nodes which follows a power law (i.e. many nodes which have few connections but some nodes which 
have many); (4) Smallworld type networks which are characterized by strongly interconnected subnets, which 
are themselves connected to each other via a few privileged links. It is also necessary to distinguish between 
highly centralized networks, which assume privileged nodes in order to transmit information from one node to 
another (the geodesic in terms of information transmission is then not optimal), and networks without privi-
leged centers that allow an optimal transmission of information. A third important aspect is the existence of 
networks that do not have spatial dimensions (internet for example) and others whose spatial dimension is criti-
cal in the sense that the probability of connection between two spatially distant nodes is zero. Finally, we must 
distinguish between static networks (in the sense of the number of nodes and not of the activity that takes place 
there) and dynamic networks which are capable of complicating and increasing their number of nodes and links 
as a function of time.

The study of P. anserina in12 allowed to identify the core characteristics the simulation should be based on. P. 
anserina thallus is a spatialized and dynamic network (Fig. 1). Accordingly, the probability of connecting spatially 
distant nodes (or vertex) is zero. However, if the thallus of P. anserina seems to be a centralized network in its 
first phase of growth, the branching process dramatically and quickly increases the network complexity, meaning 
that the number of possible paths between the different regions of the thallus become very high. The centrality 
of the network is then lost, since the information can be exchanged without going through a center. Moreover, a 
partial destruction of the initial center (the ascospore location) does not affect the ongoing development of the 
network1. The observation of P. anserina network shows nodes (or vertices) which are generally connected to 
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three other nodes that can be distinguished by their chronological growth : there are indeed one earliest node, 
or mother node, and two daughter nodes. An illustration can be found in Fig. 2.

Podospora anserina network can be distinguished from the four major types of networks previously men-
tioned. If this network was not a dynamic network as it was defined above, at a given point in time, P. anserina 
network could be locally related to a hierarchical and modular tree where modularity (existence of a basic archi-
tecture) is important, the heterogeneity (variance of the distribution of the number of links) is around zero 
and whose randomness (probability of creating links between the nodes) would be very low15. It is therefore 
possible to model the growth of P. anserina as different networks linked together by causal relationships and 
spatial constraints.

To implement this simulation we made the following assumptions: (1) the environment is supposed to be 
homogeneous (in terms of resources, light, and other exogenous constraints ...) and invariant over time; (2) 
the growth conditions are standard (temperature, pressure, etc.) and invariant over time; (3) there is no limits 
of deployment in space and time; (4) the initial state is defined as the germination of a single ascospore. These 
assumptions are not restrictive. Except for hypothesis (3) they correspond to the experimental conditions.

Basically, a simulation can be viewed as a two-step process. First is the generation step. It corresponds to the 
theoretical growth of the network (i.e. the theoretical law). This step is built from assumptions on probability laws 

Figure 1.   Thallus of P. anserina reconstructed from 8× 14 tiles, extracted from experiment12 15 h past the 
ascospore germination (see the text and Table 2 for more details).

Figure 2.   Definitions used in this work. The thick line is the mother hypha, while the thin lines are the 
daughter hyphae. We consider two types of three degrees vertices. V3ℓ are lateral branchings, connected with the 
angle θ ′ . V3 are apical branchings on which two branches are connected: an operating and an exploratory branch 
with respective angles θo and θe . V1 (resp. V1ℓ ) are one degree vertices (i.e. apexes) coming from V3 (resp. V3ℓ).
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and their parameters. Second is the detection step. It corresponds to the observation of this growth. This step is 
also built on probability laws but only relating to the observation process. It must reproduce as well as possible 
the entire experimental process. Details can be found in section of  Observations of “Methods”.

This two-step process is justified by the fact that we never observe or measure what is “true” but only its con-
volution by the whole observation chain which can possibly generate biases, and necessarily has some resolution.

Finally this simulation allows us to propose a prediction on the distribution of apical branching angles.

Generation.  The aforementioned considerations on the kind of network generated by P. anserina lead to choose 
a growth model in the form of a full binary tree (or proper binary tree)16. In this model, each branch (hypha) is 
driven by its tip (apex) that in turn is allowed to divide into a pair of sub-branches. This process is called apical 
branching in this paper, in line with the dynamic growth vocabulary. When apical branching occurs, the distribu-
tion of branch lengths and that of the angles between newly created branches with respect to the mother branch 
follow differentiated probability laws. An apical branching process is characterized by the emergence of a three 
bodies vertex, denoted V3 , which is the point of intersection of the 3 branches and two one body vertex, denoted 
V1 , the apexes of the branches (Fig. 2). Of course, for the duration of binary tree growth, both number of V3 , 
NV3

 , and of V1 , NV1
 , depend on the instant of observation and are related by NV3

= NV1
− (Nger − 1) where Nger 

is the initial number of branches emerging from the ascospore, or NV3
(t) ≈ NV1

(t) if NV3
(t) is large enough 

(or equivalently that the duration of growth is large enough). In the following, we will assume this condition is 
always verified.

The length of the branches is a random variable assumed to be correctly described using a Gamma law which 
is a continuous and positively skewed distribution. Moreover, other laws of probability can be obtained by chang-
ing parameters of the Gamma law:

with x the length, k the scale factor, θ the shape factor, and Ŵ(k) the Euler function. Using a particular choice of 
parameter values for k and θ , the Gamma law allows to fall back to (1) the exponential law ( k = 1 and θ = 1/� ), 
(2) the Maxwell-Boltzmann’s law ( k = 3/2 and θ = 2a2 ), (3) the χ2 law ( k = ν/2 and θ = 2 with ν the number 
of degrees of freedom, d.o.f). Consequently, the Gamma law offers a lot of freedom to generate the length of 
the branches.

We considered a Gaussian probability law for the angles: N(x|x0, σ) with x the angle, x0 the mean and σ 2 the 
variance. Because it was empirically observed that apical branching leads to two different angles, the parameter 
relating to the mean, x0 , is different for the two branches coming from a V3 . The variances for the angles are 
chosen according to experimental data. The position of the branches in relation to the direction of the mother 
branch—to the right or to the left—is managed by a probability (i.e. Bernoulli law). So, it is impossible to force 
a particular direction for one or both forms in order to break the chiral invariance of the growth.

