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Abstract

This work deals with the asymptotic properties of maximum likelihood estimators
for semi-Markov processes with parametric sojourn time distributions. It is motivated
by the comparison, via a two-sample test procedure, of the distribution of two panels of
qualitative trajectories modeled by semi-Markov processes and observed over a random
number of transitions. Considering first one panel of growing size, we derive, under
classical conditions, the convergence in probability of the estimators of the transition
probabilities and the parameters of the sojourn time distributions as well as their
asymptotic normality. We then consider panels of semi-Markov processes drawn from
two different populations and study two-sample tests based on likelihood ratio. We
also introduce a two-sample Wald type test. The finite sample performances of the
proposed two-sample tests are evaluated with a brief simulation study.

Keywords: Likelihood ratio test; Panels of qualitative trajectories; Two-sample
tests; Wald type test.

1 Introduction

This work is motivated by statistical experiments in sensory analysis in which the evolution

of sensations over time can be modelled as trajectories of a qualitative stochastic process

(see Lecuelle et al. (2018) for a detailed presentation of the experimental framework, see also

Cardot et al. (2019)). In that context, Semi-Markov processes are shown to be relevant and

parsimonious models, when considering a parametric characterization for the distribution

of the sojourn times, to fit such kind of data. More generally, semi-Markov chains and semi-

Markov processes, which allow to consider more flexible models for the distribution of the

sojourn times than Markov chains, can provide interesting ways of modelling qualitative

trajectories in many fields of science (see Barbu and Limnios (2008) and Limnios and

Oprişan (2001) for general references). Estimators are based on the maximum likelihood
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principle and our aim in this work is to derive the asymptotic properties of such estimators,

with a particular focus on two-sample tests which are of great interest in food science and

sensory analysis to compare two different products or two panels of subjects on the same

product. Note that in that sensory analysis context, there is no censoring but the number

of observed transitions can be considered as random and is not necessarily independent of

the past of the trajectory.

A seminal work has been made by Billingsley (1961) to develop estimation procedures

and to derive the asymptotic distribution of test statistics based on the likelihood ratio

when the data are i.i.d. copies of a homogeneous Markov chain. However, considering

Markov chains for qualitative trajectories imposes strong assumptions on the distribution

of the sojourn times which may not be realistic in many applications, and particularly in

sensory analysis. Asymptotic results for maximum likelihood estimators of semi-Markov

processes are derived in Moore and Pyke (1968) based on long time behavior of a single

trajectory and under conditions of irreducibility and recurrence. Considering two sam-

ples of hidden Markov models, Dannemann and Holzmann (2008) proved that, when the

observation time tends to infinity, the asymptotic distribution of the likelihood ratio test

statistic is a χ2 law under the null hypothesis of equality of the distributions. As far as

panels of semi-Markov chains are concerned, convergence results have been obtained for

discrete time in Trevezas and Limnios (2011) in which the observation time is almost surely

finite. In continuous time and under random censoring, Pons (2006) introduces non para-

metric approaches for the estimation of the distribution of the sojourn times and derives

the asymptotic normality of the estimators. Almost sure consistency results are obtained

in Barbu et al. (2017), for parametric sojourn time distributions which are closed under

extrema (such as exponential, Weibull or Pareto distributions).

In this context of semi-Markov processes with parametric specifications for the dis-

tribution of the sojourn times, an empirical study has been performed in Frascolla et al.

(2022) to evaluate the finite sample effectiveness of two samples testing procedures based

on likelihood ratio statistics for sequences observed over random periods of time and drawn

from two distinct populations. It has been noted that the likelihood ratio statistics is ap-

proximately distributed as a χ2 law when the number of states is not too large and the

sample size as well as the mean number of observed transitions are large enough.

The present work aims at deriving, in the same parametric framework, the asymptotic

distribution of two-sample tests under the null hypothesis under general conditions on the

sojourn time distributions. For that purpose, it is first needed to prove the asymptotic

convergence of maximum likelihood estimators for the sojourn time distributions (Section

3). One novelty comes from the fact that there is a random number of observations used

to build the estimators and the proofs are based on properties of the expected likelihood

considering stopping times (see Gut (2009)) as well as more classical asymptotic tools (see
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Newey and McFadden (1994) and Ferguson (1996)). Then, in Section 4, we consider two-

sample tests of equality of distribution, and show under classic conditions that likelihood

ratio statistics are asymptotically distributed as a χ2 under the null hypothesis of equality,

even if the observation protocols, described by stopping times, are not the same for the two

panels. We also introduce a Wald type test of equality based on the asymptotic normality of

the estimators and prove that under general conditions it is also asymptotically distributed

as a χ2 law under the null hypothesis of equality. Finally, a small simulation study is

carried out in Section 5 to evaluate and compare these two approaches for finite samples.

Concluding remarks are given in Section 6. All proofs are gathered in an Appendix.

2 Definitions, observed trajectories and likelihood

Notations are borrowed from Limnios and Oprişan (2001). We consider a stochastic process

Z = (Zt)t∈R+ taking values in a finite state space E = {1, . . . , D} with D < +∞. We

denote by J = (Jk)k∈N the successive visited states by Z and by T = (Tk)k∈N the successive

time points corresponding to a change of state. We also define X = (Xk)k∈N∗ with Xk =

Tk−Tk−1 the successive sojourn times in the visited states. We assume that Z = (Zt)t∈R+ is

a semi-Markov process (SMP) associated to (J, T ), that is to say, ∀j ∈ E and t ∈ [0,+∞),

P(Jk+1 = j, Tk+1 − Tk ≤ t | J0, . . . , Jk;T0, . . . , Tk) = P(Jk+1 = j, Tk+1 − Tk ≤ t | Jk) (1)

We define N(t) = max{k ∈ N|Tk ≤ t}, t ∈ R+ the counting process of the number of

jumps in the time interval (0, t]. All along this work we assume that the SMP is regular,

that is P(N(t) < ∞) = 1 for all t > 0. We have Zt = JN(t), for t ≥ 0 and Jk = ZTk , for

k = 1, 2, . . ..

The law of the semi-Markov process Z is characterized by its initial distribution α =

(α1, . . . , αD) with αj = P(J0 = j), j = 1, . . . , D and its semi-Markov kernel,

Qij(t) = P(Jk = j,Xk ≤ t | Jk−1 = i) (2)

with the convention X0 = T0 = 0.

We denote by P the transition matrix of the embedded homogeneous Markov chain

(Jk)k≥1, with generic elements pij = P(Jk = j | Jk−1 = i), for i 6= j ∈ E × E. Note that

by definition of the semi-Markov process, pii = 0, for all i ∈ E. We finally introduce, for

i 6= j ∈ E × E, the sojourn time cumulative distribution functions,

Wij(t) = P(Xk ≤ t | Jk−1 = i, Jk = j), t ≥ 0.

We have Qij(t) = pijWij(t) as well as P(Jk = j) =
∑

i∈E αip
(k)
ij , where p(k)

ij is the generic

element of matrix Pk, that is to say, p(k)
ij =

[
Pk
]
i,j
, (i, j) ∈ E×E. We adopt the convention

that P0 is the identity matrix, so that P(J0 = j) =
∑

i∈E αip
(0)
ij = αj .
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We consider in this work parametric sojourn time distribution functions and we denote

by f(t, θij) the densities (resp. the probabilities) if time is continuous (resp. if time is

discrete), depending on the vector of parameters θij ∈ Rd, with i 6= j ∈ E ×E. We define

θ = (θij , i 6= j ∈ E × E) the set of parameters related to the sojourn time distributions.

The distribution of Z is thus characterized by the vector of parameters (α0,P0,θ0).

Taking account of the constraints that naturally arise,
∑D

j=1 αj = 1,
∑D

j=1 pij = 1 and pii =

0 for i = 1, . . . , D, the total number of unknown parameters is equal to D−1+D(D−2)+

dD(D−1) when there is no absorbing state. If there is an absorbing state and if we suppose

that αD = 0, the number of unknown parameters is equal toD−2+(D−1)(D−2)+d(D−1)2

since PDD = 1 and PDj = 0 for all j 6= D, with no associated sojourn time distribution.

2.1 Observation protocol and likelihood

With real experiments, we do not observe sequences having an infinite number of transi-

tions, and, as in sensory analysis experiments, we can suppose that for each sequence the

number of observed transitions is random and not necessarily independent to the past of

the trajectory, but without any censoring for the sojourn times. The observation process

is thus stopped after a random number of M transitions which occur almost surely in a

finite time. Given that M = m, for a strictly positive integer m, we have access to the

observation of S = {j0, x1, j1, . . . , jm−1, xm, jm}, whose likelihood is equal to

L(S,α,P,θ) = αj0

m∏
k=1

pjk−1jkf
(
xk, θjk−1jk

)
. (3)

The integer valued random variable M can be supposed to be independent of the

trajectory (Jk, Xk){k≥0} or it can be supposed to be a stopping time with respect to the

increasing sequence of sub-σ-algebra Fk = σ(J0, X0, . . . , Jk, Xk). Realistic examples of

stopping times, in our context are

• M(t) is the number of visited states until time t, M(t) = inf{k ∈ N|
∑k

j=1Xj ≥ t}.
It is well known for renewal processes that if E(X) > 0 then M(t) is finite almost

surely. We also suppose that P[M(t) ≥ 1] > 0 so that at least one transition can be

observed with non null probability.

• MD is the number of visited states before absorption, defined as follows MD =

inf{k ∈ N|Jk = D}, where we define the last state {D} to be the absorbing state. In

case, given thatM = τ , the likelihood of a trajectory S = {j0, x1, j1, . . . , jτ−1, xτ , D}
is equal to

L(S,α,P,θ) = αj0

[ τ−1∏
k=1

pjk−1jkf(xk, θjk−1jk)

]
pjτ−1Df(xτ , θjτ−1D). (4)
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For Markov chains having one absorbing state (see Kemeny and Snell (1976), Chapter 3

for details), the transition matrix P can be decomposed as follows

P =

(
Q R

0 1

)
(5)

where Q is the (D − 1)× (D − 1) matrix giving the transition probabilities among the no

absorbing states, and R is the vector with generic elements p0iD , i ∈ {1, . . . , D − 1}.
The matrix I − Q, with I the identity matrix, has an inverse (see Theorem 3.2.1 in

Kemeny and Snell (1976)), denoted by F = (I−Q)−1 and called the fundamental matrix.

The generic element [F]ij is the expected number of times the chain is in state j given that

it started in state i. We can deduce with Theorem 3.3.5 in Kemeny and Snell (1976) that

E [MD|J0 = i] =
∑D−1

j=1 Fij < +∞ and E [MD] =
∑D−1

i=1 E [MD|J0 = i]α0i .