We call operating branch the branch coming from a vertex V3 which has the most important angle (the angle 
is noted θo ) with respect to the segment that connects the vertex to the vertex from which it came (mother 
vertex) and we call exploratory branch the branch with the smallest angle (the angle is noted θe ) (see Fig. 2). 
This nomenclature is justified by the fact that the two branches do not have the same scope in terms of network 
growth: the branch showing the smallest angle tends to perpetuate the direction of the mother branch in order 
to explore the environment and then to capture new resources, while the other branch occupies space inside the 
network in order to optimally draw resources from the neighborhood.

Experimental observations show another type of branching process giving rise to another type of three bodies 
vertices: interior vertex leading to the creation of lateral branch. A branching occurring on a segment bounded 
by two pre-existing V3 vertices, or a V3 and a V1 vertices can give a new lateral branch at a later moment during 
the growth process. To distinguish between these branches we call them lateral (operating) branch and the three 
bodies and one body vertices attached to them are denoted respectively V3ℓ and V1ℓ (see Fig. 2).

The creation of a lateral branch is also driven by a probability law. This law is unknown (as well as its param-
eters) leading to an important difficulty in implementing the phenomenon. However, we choose a power law 
based on two considerations: (1) the duration that separates the observation from the creation of the two vertices 
bounding the possible lateral branch (2) the length between the pre-existing vertices. In this case, the probability 
of generating a lateral branch as a function of the length and time parameters could be written:

where x is the length of the branch (i.e. the length between the two vertices), x0 a length parameter ( x0 ≥ x ) (i.e. 
the greatest length generated by the probability law, typically the mean, kθ , plus three times the standard devia-
tion, 

√
kθ ), α a parameter of the power law, typically α ∼ 2 and p0 a scale parameter in the range [0, 1] to set the 

probability, typically p0 ∼ 1/2 . The duration between the observation and the creation of the two vertices is not 
apparent in Eq. (2) because this probability is recomputed after each generation of newly generated branches 
(of hypothetical duration).

The location of the lateral vertices V3ℓ between two vertices follows a uniform law. However we implement 
a censorship zone near the vertices so that the uniform distribution does not have the vertex-vertex distance as 
a support. Empirically, we see that the angular distribution between the segment connecting the two vertices 
and the lateral operating branch is about the same as the angular distribution of the operating branch. Therefore 
we choose the same law with the same parameters. Likewise, the length of the branches thus created follows the 

(1)G(x|k, θ) =
xk−1 e

x
θ

Ŵ(k) θk

(2)p = p0

(

x

x0

)α
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same probability law as that of the exploratory branches and operating branches (with different parameters). The 
position of the lateral branch in relation to the direction of the mother branch—to the right or to the left—seems 
to be in the direction of the curvature of the hyphae. Also, the chirality for these branches can be broken by a 
probability parameter. The control of these laws and their parameters is a challenge which is raised by the study 
of the calibration of simulation to the data (see the paragraph Calibrations... in “Methods”).

The curvature between any two vertices is not taken into account in the present work for the following reasons: 
(1) the curvature can not be related to anything particular during the growth process (to a first approximation); 
(2) the chiral symmetry can be broken from the angular distributions if one wishes to obtain a global curvature 
effect. In this sense, the chirality breaking of the lateral branches takes into account the curvature of the segments 
between the points formed by the triplet, grandmother, mother and daughter—two adjacent segments; (3) from 
the experimental data it can be seen (not shown) that mean curvature (i.e. the curvature over the different frac-
tions of the length between two vertices) is locally zero.

Because the experimental process introduces a time dependency through the reconstruction of network 
images and because we want to study the growth dynamics of the network, we define a time between vertex 
generations. At this step the time is given by number in generation agency between daughter-vertices and 
mother-vertex. For the lateral branches the time is given by the relative moment—in terms of generation—at the 
creation of the branch. However, this theoretical time will be scaled by the data (see calibration section) and we 
will take into account a possible growth interruption during apical branching process as well as differentiated 
apex velocities of exploratory, operating and lateral branches. For the simulation step, however, these velocities are 
given by a Gaussian probability law with average values and a small shape (standard deviation) and we assume 
these velocities are constant during growth.

To sum up, the generation time found is certainly not the growth time of the fungus. However, this time 
is necessarily proportional to the growth “true” time. The constant of proportionality must be obtained from 
calibration on the data.

Simulation can start with as many branches as desired. We make this number coincides with the empiri-
cal observation of the ascospore germination that shows three initial branches with an angular separation of 
approximately 2π/3 . We then apply the growth as a binary tree for each of three branches as described below. 
Figure 3 gives an example of the final state of growth.

In order to make the results of the numerical simulation comparable to the experimental observations, we 
introduced to the simulation output the same bias and uncertainties. Details of the procedure are given in the 
paragraph Observation... of “Methods” section. Parameters of the simulation are then tuned to reproduce the 
main experimental observations, for both time scale and space scale. In time, the typical growth dynamics of the 
apex number and the total length growth 2a t is regained, including the respective rate exponents, as can be seen 
in Fig. 8. In space, the inertia tensor of the V3ob vertex distribution were extracted. The eigenvalues of the diago-
nalization of this tensor allowed us to compare the global geometry of the numerical thallus to the experimental 

Figure 3.   Final state (after nine generations) of simulated network for a set of standard parameters. Apical 
branching led to NV1

= 384 apexes (shown in blue) and NV3
= 383 vertices (in red). Lateral branching led to 

NV3ℓ = 295 vertices (in green) and NV1ℓ = 295 apexes (in grey). The spatial dimension in the representation is 
arbitrary.
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one, including sphericity (shape) and spreading (size). A detailed procedure of the complete calibration process 
is shown in the part Calibration... of “Methods” section.

Prediction of angle distribution.  As noted above, when a V1 vertex is converted into a V3 vertex (an apical 
branching) the two “daughter” branches have very distinct angles. We can then make the hypothesis that the 
permanence of this behaviour is related to very deep reasons. There are undoubtedly biological reasons, but we 
can hypothesize that the source of this phenomenon is due to the fact that the fungus in a homogeneous environ-
ment has a clear advantage in occupying the largest surface in order to capture the maximum of resources from 
the environment and thus optimizes its growth. The surface occupied by the fungus can be written:

with L the total length of the network, Sbio the physical surface, or total area, of the fungus and �S the surface of 
the intersections overlap (because the branches are flat tubes with constant width).