We suppose now that we have a panel of n independent trajectories of Z, denoted by

S1, . . . ,Sn. We define Q̂(α,P,θ) the average value, over the trajectories S1, . . . ,Sn, of

the log-likelihood,

Q̂(α,P,θ) =
1

n

n∑
`=1

lnL(S`;α,P,θ). (6)

When it exists, a maximum likelihood estimator of (α,P,θ) is denoted by (α̂, P̂, θ̂) and

satisfies Q̂(α̂, P̂, θ̂) ≥ Q̂(α,P,θ), for all possible set parameters (α,P,θ).

We can remark that taking account of the particular multiplicative form of (3), criterion

(6) can be decomposed into three parts,

Q̂(α,P,θ) =
1

n

n∑
`=1

ln
(
α
j
(`)
0

)
+ Q̂P(P) + Q̂θ(θ). (7)

A direct consequence is that the maximum likelihood estimators of P and θ can be

computed independently by looking separately for the maximum of Q̂P(P) and Q̂θ(θ).

2.2 Maximum likelihood estimators

The maximum likelihood estimator α̂ = (α̂1, . . . , α̂D) of the vector of initialization proba-

bilities α0 = (α01 , . . . , α0D) is, in all the considered cases, given by

α̂j =
1

n

n∑
`=1

1{J(`)
0 =j}, j = 1, . . . , D (8)

where 1{J(`)
0 =i} is the indicator function taking value 1 if the first visited state by sequence

S` is {i} and zero else. The estimator α̂ is simply the maximum likelihood estimator

of the vector of parameters α0 of a multinomial distribution and it is shown with clas-

sical arguments (see e.g. Anderson and Goodman (1957) or Agresti (2002)) that, under

assumption A1 given below, α̂ is a consistent estimator of α0 when n tends to infinity
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and that
√
n (α̂−α0) converges in distribution to a centered Gaussian law with (singu-

lar) covariance matrix Γα, whose generic elements are [Γα]ij = −α0iα0j if i 6= j and

[Γα]ii = α0i(1− α0i).

From now on, we focus on the estimation of the parameters related to the transition

probabilities P0 and the set of parameters θ0 characterizing the laws of the sojourn times.

For i ∈ E, we denote by pi = (pij , j 6= i) ∈ R(D−1) the vector of transition probabili-

ties from state {i} to the other states and by p̂i = (p̂i1, . . . , p̂iD) its maximum likelihood

estimator. We denote by p0 = (p1, · · · ,pD) ∈ RD(D−1) the vector obtained by the con-

catenation of p1, · · · ,pD and by p̂ its maximum likelihood estimator. In presence of an

absorbing state {D}, we only consider p0 = (p1, . . . ,pD−1) since pD = (0, . . . , 0, 1).

The elements of θ0 are rearranged so that they form a D(D − 1)d dimensional vector,

with θ0 = (θ1,2, . . . , θ1,D, . . . , θD,D−1), and we denote by θ̂ its maximum likelihood esti-

mator. In presence of an absorbing state, we only consider the (D − 1)(D − 1)d vector

θ0 = (θ1,2, . . . , θ1,D, . . . , θD−1,D).

For each trajectory S`, we denote by m` the number of observed transitions. We define

N
(`)
i =

m`−1∑
k=0

1{J(`)
k =i} (9)

the number of times state {i} is reached in sequence S` and by

N
(`)
ij =

m`−1∑
k=0

1{J(`)
k =i,J

(`)
k+1=j} (10)

the number of observed transitions from {i} to {j}. When N
(`)
ij ≥ 1, we denote for

k = 1, . . . , N
(`)
ij , by x(`,k)

ij the sojourn time, at state {i} and before moving to state {j},
during the kth visit of sequence S`. We have

Q̂P(P) =
1

n

n∑
`=1


∑
i∈E

D∑
j=1
j 6=i

[
N

(`)
ij ln(pij)

] (11)

and

Q̂θ(θ) =
1

n

n∑
`=1

∑
i,j∈E
j 6=i

N
(`)
ij∑

k=1

ln
(
f(x

(`,k)
ij , θij)

)
(12)

with the convention that
∑N

(`)
ij

k=1 ln
(
f(x

(`,k)
ij , θij)

)
= 0 when N (`)

ij = 0.

The maximum likelihood estimators of the elements p̂ij of the matrix of transition

probabilities P are obtained by solving the constrained optimization problem,

max
P

Q̂P(P)

subject to
∑
j∈E

pij = 1, ∀ i ∈ E.
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Introducing Lagrange multipliers, we consider the Lagrangian,

Q̂P(P, λ1, . . . , λD) =
1

n

n∑
`=1


∑
i∈E

D∑
j=1
j 6=i

[
N

(`)
ij ln(pij)

]+
∑
i∈E

λi

∑
j∈E

pij − 1

 . (13)

The maximum likelihood estimators of the elements p̂ij of the matrix of transition

probabilities P are obtained by finding the roots of the gradient ∇PQ̂P(P, λ1, . . . , λD)

whose elements are for j 6= D and j 6= i,

∂Q̂P(P, λ1, . . . , λD)

∂pij
=

1

n

n∑
`=1

(
N

(`)
ij

pij

)
+ λi (14)

∂Q̂P(P, λ1, . . . , λD)

∂λi
=
∑
j∈E

pij − 1. (15)

The solutions are (see Anderson and Goodman (1957) or Billingsley (1961))

p̂ij =

∑n
`=1N

(`)
ij∑n

`=1N
(`)
i

, if
n∑
`=1

N
(`)
i ≥ 1 (16)

setting p̂ij = 0 if
∑n

`=1N
(`)
i = 0.

Maximum likelihood estimators θ̂ of θ are obtained by setting to zero the gradient

∇θQ̂θ(θ̂) of Q̂θ(θ), that is to say

∇θQ̂θ(θ̂) =
1

n

n∑
`=1

∑
i,j∈E
j 6=i

N
(`)
ij∑

k=1

∇θ ln
(
f(x

(`,k)
ij , θ̂ij)

)
(17)

= 0.

There is in general no explicit solution to such system of equations and a solution θ̂ to this

implicit equation is obtained by numerical iterative techniques.

3 Assumptions and convergence properties

The convergence results are based on properties of semi-Markov processes and classical

conditions on the distribution of the sojourn times that ensure uniqueness and consistency

of maximum likelihood estimators (see e.g Newey and McFadden (1994)) as well as the

Wald identity (recalled in Theorem 6.1 in the Appendix, see for example Theorem 5.3,

Chapter 1 in Gut (2009)) to deal with random sample sizes and stopping times. We

denote by ‖.‖ the Euclidean norm for vectors in Rd as well as the spectral norm for real

matrices. For a real valued function h(x, θ) depending on x ∈ R and a parameter θ ∈ Rd,
we denote its gradient by ∇θh(x, θ) and by ∇θθh(x, θ) the corresponding Hessian matrix

evaluated at θ. We suppose that
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A1: α0j > 0, ∀j ∈ E.

A2: p0ij > 0, ∀(i, j 6= i) ∈ E × E.

A3: θ0ij ∈ Θ, ∀(i, j 6= i) ∈ E × E, where Θ is a compact set in Rd.

A4: f(., θ) 6= f(., θ0) as far as θ 6= θ0, with (θ, θ0) ∈ Θ×Θ.

A5: ln f(X, θ) is continuous at each θ ∈ Θ with probability one,

and Eθ0 [supθ∈Θ |ln f(X, θ)|] < +∞.

A6: We assume that ∀(i, j 6= i) ∈ E × E,

i θ0ij belongs to the interior of Θ

ii f(X, θ) is twice continuously differentiable and f(X, θ) > 0 in a neighborhood

Nij of θ0ij

iii
∫

supθ∈Nij ‖∇θf(x, θ)‖ dx < +∞

iv
∫

supθ∈Nij ‖∇θθf(x, θ)‖ dx < +∞

v Eθ0
[
∇θ ln f(X, θ) (∇θ ln f(X, θ))>

]
is a non singular matrix

vi Eθ0
[
supθ∈Nij ‖∇θθ ln f(X, θ)‖

]
< +∞.

Assumption A1, which also appears in Trevezas and Limnios (2011), simply ensures

that every state can be reached during the first jump and simplifies the presentation of

the results. Since
∑D

j=1 α0j = 1, it also implies that α0j < 1, ∀j ∈ E. Assumption

A2 ensures that every state is accessible in one transition. It allows simpler calculations

and could be weakened at the expense of heavier notations. Assumption A3 is an usual

assumption of compactness for maximum likelihood estimators. It could be weakened

under additional concavity conditions of the likelihood (see Hjort and Pollard (2011)).

Hypothesis A4 is an identification condition which ensures uniqueness of the maximum of

the expected likelihood at the true value of the parameter. Conditions appearing in A5

allow to obtain a uniform result of convergence of the log likelihood function and to deduce

almost sure convergence of the maximum likelihood estimators for the parameters related

to the sojourn time distributions. The set of conditions appearing in A6 are classical for

getting the asymptotic normality of maximum likelihood estimators in an i.i.d context and

are similar to those given in Theorem 3.3 in Newey and McFadden (1994). Note that, to be

slightly more general, the conditions A5 and A6 could certainly be replaced by a quadratic

mean differentiability assumption (see e.g. Chapter 5 in van der Vaart (1998) or Chapter

12 in Lehmann and Romano (2005)) on the law of the sojourn times.

Note that in presence of an absorbing state {D}, assumptions A1 and A2 only deal

with the unknown transition probabilities and should be understood as follows A1: α0j >
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0, ∀j ∈ E\{D} and A2: p0ij > 0, ∀(i, j 6= i) ∈ E\{D}×E. The same restriction holds

on the indices (i, j) for assumptions A3 and A6.

Theorem 3.1. If hypotheses A1 to A5 hold and if individual sequences are observed during

M transitions with E[M ] < +∞, then, as n→∞,

P̂→ P0 almost surely,

θ̂ → θ0 almost surely.

As far as the asymptotic distribution of θ̂ is concerned, the additional assumptions given

in A6 are classical assumptions in maximum likelihood theory which ensure asymptotic

normality of the estimators of each θij based on independent copies of Xij (see for example

Theorem 3.3 in Newey and McFadden (1994)).