For given growth duration and total length of the network, the surface occupied by the thallus is all the 
more important as the overlapping surface is reduced, i.e. the number of intersections is small. It is possible 
thanks to the simulation to test this hypothesis in order (1) to verify that indeed the largest occupied surface 
requires two quite distinct angles, and (2) to predict the optimal couple of angles. Figure 4 shows the logarithm 
of NV3i (t, L, θo, θe)�S(t, θo, θe) as a function of θo and θe for a fixed time (i.e. generation index). Building upon 
the previous assumptions, we can make the following predictions, the wide angle is close to 80◦ and the small 
angle is close to 15◦ . The uncertainties on theses angles are estimated to be about 10◦ because of the toy model 
used here (the fixed length of the branches at a fixed time about nine generations).

Experimental approach.  Podospora anserina is a coprophilous filamentous ascomycete, a large group of 
saprotrophic fungi that mostly grows on herbivorous animal dungs and plays an essential role within this com-
plex biotope in decomposing and recycling nutrients from animal feces17. P. anserina has long been used as an 
efficient laboratory model to study various biological phenomena, especially because it rapidly grows at a rate 
of  7 mm/day on standard medium, it accomplishes its complete life cycle in only one week, leading to the pro-
duction of ascospores, and it is easily usable in molecular genetics, cellular biology and cytology18.

Experimental set‑up.  An experimental device allowing to solve the dynamics of the local and global growth of 
the complete hyphal network of P. anserina directly on a Petri dish from an ascospore and over a period of ∼ 15 
h in a controlled environment has been previously developed and described12. We did use of this setup to carry 
out three complete and independent series of images of the thallus growth, named (1), (2) and (3) thereafter, 
under standard growth conditions with M2 culture medium, see19 for more details, at a temperature of 27 ◦C.

Direct measurement of angles.  After the standard binarisation and vectorization process described in12 we 
extracted angles θo and θe formed by an apical branching (see Figs. 2,  5) using direct reading on the network 
picture. At this stage, the thallus network is in its exponential growth phase, with approximately 1500 apexes and 
a length of 600 mm (see “Methods” for details, and more specifically Fig. 10; Table 2). We focused our analysis on 

(3)Socc(t, L, θe , θo) = Sbio(t, L)− NV3i (t, L, θo, θe)�S(t, θo, θe)

Figure 4.   Logarithmic distribution (z-direction) of the number of times the branches intersects each other in 
the network as a function of branch angles θo (y-direction) and θe (x-direction) in degree for a fixed time and 
length.
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apical branching. By observing the dynamic branching process real V3 vertices can be segregated from the geo-
metric vertices V3i due to overlapping intersections. The comparison between images acquired before and after 
the branching allows the operator to extract a real V3 vertices collection without any ambiguity. The procedure of 
angles extraction is shown in Fig. 5. A circle with a radius of 50 pixels (approximately five hyphal diameters) is 
centered on each V3 vertex. The coordinates of the points of intersection between the circle and the three hyphae 
are manually recorded. For each apical branching, the extension of the mother hypha in the direction of growth 
determines two angles with both emergent hyphae, a small angle and a wide angle. From the complete network, 
66 V3 were extracted from each experiment. We then considered two populations, respectively composed of the 
collection of the small angles θe and of the wide angles θo (Fig. 5). The uncertainties on each angle value δθ = 4

◦ 
is estimated from the diameter of the hyphae.

Figure 5 depicts the distributions of the measurements of θe and θo . Bin width reflects the uncertainties δθ . 
For the clarity of the representation, θo defines the positive direction of rotation for each V3 . For each extraction 
two populations are clearly visible. Assuming these populations follow Gaussian laws we extracted the respec-
tive estimators of the mean θ̂ and width σ̂ such as N(θi|θ , σ) using likelihood maximisation. The uncertainties 
on angle measurements is assumed to follow a centered Gaussian law with a standard deviation of δθ , such as 
N(θi|0, δθ) . Building on the very tiny correlation between the estimators, we assumed cov(θ̂ , σ̂ ) = 0 for the 
covariance matrices of the respective estimators. We finally compute an average estimate from this collection 
of i.i.d sets for each of the two angles, |θ̂o| = 70.9± 2.4 and σ̂o = 12.0± 2.4 , |θ̂e| = 9.3± 2.4 , σ̂e = 8.7± 2.4.

Since we must take into account the systematic uncertainties δθ = 4
◦ , the final results for the angles are: 

θ̂o = 71± 5 θ̂e = 10± 5.

GIS automatic method for automatic angle measurements.  In addition to the work on direct measument angles, 
which focuses on a set of selected apical branching, we have implemented a Geographic Information System 
(GIS) automatic method for detecting, in a well-developed thallus, all angles for both apical and lateral branch-
ing. While being a non-selective method, it nevertheless offers a global information of branching process, with 
a high number of angle measurements. GIS geoprocessing was performed from the skeletonized thallus. Details 
of the skeletonization process can be found in “Methods” section.

The angles were calculated using the following procedure: discs (or buffers) of 5-pixel radius were centered on 
apexes ( V1 ) and nodes V3ob . All buffers are then splitted by the thallus skeleton. We tested many radius lengths in 
order to improve the method and we finally settled upon a smaller size radius than those defined for the direct 
measurement method (different by a factor of 10) due to the high density of line segments (i.e. the thallus) in 
certain portions of the image. Indeed, the latter would have generated additional splits of buffers by non directly 
connected line segments, which inevitably would have induced a bias in the measurements of disc areas and 
therefore of angles. The portions of discs are then converted into their equivalent angular counterparts. The 
results we obtained are not significantly different from one method to another. Details of this geoprocessing is 
shown in Fig. 6. A total of 1186 vertices have been detected, with 372 V1ob and 814 V3ob , respectively shown by 
red and black points in Fig. 6, leading to about 3000 angles.

Four populations of angles can be distinguished in Fig. 6. The peak observed at 0 ◦ is an artifact due to a 
distance less than 10 pixels between two vertices. The peak at 360◦ corresponds to V1ob vertices that do not 
partition the circle. Finally peaks at roughly 50◦ and 200◦ correspond to the distribution of the three arcs of the 
circle partition.