Theorem 3.2. If hypotheses A1 to A6 hold and if E[M ] < +∞, then as n tends to infinity,

√
n

((
p̂

θ̂

)
−

(
p0

θ0

))
 N

(
0,ΓMp0,θ0

)

with ΓMp0,θ0 =

(
ΓMp0 0

0 ΓMθ0

)
and ΓMp0 and ΓMθ0 are block diagonal matrices. If M = M(t)

then

ΓMp0 =



1
E[NM

1 ]
Γp1 0 · · · 0

0
. . . 0

...
... 0

. . . 0

0 · · · 0 1
E[NM

D ]
ΓpD


with (singular) matrices Γpi , for i = 1, . . . , D, having diagonal elements [Γpi ]jj = p0ij(1−
p0ij) if j 6= i and [Γpi ]kj = −p0ijp0ik if j 6= k. Matrix ΓMθ0 is also block diagonal, with

matrices on the diagonal

ΓMθij =
1

p0ijE
[
NM
i

] (−E [∇θijθij ln
(
f(Xij ; θ0ij )

)])−1
.

If M = MD then ΓMp0 and ΓMθ0 have the same expression but are made of D − 1 matrices

on the diagonal, excluding the part corresponding to the absorbing state.

The proofs of these two theorems are given in the Appendix. Note that the asymptotic

distribution of p̂ has already been derived in the simpler design in which we observe exactly

m transitions for each trajectory in Anderson and Goodman (1957) and for sequences S

censored at time t in Trevezas and Limnios (2011).

9



Remark. As an anonymous referee pointed out, it could be possible to consider that we

observe a deterministic number Mn of transitions for each trajectory, with Mn tending to

infinity as n tends to infinity. A closer look at Theorem 3.2 shows that the asymptotic

covariance matrix ΓMp0 is a block diagonal matrix made of D covariance matrices which are

"normalized", for j = 1, . . . , D, by 1/E[NM
j ], the inverse of the expected number of times

a trajectory reaches state j. The same normalizing factors appear in ΓMθ0 . We have

E[NMn
j ] =

Mn−1∑
k=0

P[Jk = j]

=
∑
i∈E

Mn−1∑
k=0

αip
(k)
ij .

Under assumption A2, we have that the embedded homogeneous Markov chain (Jk)k≥0

is an irreducible positive recurrent Markov chain, which consequently admits an invariant

probability measure π = (π1, . . . , πD) satisfying

lim
k→∞

p
(k)
ij = πj .

By Cesaro’s mean theorem, and the fact that
∑

i∈E αi = 1, we deduce that

lim
n→∞

1

Mn
E[NMn

j ] = πj

so that, when Mn is large, E[NMn
j ] ≈ πjMn. This means that, if (Mn)n≥1 is a sequence of

integers tending to infinity, the
√
n normalizing factor in Theorem 3.2 should be replaced

by
√
nMn and 1/E[NM

j ] should be replaced by 1/πj .

4 Likelihood ratio and Wald type tests

Different strategies, which are more or less asymptotically equivalent, can be considered

for hypothesis testing in this maximum likelihood parametric context, as explained in

Newey and McFadden (1994). One advantage of the approach based on the likelihood

ratio is that it does not require to have at hand an explicit estimate of the variance of the

estimators, which may be a not so simple task in our setting, and it generally leads to a

simple asymptotic chi-square distribution under general conditions. A simple introduction

to likelihood ratio test is given in Ferguson (1996), Chapter 22.

Testing the equality of the initialization probabilities, that is to say the null hypothesis

H0 : α1 = α2, with a likelihood ratio test approach follows directly from standard tools

which do not involve the dynamics of the trajectories and is thus not presented here (see

example 16.1 in van der Vaart (1998)). We focus in the following on testing hypotheses on

the transition probabilities and sojourn time distributions. Define the set R as the set of

all possible transition matrices satisfying assumption A2. Consider R0 a subset of R and
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Θ0 a subset of Θ and suppose now we would like to test H0 : (p,θ) ∈ R0 ×Θ0 against the

alternative H1 : (p,θ) /∈ R0 ×Θ0.

We consider the likelihood ratio statistics defined as follows

λn =
sup(p,θ)∈R0×Θ0

∏n
`=1 L(S`,α,p,θ)

sup(p,θ)∈R×Θ

∏n
`=1 L(S`,α,p,θ)

. (18)

Note that λn does not depend on α because of the multiplicative structure of the log-

likelihood L (see equation 7).

4.1 Simple hypothesis testing

We want to test the simple null hypothesis H0 : (p,θ) = (p0,θ0), for some values p0 for

p and θ0 for θ given in advance. We consider the following likelihood ratio,

λn =

∏n
`=1 L(S`,p0,θ0)∏n
`=1 L(S`, p̂, θ̂)

, (19)

whose asymptotic distribution is given, when H0 is true, in the theorem below.

Theorem 4.1. Suppose that the conditions of Theorem 3.2 are in force, if the null hypoth-

esis H0 : (p,θ) = (p0,θ0) is true then, as n tends to infinity,

−2 lnλn  χ2
DoF

where the degrees of freedom are equal to DoF = D(D − 2) +D(D − 1)d when there is no

absorbing state and DoF = (D − 1)(D − 2) + (D − 1)2d when there is an absorbing state.

Note that partial tests Hθ
0 : θ = θ0 or Hp

0 : p = p0 dealing only with the transition

probabilities or the sojourn time distributions can be performed easily. It can be directly

deduced, thanks to the particular structure (7) of the log likelihood, that the test statistics

−2 lnλn is asymptotically distributed as a χ2 with a degree of freedom equal to the number

of constraints imposed under the null hypothesis. If we consider the null hypothesis Hθ
0 :

θ = θ0, then −2 lnλn  χ2
D(D−1)d when there is no absorbing state and −2 lnλn  

χ2
(D−1)2d when the trajectories are observed until absorption. If we consider the null

hypothesis Hp
0 : p = p0, then −2 lnλn  χ2

D(D−2) when there is no absorbing state

and −2 lnλn  χ2
(D−1)(D−2) in presence of an absorbing state.

4.2 Two-sample tests

Suppose now we have two samples of respectively n1 and n2 trajectories, (S1
` )`=1,...,n1

and (S2
` )`=1,...,n2 drawn from two distinct populations whose probability distributions are

characterized by the parameters (α1,p1,θ1) and (α2,p2,θ2). We would like to test the

equality of the distributions, that is to say test the null hypothesis

H0 : (p1,θ1) = (p2,θ2). (20)
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4.2.1 A two-sample Wald-type test

A way of testing the equality of the distribution of two semi-Markov processes consists in

considering Wald testing approaches based on the asymptotic distribution of the estimators

under the null hypothesis. We first state the following Lemma.

Lemma 4.1. Suppose that the conditions of Theorem 3.2 are in force and n2
n1+n2

→ f ∈
(0, 1) as n1, n2 tend to infinity,

√
n1n2

n1 + n2

p̂(1) − p̂(2) − (p1 − p2)

θ̂
(1)
− θ̂

(2)
− (θ1 − θ2)

 N (0,Γfp,θ

)

where Γfp,θ =

(
Γfp 0

0 Γfθ

)
, with Γfp = fΓM1

p1
+ (1− f)ΓM2

p2
and Γfθ = fΓM1

θ1
+ (1− f)ΓM2

θ2
.

Based on Lemma 4.1, we are now able to build a Wald-type test statistic to test the

hypothesis of equality (20). Consider

W p,θ
n1,n2

=
n1n2

n1 + n2

p̂(1) − p̂(2)

θ̂
(1)
− θ̂

(2)

> (Γ̂
fn
p,θ

)−1

p̂(1) − p̂(2)

θ̂
(1)
− θ̂

(2)

 (21)

where

Γ̂
fn
p,θ =

n2

n1 + n2

Γ̂
M1

p 0

0 Γ̂
M1

θ

+
n1

n1 + n2

Γ̂
M2

p 0

0 Γ̂
M2

θ

 (22)

and the estimators Γ̂
M1

p and Γ̂
M2

p (resp. Γ̂
M1

θ and Γ̂
M2

θ ) are obtained by replacing in the

expression of the asymptotic covariance matrices the unknown values θij and pij by their

maximum likelihood estimators θ̂ij and p̂ij computed under the null hypothesis and the

expected number of times state {i} is reached, E[NM1
i ] (resp. E[NM2

i ]) by its empirical

counterpart n−1
1

∑n1
`=1N

1,`
i (resp. n−1

2

∑n2
`=1N

2,`
i ). We recall that matrix Γ̂

M

p is singular,

thus we consider its generalized inverse in the computation of W p,θ
n1,n2 .

We can now state the following theorem.

Theorem 4.2. Suppose that the conditions of Theorem 3.2 are in force and n2
n1+n2

→ f ∈
(0, 1), as n1 and n2 tend to infinity. If the null hypothesis H0 : (p1,θ1) = (p2,θ2) is true

then

W p,θ
n1,n2

 χ2
DoF

where the degrees of freedom are equal to DoF = D(D − 2) +D(D − 1)d when there is no

absorbing state and DoF = (D − 1)(D − 2) + (D − 1)2d when there is an absorbing state.
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Note that this Wald type test strategy can also be easily employed for testing partial

equality hypotheses, dealing only with a subset of the parameters. The most natural partial

hypotheses that we can consider are Hp
0 : p1 = p2 or Hθ

0 : θ1 = θ2. In that case, we can

introduce the following test statistics

W p
n1,n2

=
n1n2

n1 + n2

(
p̂(1) − p̂(2)

)>( n2

n1 + n2
Γ̂
M1

p +
n1

n1 + n2
Γ̂
M2

p

)−1 (
p̂(1) − p̂(2)

)
(23)

W θ
n1,n2

=
n1n2

n1 + n2

(
θ̂

(1)
− θ̂

(2)
)>( n2

n1 + n2
Γ̂
M1

θ +
n1

n1 + n2
Γ̂
M2

θ

)−1 (
θ̂

(1)
− θ̂

(2)
)
. (24)

If the hypotheses of Theorem 4.2 hold and Hp
0 : p1 = p2 is true, then

W p
n1,n2

 χ2
DoF

with DoF = D(D− 2) when there is no absorbing state and DoF = (D− 1)(D− 2) when

there is an absorbing state. Similarly, if Hθ
0 : θ1 = θ2 is true, then

W θ
n1,n2

 χ2
DoF

with DoF = D(D − 1)d when there is no absorbing state and DoF = (D − 1)2d when

there is an absorbing state.

4.2.2 Two-sample likelihood ratio tests

We consider another approach based on the following likelihood ratio,

λn1,n2 =

∏n1
`=1 L(S1

` , p̂, θ̂)
∏n2
`=1 L(S2

` , p̂, θ̂)∏n1
`=1 L(S1

` , p̂
1, θ̂

1
)
∏n2
`=1 L(S2

` , p̂
2, θ̂

2
)

(25)

where (p̂1, θ̂
1
) and (p̂2, θ̂

2
) are the maximum likelihood estimators of (p,θ) based on the

first and second sample of trajectories and (p̂, θ̂) are the maximum likelihood estimators

under H0. The asymptotic distribution of the likelihood ratio is given in the theorem below

when the two samples of trajectories are drawn according to the same SMP.