Figure 5.   (Left) Typical branching process. A first hypha grows from the bottom right of the image. The 
branching reveals two new hyphae. A circle of radius R = 80 µm ∼ 5 hyphal diameters and located on the 
branching point is drawn. Small angles θe and wide angles θo are defined by the intersections of this circle with 
the new hyphae and the projection of the first (mother) hypha. Following the convention proposed into the 
text, θo > 0 and in this example θe < 0 . (Right) (1), (2) and (3) are representations (pdf) of the populations 
of 66 measurements of the small angle θe (in blue) and the wide angle θo (in orange), defined in regard to the 
extension of the mother hypha, see the image on the left for details. Bin width is 4° in this representation. 
Gaussian fit lead to respective means for small angle −8.5± 4.2 , −10.2± 4.2 and −9.2± 4.2 , and for wide angle 
72.6± 4.1 , 67.1± 4.3 and 73.2± 4.2.
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This pdf has been fitted using three Gaussians (see Fig. 6) of which one is only defined by a normalisation 
factor (the sum of the 3 angles must be 2π ). The χ2 is very good for about 30 d.o.f. The estimated parameters 
are respectively 106◦ ± 1

◦ and 137◦ ± 3
◦ for the means and 8.4◦ ± 1

◦ and 15◦ ± 2
◦ for the widths of the interest 

gaussians (the third Gaussian is fully constrained because the sum of the angles must 2π).
There is only one geometric scenario to define θe and θo when we have 3 angles and when we know the hier-

archy between these angles. The right scenario gives the angle values: θe = 43± 6
◦ and θo = 75± 5

◦ , taking into 
account the uncertainties on the angle constraint.

Discussion
In a previous paper12, we characterized the hyphal network expansion and densification of the filamentous fungus 
P. anserina—in particular through the evolution of the total length and the number of nodes and apexes—on a 
standard culture medium assumed to be homogeneous and optimal for the fungal growth. We have presented in 
details the experimental process implemented both from a biological and physical point of view. Here, we present 
a two-dimensional simulation of the fungal growth that allows us to better characterize some growth patterns 
of the fungal network. In particular, we predicted that thallus growth is driven by a specific angular branching 
process, optimized for the exploration and exploitation of the environment. In this work, a calibration of the 
simulation was first carried out from the collected data. To this end, we focused on the two main processes that 
determine the growth pattern of the fungal network—i.e. apical growth and branching- to propose a growth 
model in the form of a binary tree, meaning that each branch is divided into two sub-branches, as previously 
described16. Then, in the generation process, the main features of this model are that lengths and angles follow 
two different probability laws and that growth has to be considered dynamically. The fungal network growth has 
then been basically defined as an apical branching process characterized by intersection points between mother/

Figure 6.   (Top-left) Skeletonization of the thallus, with identification of V1ob (red) and V3ob (black) vertices. 
(Top-right) Automatic calculation of angles from five-pixel buffers around vertices. (Bottom-left) Total angular 
spectrum with GIS method of the vertices (four populations, three angles from V3ob vertices and one V1ob 
vertices). (Bottom-right) Zoom in the range of interest. In blue, the three Gaussian distributions. In red the 
normalised sum of the three Gaussians. In grey, range of one-standard deviation derived from the fit.
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daughter branches ( V3 ), and apexes of branches ( V1 ). The growth model was incremented by lateral vertices ( V1ℓ 
and V3ℓ ) that can occur on a new daughter branch at a later moment of the growth. Such a process is in agree-
ment with the usual description of fungal network formation20. Namely, two types of branching are allowed to 
occur according to their location on the hyphae: apical branching which is the emergence of two branches from 
a hyphal tip (named here V3 ) and lateral branching from the sub-apical part of one hypha (named here V3ℓ ). The 
proposed model was calibrated using the parameter values obtained from our experimental data12, namely the 
number of vertices for different times and the spatial geometry of the fungal network.

The quality of experimental observations is limited by geometric intersections (overlapping). Obviously this 
limitation does not apply to the numerical simulation from which an estimation of the number of geometric 
intersections can be derived. Moreover, it unambiguously constructs the objective (and unobserved) history 
of the development of the thallus which is inscribed in the position of “real” V3 . This simulation also allows an 
exhaustive study of chirality breaks during growth and/or at the origin of development. The most important 
feature of this model is the occurrence of two distinct angles, a wide angle and a small one at the daughter 
branches, when a V1 vertex transforms into a V3 vertex. This pattern of angular distributions at the apexes is not 
the one commonly used by the simulation attempts previously described. For example, Du et al.7 has developed 
a lattice-based system for modelling mycelial growth of Postia placenta with an apical branching defined as the 
emergence of two branches that symmetrically develop with respect to the previous tip direction. Nevertheless, 
in our case this typical angular distribution allowed us to describe the apical branching process as the simultane-
ous emergence of two distinct types of branches. First is an exploratory branch, which slightly deviates (small 
angle) from the initial trajectory of the mother branch and could thus be involved in the centrifugal exploration 
of new territory, and then in the extension of the colony. Second is the operating branch, which shows a larger 
angle and deviates strongly from the initial trajectory of the mother branch. This type of branch could thus 
contribute to the exploitation of neighboring territories and then to the densification of the network. Such a 
pattern is in agreement with previous studies in which a clear distinction was made between leading hyphae at 
the edge of a fungal colony which grow into new territory in search for food, and the hyphae behind the colony 
edge that interconnect to form a three-dimensional network optimized to extract nutrients from the surround-
ing medium4. Then, leading hyphae, with an almost-linear trajectory from the center to the front of the thallus 
could correspond to the iterative development of exploratory branches from the apexes, contributing in turn to 
the extension of the thallus.

We hypothesized here that in a homogeneous environment, the fungus thallus growth is suited to occupy 
the largest surface in order to capture the maximum of resources and thus optimize its growth. Based on our 
hypotheses, our model predict that the largest occupied surface requires two quite distinct angles, a wide angle, 
close to 80◦ and a small angle, close to 15◦ (see Table 1). In previous studies, the measurement of branch angles 
has rarely been reported, and it remains in general limited in scope preventing the development of robust statis-
tics. For example, Abd-Elsalam et al.21 showed that morphological characteristics of Rizoctonia solani included 
a right-angled branching that could be used in identification of some isolates. Simonin et al.22 carried out the 
measurement of angles on about a dozen leading hyphae of N. crassa and showed an angular distribution ranging 
between 50◦ and 90◦ . More recently, Du et al.23 led a comparative plot of the angular distribution, both for apical 
and lateral branching on the thallus of P. placenta. They showed that this distribution is not affected by the age 
of region, or by the branch type and that branch angles remained approximately at 80◦ , close to the right angle, 
which appeared to maximize the area covered by the colony.

From new sets of experiments, two approaches have been used in order to extract the branching angular 
distributions, (see Table 1). One is based on the extraction of the angles formed by an apical branching ( V3 ) 
using a direct reading on the image, the other one derives from a GIS automatic method that allows for a global 
detection of angle measurements (apical and lateral branching). The main point of attention for the development 
of the first approach was the choice of the diameter of the circle allowing to measure the intersections between 
branches and thus to measure the branch angles themselves. A circle with a diameter of 50 pixels (approximately 
five hyphal diameters) was retained. This diameter was chosen in order to decrease the uncertainty due to hyphal 
width and to decrease the biases due to variation in the orientation of the apexes with time, independently from 
the initial branching. Branch angles extraction from approximately 200 apical branching allowed us to clearly 
identified the small and wide angle populations and to numerically estimate their corresponding values. The 
agreement is striking when compared to the optimal angular distributions that emerge from the prediction. 
However, the main disadvantage of this approach is that it requires the intervention of an operator who must 
select the apical vertices to be analyzed. This can be tedious, introducing a bias in the choice of apical branching, 
and necessarily result in a limited number of selected apexes. However, these results are confirmed by a second 
approach, complementary to the first one, that is global and based on GIS automatized detection of branch angle 
measurements. Here again, two populations of angles have been detected, with angular distributions that regain 
correctly the occurrence of a small and wide angles on apical branching.

Table 1.   Results on the angle (in degrees) measurements and prediction.

θe σθe θo σθo

Simulation (prediction) 15± 10 n.d. 80± 10 n.d.

Direct measurement 10± 5 8.7± 2.4 71± 5 12± 2.4

GIS method 43± 6 8.4± 1 75± 5 15± 2
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Comparison of numerical values leads to several methodological remarks concerning the wide and small 
angles. Wide angles were found in good agreement with direct measurement and prediction, within one stand-
ard deviation for the two angles. Small angles were found significantly higher for the small angle between GIS 
measurement and direct measurement (and simulation). Differences observed for the small angle measurements 
between the direct approach and the GIS approach could have several sources. Firstly, the choice of the vertices 
of the direct measurement could be slightly biased (the radius of the calculation of the angle is important which 
selects a certain type of vertices). Secondly, the radius of the circle delimiting the branching area for the GIS 
method, is smaller from the latter one by a factor of 10. This radius was chosen in order to optimize the statistics 
and avoid artefacts, notably in particularly dense areas of the thallus (high quantity of matter and high number 
of close nodes). However, this choice could introduce a bias on the result due to the linearization intrinsic to 
the method which is particularly sensitive for short lengths. Lastly, another bias could be due to the fact that no 
discrimination between lateral and apical branching could be established with the GIS based method, leading 
to take into account both cases. Moreover, there must be in the set of vertices allowing the reconstruction of the 
angles by the GIS method, a remainder of vertices V3i . However, at three standard deviations, i.e. over 99.9% , 
the results remain consistent.

Overall, from both prediction and experiments we can conclude that, in our conditions, the process of angular 
branching allows P. anserina to occupy as much surface as possible, and then to explore and exploit its environ-
ment in the most optimized way. All these considerations must be replaced in an in vivo context, in which the 
fungus is usually in competition with other organisms to occupy the colonized area and the use of available 
resources. So, we will consider extending the calibrated model to simulate the mycelial growth in heterogene-
ous environments or under various constraints, as apical branch angles respect their intrinsic property but the 
extension of emerged branches is influenced by external factors. Likewise, since it is possible to calibrate the 
simulation in time and space on the experimental data, a study of the different speeds (biological, creation of V1 , 
V3 , V1ℓ , V3ℓ , group velocity, etc.) is conceivable and controllable. A more ambitious simulation is under develop-
ment. It will allow the joint analysis of local curvature in relation to branch length or lateral branch emergence.

To conclude, our understanding of the coordinated growth and behavior of hyphae inside the fungal network 
is still in its infancy. In this context, our work contributes to show that a reasoned reductionism on the con-
straints of growth, both experimentally (two-dimensional growth) and mathematically (toy-model approach) is 
a powerful tool to describe relevant behaviour of the mycelial growth allowing for exploring multiple hypotheses 
and constraints rapidly.

Methods
Observation of the numerical thallus growth.  The result of the measurements (or in an equivalent 
way, of the observations) always corresponds to a convolution of the reality, the probability density function 
(pdf) of “true value”, with the acquisition chain (the pdf of resolutions). In order to make numerical results 
comparable to the experimental observations, it is then necessary to introduce the same bias and measurement 
uncertainties. In what follows, observations may refer to experimental or numerical data. There are different 
interferences which confuse the values of the quantities of interest that may depend on the entire detection chain 
which goes from the shooting to the post processing of the digitized image.

•	 First, the experimental observation process is not able to distinguish “true” V3 vertices (i.e. from fission 
process or equivalently branching, V3 and V3l ) from geometric vertices (i.e. geometric intersection of two 
branches because of two-dimensional observation). The number of these geometric vertices depends on the 
time of observation (because of the creation of lateral operating branches and operating branches). Indeed, 
the probability of obtaining branch intersections increases with the density of branches which also increases 
with time. We distinguish two situations: (1) either the intersection is purely geometric (the experimentally 
observed vertex may result from the superposition of two branches. These vertices are noted V3i because even 
this kind of vertex shows four branches. Usually, network reconstruction based on experimental images in 
this situation leads to two vertices with 3 branches in close proximity among the four branches constituting 
the intersection. In the second situation (2) it gives rise to a merger. We know that a process of hyphal fusion 
(i.e. anastomosis) can occur in P. anserina. These vertices are noted V3o despite the fact it still is a vertex with 
four branches. The anastomosis phenomenon arises following an unknown probability. However, the number 
of vertices resulting from the hyphal fusion process is certainly very low compared to the number of V3 + V3l 
and V3i vertices. Even if it is marginal, this hyphal fusion phenomenon allows a more efficient information 
transition within the network and it also makes it possible to be freed from a dependency in the centrality 
of the network. It is possible to qualitatively study, via simulation, the gain of a hyphal fusion phenomenon 
by building the adjacency matrix13,14 and by iterating on it so as to connect all the vertices to each other in a 
minimum time (or distance). The presence of these vertices blurs the information on the “true” number of 
vertices V3 , however, since NV3

≈ NV1
 and NV3l

= NV1l
 for a long duration, we get a very reasonable order 

of magnitude of NV3
+ NV3l

 . This limitation of experimental observation forces us to abandon the idea of 
working on historical markers of the development of a thallus. Indeed, if the vertices V1 give us an image of 
the current state of development, the vertices V3—resulting from the V1 which are only intermediate stages—
constitute the deep history of growth. In order to remedy to this corner case, we developed a method to clearly 
identify geometric intersections.