Theorem 4.3. Suppose that the conditions of Theorem 3.2 are in force and n2
n1+n2

→ f ∈
(0, 1), as n1 and n2 tend to infinity. If the null hypothesis H0 : (p1,θ1) = (p2,θ2) is true

then

λn1,n2  χ2
DoF

where the degrees of freedom are equal to DoF = D(D − 2) +D(D − 1)d when there is no

absorbing state and DoF = (D − 1)(D − 2) + (D − 1)2d when there is an absorbing state.

The proof of Theorem 4.3, given in the Appendix, has many similarities to the proof

of Theorem 1 in Dannemann and Holzmann (2008), which studies likelihood ratio tests

for two samples of hidden Markov models. As in Dannemann and Holzmann (2008), it

is possible to consider a more general null hypothesis relying on a regular r dimensional

restriction H0 : R(p1,θ1,p2,θ2) = 0, provided that the constrained maximum likelihood

estimator is consistent.
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5 A simulation study for two-sample tests

A small simulation study is conducted to evaluate and compare the effectiveness of the

two-sample Wald type test and likelihood ratio test under different scenarios, with varying

sample sizes and number of states.

5.1 Experimental protocol

To generate trajectories of an SMP, we must have its initial probability, its transition

matrix and the distribution of the sojourn times.

As in Lecuelle et al. (2018) and Cardot et al. (2019), we consider that the sojourn time

distribution only depends on the current state i, meaning that θij = θi, for j 6= i. We also

suppose that the distribution for the sojourn times is a Gamma distribution. Indeed the

Gamma distribution provides realistic approximations to the sojourn time distributions

for sensory analysis data (see Frascolla et al. (2022) for a comparison of the fit of different

parametric distributions for sojourn times). Consequently, with these simplifications, the

vector of estimated parameters θ̂ is of dimension 2D and the block diagonal matrix ΓMθ0 is

of dimension 2D × 2D with diagonal terms ΓMθi , that can be expressed as follows,

ΓMθi =
1

E
[
NM
i

] (−E [∇θiθi ln (f(X, θ0i))])
−1

=
1

E
[
NM
i

]
trigamma(ai) − 1

λi

− 1
λi

ai
λ2i

−1

where ai > 0 and λi > 0 are the parameters characterizing the Gamma distribution, with

density function f(x, a, λ) = xa−1λa exp(−λx)
Γ(a) , for x ≥ 0, where Γ(a) is the Gamma function.

In our experiments, as in Frascolla et al. (2022), the values of ai and λi are given by the

estimated values on a real sensory analysis data set and the initial probabilities (resp. the

rows of the transition matrices) are obtained by normalizing by their sum D − 1 (resp.

D − 2) independent uniform random variables on [0, 1].

To evaluate the two-sample tests performances according to how distant are the distri-

butions of the two semi-Markov processes, we first define two transition matrices P1 and

P2, as well as two sets of parameters for the sojourn time distributions, θ1 and θ2. We

then define, for ε ∈ [0, 1], Pε = (1− ε)P1 + εP2 and θε = (1− ε)θ1 + εθ2.

We generate n1 trajectories of an SMP having parameters (P1,θ1) and n2 trajectories

of an SMP with parameters (Pε,θε), for different values of ε. When ε = 0, the two

distributions are the same and the rejection level of the two-sample tests of equality should

be equal to the nominal level. As ε increases, the two different distributions become more

and more distant and the power of the tests is expected to increase.

All the trajectories are observed over M = 5 transitions and we consider different
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sample sizes, ranging from n1 = n2 = 100 to n1 = n2 = 800 as well as different number of

states, D = 4, 7 or D = 10.

5.2 Simulation results

The nominal level of the tests is chosen to be equal to 0.05, so that the null hypothesis of

equality in distribution is rejected for the likelihood ratio test (respectively for the Wald

type test) when λn1,n2 (resp. W p,θ
n1,n2) is larger than the quantile of order 0.95 of a χ2

distribution with D(D− 2) + 2D degrees of freedom. To get a good approximation to the

true level and power of the tests, each procedure is repeated 1000 times.

Number of states D = 4 D = 10

With n1 = n2 = 100 trajectories

LR test 5.1 15.3

Wald 5.5 8.9

With n1 = n2 = 200 trajectories

LR test 5.8 10.2

Wald 5.2 5.6

With n1 = n2 = 500 trajectories

LR test 4.5 5.4

Wald 4.7 4.8

Table 1: Empirical levels (when ε = 0), with a nominal rejection rate of 5%, for the two-

sample tests withD = 4 andD = 10 states and sample sizes n1 = n2 = 100, n1 = n2 = 200,

n1 = n2 = 500.

We first study the distribution of the test statistics under the null hypothesis and

consider n1 = n2 = 200 trajectories and D = 4 states, n1 = n2 = 600 trajectories and

D = 7 states, n1 = n2 = 800 trajectories and D = 10 states with M = 5 transitions.

The histograms obtained for the Wald type test are drawn in Figure 1 and those for the

likelihood ratio test in Figure 2. The χ2 distribution is represented in red in the two Figures.

The distribution of the p-values are also represented in these two Figures and compared

with the uniform distribution on [0, 1]. These Figures confirm that the distribution of the

two test statistics is well approximated by a χ2 distribution in the considered cases.