•	 A second effect is the resolution. On the one hand, the optic we use obviously has a finite resolution. On the 
other hand, there are experimentally limits in the reconstruction of the images. We take these resolutions 
into account by convoluting the position of the different vertices positions and branches with a Gaussian 
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resolution. Although taken into account in the simulation of the detection, this phenomenon is not of capital 
importance in the observation of the macroscopic characteristic quantities of the growth of the network.

•	 The third effect is also due to the finite resolution of the optic. A vertex V1 or V1ℓ can be very close to a branch. 
In this case it is impossible to distinguish it from the branch. This situation generates a vertex that behave 
as in the case of geometric intersections. We do not need to distinguish them from the vertex coming from 
intersections (i.e. V3i ), and so we note them V3i . It is easy to see thanks to the simulation that this phenomenon 
only becomes important when the density of hyphae is important, therefore for very long growth times.

•	 Finally we also take into account the possibility of having ghost vertices on the images coming from the optics 
or from the reconstruction of the images. We note this vertices V3g or V1g . This type of vertex is minimicked 
by specific processing during image reconstruction. Also, its number should be marginal and does not depend 
on time. Here again, we can experimentally verify that this process is marginal.

The number of numerically observed vertices, NV3ob
 and NV1ob

 , is therefore the sum of the different contribu-
tions of the effects listed above, while dominant parasitic vertices are mostly of geometric nature. It is difficult 
to build a theoretical model which allows to obtain this number even if we know that this number grows very 
significantly with the time of observation (typically exponential growth). The simulation makes it possible to 
obtain this number.

Calibration of the numerical simulation.  In the simulation, there are several parameters that need to be 
calibrated on the data. In order to do that we present here two sensitive variables.

Time scale.  To scale the time, we use the number of vertices V1ob and V3ob . It is much more complicated to 
find the law that governs the number of V3ob vertices than that of V1ob because of the presence of V3i whose law 
is unknown. On the other hand, because there are more intersections between branches than there are apexes 
near a branch, one would expect to obtain a larger contribution of branch-branch mergers, even if the merging 
process remains marginal (the V1 contribution in NV3o ). So, the calibration must be carried out on the vertex 
V1ob(t) and we will check that the number of vertices V3ob(t) follows the empirical law, see Eq. (7), from the data.

The number of V1ob(t) is formally:

For reasonably long time and with a quality control procedure, we can neglect some terms of the sum, i.e. 
NV1g (t) is very small compared to other numbers of vertices. The number of hyphal fusion apexes, ǫ1 NV3o(t) , is 
a second-order corrective term because it depends on anastomosis which is a marginal process. The number of 
apexes-branches intersections ǫ′

1
NV3i (t) depends on the resolution of the optics and the reconstruction which 

can be controlled (it is always possible to degrade the resolution in order to check this number at a given time). 
However, we cannot effectively neglect this component even if the vertex density is not very high (we will see 
on the data observed experimentally that it occurs beyond a certain growth time). Also the calibration on the 
experimental data we use can only be carried out in a growth time domain.

The term NV1ℓ
(t) depends on the number of branches at the time t − δt (with δt the time between 

two observations in experimental data and index of generation in simulation) and the full prob-
ability of producing a lateral branch before this time. The number of branches at the time t − δt is 
NV1

(t − δt)+ NV3
(t − δt)− 2 ≈ 2NV1

(t − δt) . Finally because we are dealing with the growth of a binary 
tree, NV1

(t) is know to be NV1
(t) = 2

at with a > 0 , where NV1
 is a scale parameter for the time. Using these 

approximations the number of V1ob(t) is then:

with δt/t ≤ 1 and with p the mean fraction of lateral branches for a branch (which is a function of the probability 
to create lateral branches) which is constant by hypothesis. A is a constant amplitude which takes into account 
p and the fact that if δt is perfectly defined, the origin of the times is not: there is a “latency” time between the 
start of germination and the first observation. Indeed, we know that for t = 0 we must obtain 0 ≤ NV1ob

(0) ≤ 3 . 
We can then rewrite this number of vertices as NV1ob

(t) = A′
2
a(t+t0) and in this case 0 ≤ A′ ≤ 3 and t0 is the 

“latency” time. So, A′
2
at0 = A.

We fit experimental data with this law in order to get the 2 parameters (see experimental approach) then we 
fit NV1ob

(t) coming from the simulation with the same law. In order to calibrate the simulation time we get the 
relation (A2at)data = (A2at

′

)sim and compute t ′ with the hypothesis that t ′ is a linear function of t.
In Fig. 7 (left) , we plot the uncertainties for one standard deviation obtained from the fit parameters of data 

(grey area). We scale the time (and compute one standard deviation for this time from the uncertainties on the 
parameters of the 2 fits carried out) and plot the points coming from the simulation (the black cross, the uncer-
tainties on the numbers of V1 coming from simulation follow a Poisson distribution).

The law for the number of V3ob is NV3ob
(t) ≈ 2

at
∑

n cnt
n because NV3

 have the same law as NV1
 since NV3i is 

the dominant term of NV3ob
 and we assume a regular increase with time for this number. In practice, the series 

can be limited to the first 2 terms (check the first negligible order in the fit). Grey area in Fig. 7 (right) show one 
standard deviation giving from the fit parameters of data. If the scale factor obtained from V1ob is correct, the 
points from the simulation for the three bodies vertices, must be inside a side band from the data.

The result shows a good agreement. We conclude that (1) we have correctly defined the time scale factor, and 
(2) binary tree growth is the right model for dynamic growth of P. anserina. However, it is certain that the law of 
growth of the fungus we use, A 2

a t ( a > 0 ), diverges when time tends towards infinity. This behaviour is certainly 

(4)NV1ob
(t) = NV1

(t)+ NV1ℓ
(t)+ NV1g (t)+ ǫ1 NV3o(t)+ ǫ′1 NV3i (t)

(5)NV1ob
(t) ∼ 2

a t
+ 2

a (t−δt) p ≈ A 2
a t



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12351  | https://doi.org/10.1038/s41598-022-16245-9

www.nature.com/scientificreports/

not permissible. Also, the law actually followed by this growth should rather be of the form NV1ob
(t) = 1

b+c 2−a t  
with a, b, c real positive parameters. Using this law, we can see that if at is not too big and if c ≫ b , the law 
becomes NV3o ≈ c2a t which is the law of binary tree. So, the law we have considered in this analysis is valid for 
not too long (i.e. t − t0 < 15 h) but not too short time (i.e. t − t0 > 3h).

Space scale.  With a growth model in the form of a binary tree, it is easy to obtain an observable which makes 
it possible to calibrate the distances in the simulation. For a given generation g, the number of vertices V1 is 
NV1

= 3 (2g−2) where the factor three comes from the number of branches of the germination. The number 
of segments between two vertices ((V3,V3 or ( V3,V1 )) is Nseg = 3 (2g−1 − 1) , so that the average length of the 
network can be written �L� = �ℓ�Nseg where 〈ℓ〉 is the average length between two vertices. The ratio, r1 , of the 
average length of the network to the number of V1 in the network is then r1 = �ℓ� (2− 2

2−g ) so that this is con-
stant for g ≫ 1.

Because of lateral branches we need to correct this ratio. By construction, the number of lateral branches is 
proportional to the number of vertices segments. So, r1 ≃ �ℓ� (2− 2

2−g )
1+p
1+2p for g ≫ 1 and where p is the mean 

fraction of lateral branches for a branch. r1 is again a constant for g ≫ 1 . The index of generation g is linked to 
time that was calibrated previously.

So, for a time not to small we must show on data a constant for rdata
1

 . This is the case and we can estimate this 
constant on the data so as to calibrate the species on the simulation.

In Fig. 8 (left), we plot the uncertainties for one standard deviation giving from the fit parameters of data 
(grey area). We scale rsim

1
 by the relation rsim

1
= rdata

1
 for a time not to small (using the scaled time obtain before) 

and plot the ratio coming from simulation (black cross). The uncertainties on the numbers of rsim
1

 are obtain by 
considering a Poisson hypothesis and relative uncertainties for Ltot equal 5%.

In Fig. 8 (right), we show the ratio rdata
3

 coming from the fit (grey area is one standard deviation) and we 
plot the rsim

3
 for the simulation with the space scale factor and the time scale factor obtained by v1ob . Note that 

it is impossible to define the law of rdata/sim
3

 because of the geometric intersections. However we know that this 
ratio must decrease as a function of time since the number of geometric intersections increases strongly and 
independently of the total length of the network. The agreement for r3 between experimental data and simula-
tion is convincing.

Another test is to check if the spatial geometry of the network has the same geometric behaviour between 
the experimental data and the simulation as a function of time. For this purpose, at a given time, we construct 
the inertia tensor of the vertex distribution for V3ob (resp. V1ob):

with x0, y0 the mean position of the vertices cloud and xn, yn the position of the vertices.
Diagonalisation of this tensor gives two eigenvalues (and two eigenvectors, which are the main axes of the 

vertices cloud). These eigenvalues are ordered as �1 ≥ �2 and we define an indicator of the geometry of the vertex 
cloud: s = 2 �2

�1+�2
 (called sphericity). If �1 ≫ �2 then s → 0 , which means that the vertices cloud has the shape of 

a elipse, if the eigenvalues are degenerated, s = 1 , which means that the vertices cloud has the shape of a disk.

(6)I =

∣

∣

∣

∣

∑

n(xn − x0) (xn − x0)
∑

n(xn − x0) (yn − y0)
∑
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∑
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Figure 7.   Left, one-standard deviation range of the experimental data fit of V1ob (grey) versus time, points: 
number of V1ob coming from the simulation (black) with scaled time. Right, one-standard deviation range of 
the experimental data fit of V3ob (grey) versus time, points: number of V3ob coming from simulation (black) with 
scaled time to the data obtained from V1ob . See text for details.
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In the data the shape of the vertex cloud is concerted over time ( s(t) = constant ). Its value depends on the 
initial conditions, i.e. the way the spore was generated. So the algebraic value of the constant is not relevant and 
only the shape of s(t) is relevant.

We check if the simulation gives a constant sphericity with scaled time and space. Figure 9 gives s(t) for the 
simulation and for the data of the V1ob distribution in the plan. The values for the uncertainties are obtained by 
a bootstrap method24. The sphericity for the V3ob vertices are also constant for data and simulation but because 
of the V3i it is difficult to give a right interpretation.

We check whether the direction of the main axes of the vertices cloud move as a function of time. In the 
case of experimental data this direction is constant even s ∼ 1 . The same applies in the case of the simulation.

Observation of the thallus growth.  After the standard binarisation and vectorization process described 
in12 we extracted and adjusted the following quantities in order to calibrate the simulation process. Let NV1ob

 be 
the number of observed V1ob , NV3ob

 be the number of observed V3ob and L the total length of the network. We 
assume the uncertainties associated to the vertices count to be Poisson. The total length L is about NV1ob

+ NV3ob
 

segments of average length 〈ℓ〉 . An estimation of the uncertainty associated with the measure of the total length 
L was derived as σL =

√

NV1ob
+ NV3ob

�ℓ� . We assume the uncertainty associated to the acquisition time t is 

Figure 8.   (Left) One standard deviation range of rdata
1

 experimental data fit in function of time (grey). Black 
points are rsim

1
 extracted from the simulation with scaled time ans scaled space. (Right) One standard deviation 

range of rdata
3

 experimental data fit (grey). Black points are rsim
3

 extracted from the simulation with scaled time 
and space coming from V1ob . See text for details.

Figure 9.   Sphericity of V1ob vertices distribution, defined as the ratio s = 2�2/(�1 + �2) of the eigenvalues (see 
the text for more details) in function of time. Right, sphericity extracted from the simulation, with scaled time 
and space. Left, is sphericity extracted from experimental data.
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half the sampling period δt . The growth of such a microorganism follows basically a five steps timeline: (1) a 
lag phase, (2) an exponential phase, (3) a deceleration phase, (4) a stationary phase, and (5) a decline phase. We 
study only the tree first steps. We previously showed that the temporal growth of NV1ob

 , L and NV3ob
 , to a first 

approximation, can be modelled by an exponential growth. This of course can only be valid locally (i.e. for short 
growth times) and from a purely descriptive perspective. Indeed, to be consistent with the binary tree model we 
made use of a base-2 exponential function to describe the growth of these quantities. Thus the following expres-
sion may be used:

where Xi stands respectively for NV1ob
 , NV3ob

 or L and t is the time. τ is the characteristic growth time, t0 is the 
temporal offset corresponding to the transition between the end of the lag phase and the first observation. For 
the experimental data, there is necessarily a time offset between the first recorded image and the ascospore 
germination. In order to compare the experiments with one another, this time offset should be taken on a per 
experiment basis because it varies according to each experiment. X0

i  are the respective parameters N0
V1ob

 , N0
V3ob

 
and L0 , corresponding to the growth onset given the temporal offset. N0

V1ob
 , N0

V3ob
 and L0 values are respectively 

expected to be approximately 3, 1, and in the range 10–20 hyphal diameters. Equation (7) shows a non-linear 
behaviour of the fit parameters. Consequently we made use of the following procedure: We excluded spurious 
data, i.e. for time greater than 15 h and for time smaller to  2h. The value of t0 was manually adjusted in order 
to obtain simultaneously N0

V1ob
 , N0

V3ob
 and L0 in the range of the respective expected values. We assume that 

the uncertainty on t0 corresponds to 2δt . Note that t0 gives access to the lag phase duration. With t0 as a fixed 
parameter the least squares fit is linear. The grayed areas in Fig. 10 show the results of the fit (for one standard 
deviation) on the considered data range. The points are the data with their uncertainties.

(7)Xi(t) = X0

i 2
(t+t0)/τi

Figure 10.   Number of apexes NV1ob
 , Number of nodes NV3ob

 and total length L as a function of time t for the 
experiments (1) (left), (2) (middle) and (3) (right). Experimental data (blue) are shifted in time of respective t0 . 
Solid black lines represent the best fit parameters (see Table 2). The respective grey shadowing wraps the data 
range used to perform to statistical fit, while its thickness quantifies the associated uncertainties to one standard 
deviation.
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The growth rate exponents τ and the measurement of specific quantitative parameters for the three experi-
ments are summarized in Table 2 and Fig. 10, respectively.

Because these 3 measurements are i.i.d. we assume the final results for the pertinent parameters of the growth 
are those shown in Table 3. Note the difference between the doubling time τV1ob

 and τV3ob
 . This is a straightfor-

ward consequence of the contribution of the geometric vertices in the three body vertices collection. Conversely, 
doubling time for the one body vertices τV1ob

 and total length τVL are found to be in agreement.

Skeletonization stage and vertex detection for GIS automatic method.  Several methods for 
generating centerlines, or skeletons, from polygon features have been described in the literature. We can cite 
Voronoi diagram based method, medial axis transformation algorithm or Delaunay triangulation method25,26. 
Among those, an automatic Geographic Information System algorithm, ESRI Polygon to Centerline—available 
online thanks to the ESRI27 plateform—appears to be efficient for modelling skeletons of elongated polygonal 
features25. The Polygon to Centerline GIS tool used in this work, based on the creation of Thiessen polygons, is 
described as follows:

(i)	 The first step is to create a large number of vertices from a thallus polygon feature (methodological aspects 
were discussed in12) through an adaptive densification method for improving the centerline quality. Vertices 
are then converted into point features (red point features in Fig. 11a).

Table 2.   Summary of the growth rate exponents for NV1ob
 , NV3ob

 and the total length L extracted from data 
shown in Fig. 10.  The χ2 values were all found to fall into the range 1–5.

 Experiment

t0 N
0

V1ob
τV1ob

N
0

V3ob
τV3ob

L
0

τL

(h) (h) (h) (mm) (h)

(1) 1.7 2.54± 0.57 1.67± 0.08 1.23± 0.37 1.28± 0.05 0.81± 0.28 1.59± 0.09

(2) 2.3 2.72± 0.55 1.92± 0.09 1.63± 0.46 1.51± 0.06 0.91± 0.31 1.85± 0.11

(3) 1.7 2.54± 0.52 1.84± 0.09 1.47± 0.43 1.47± 0.06 0.84± 0.29 1.79± 0.11

Table 3.   Final results of the experimental growth rate exponents, from data shown in Table  2.

τV1ob
 (h) τV3ob

 (h) τL (h)

1.81± 0.05 1.42± 0.03 1.75± 0.06

Figure 11.   Skeletonization processes of the thallus. (a) Construction of Thiessen polygons and generation 
of thallus vertices. (b) Zoom in the left part of (a) shows the point-features vertices of the thallus; Thiesson 
polygons inside the thallus; the first set of centerlines kept is represented in purple. (c) Final geomatic treatments 
providing the skeleton (green) after the trimming of the short surrounding line segments (the orange ones).
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(ii)	 Then the Thiessen polygons may be created, each of them contains a single point input feature (i.e. a vertex). 
We can observe a high number of Thiessen polygons located both inside and outside the fungal thallus, 
and of course only Thiessen polygons located inside the thallus area interest us. Thus, we extract polygons 
that overlay the thallus by using the “clip” geoprocessing tool (represented in beige in Fig. 11b), which are 
then converted into linear features. All linear segments that are connected to the thallus single polygon are 
removed to constitute the centerlines, represented in purple in Fig. 11b.

(iii)	 At this step of the treatments, we can see that a high number of short purple linear segments have to be 
removed (or trimmed). We used the ESRI “Trim Line” tool, which consists in removing in our case all 
purple lines that do not touch another line at both end points. The result of this treatment is shown in 
Fig. 11c (the orange plus green segments).

(iv)	 A small number of branching artifacts still need to be removed (the orange ones). The hyphal width being 
relatively homogeneous, orange centerlines are removed by calculating a morpho-mathematic erosion 
(creation of a three pixels ’negative’ buffer from the thallus envelope): all the segments that touch the three 
pixels wide surrounding area (grey shaded area in Fig. 11c) are trimmed and only the green segments are 
kept to form the skeleton. It should be specified that this method is efficient to produce centerline features 
and for working on V3ob vertices, but it slightly alters the position of the apexes ( V1ob).

(v)	 We then used successively two GIS tools to dissolve all centerline segments into an unique linear feature 
and to generate a feature class of points for locating the vertices (nodes and apexes). At this processing step, 
each V3ob vertex is materialized by three superimposed point features when each V1ob vertex corresponds 
to only one point feature; this makes it possible to distinguish V3ob vertices from V1ob vertices. Finally, V3ob 
features are dissolved to produce one feature per vertex (instead of three) (see Fig. 6.
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