We present in Table 1 the empirical rejection rate, for an expected nominal level of

5% in the different scenarios. For small samples (n1 = n2 = 100), the two test have an

empirical rejection rate close to the expected one only when the number of states is small

(D = 4). When D = 10, the LR test over reject the null hypothesis even if the sample size

gets larger (n1 = n2 = 200). As expected the two tests have similar empirical level when

n1 and n2 are large. Overall, the Wald approach seems to be more reliable under the null
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hypothesis.

Approximated rejection rates when the null hypothesis is not true, considering alter-

native hypothesis controlled by ε, in are given in Figure 3. The Wald approach seems to

be slightly more powerful when the sample sizes are not large (n1 = n2 = 100) and the

number of states is small D = 4. When D = 10, the LR test which rejects two often the

null hypothesis under H0 cannot be reliable with sample sizes n1 = n2 = 200. the number

of or when the number D of states is not small (D = 10). Finally, when the sample size is

large (n1 = n2 = 500) the two testing procedures have similar performances.

6 Concluding remarks

We have studied in this work the asymptotic distribution of two-sample tests of equality

in law of semi-Markov processes with parametric sojourn time distributions based on the

likelihood ratio statistics and a Wald type procedure. It has been confirmed with a small

simulation study that when the sample sizes are sufficiently large both approaches are

effective, with similar performances. However, when the experiments do not correspond to

the asymptotic regime, that is to say when the sample sizes are too small or the number

D of states are large, it seems that the Wald type approach behaves better.

There are many directions that deserve further investigation. When D is large, it

would certainly be interesting to study the behavior of two-sample test statistics adopting

a sparse point of view. Several works have been made recently in that sparse context to

test equality of the law of categorical variables (see Dette and Dörnemann (2020) for a

study the behavior of likelihood ratio tests and Plunkett and Park (2019) for new test

statistics). Another interesting direction would be to consider, in a two-sample framework,

a bayesian point of view (see Votsi et al. (2021) for a recent work in a general framework

of semi-Markov processes).
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Appendix

Before giving the proofs of the theorems, we recall some useful results.

Some useful results

We recall Wald’s identity which is often used in this work (see for example Gut (2009),

Theorem 5.3, Chapter 1 for a proof). Consider i.i.d random vectors (Vk,Wk), k ≥ 1 and a

stopping time N , with respect to an increasing sequence of sub-σ-algebras Fk, k ≥ 1 such

that (Vk,Wk) is Fk measurable and independent of Fk−1.

Theorem 6.1. (Wald’s identity)

Suppose that E(Vk) = µv and E(N) <∞. Then

E

[
N∑
k=1

Vk

]
= µvE(N).

If (Vk,Wk) have finite variance, and E(Wk) = µw then

E

[(
N∑
k=1

Vk −Nµv

)(
N∑
k=1

Wk −Nµw

)]
= Cov(V1,W1)E(N).

We also recall some basic properties of the moments of the counting processes.

Lemma 6.1. If A1 and A2 hold and E[M ] < +∞ then 0 < E
[
NM
i

]
< +∞ and

E
[
NM
i

]
=

+∞∑
m=1

m−1∑
k=0

∑
j∈E

α0jp
(k)
0ji

P (M = m)

E
[
NM
ij

]
= p0ijE

[
NM
i

]
.

The following Lemma is a direct adaptation of Theorem 3.3.5 in Kemeny and Snell

(1976)).

Lemma 6.2. For i 6= j ∈ {1, . . . , D − 1},

E [MD|J0 = i] =

D−1∑
j=1

Fij

Var [MD|J0 = i] = 2

D−1∑
j=1

FijE [MD|J0 = j]− E [MD|J0 = i]− (E [τ |J0 = i])2

E
[
NMD
j

]
=

D−1∑
i=1

Fijα0i

E
[
NMD
ij

]
= p0ijE

[
NMD
j

]
.

Thus E [MD] =
∑D−1

i=1 E [MD|J0 = i]α0i , as well as finite variance (see Corollary 3.3.6

in Kemeny and Snell (1976)).

22



Proofs

Proof. of Theorem 3.1.

The transition probabilities. The almost sure consistency of P̂ is a direct conse-

quence of the strong law of large numbers and Wald’s identity.

Define NM
i =

∑M−1
k=0 1{Jk=i} the number of visits of state i during the first M − 1

transitions and note that we can rewrite NM
ij =

∑M−1
k=0 1{Jk=i;Jk+1=j}, as follows

NM
ij =

NM
i∑

k=1

Bk
ij ,

where Bk
ij is a Bernoulli variable taking value one if after the kth visit of state i, the

next visited state is state j and zero else. By the Markov property of (Jk)k≥0, the vari-

ables (Bk
ij)k≥1 are independent with expected value P(Bk

ij = 1) = p0ij . Furthermore

0 < E
(
NM
i

)
≤ E(M) < +∞, so that we deduce with Wald’s identity that

E[NM
ij ] = p0ijE

[
NM
i

]
, (26)

and E[NM
ij ] > 0 with assumption A2. Since the trajectories are supposed to be independent,

the strong law of large numbers gives us that n−1
∑n

`=1N
(`)
ij → E[NM

ij ] = p0,ijE
[
NM
i

]
and

n−1
∑n

`=1N
(`)
i → E

[
NM
i

]
> 0 almost surely, as n → ∞. We get with the continuous

mapping theorem (see van der Vaart (1998), Theorem 2.3) that p̂ij converges almost surely

to E[NM
ij ]/E

[
NM
i

]
= p0ij and the announced result. Note that when M = MD, we have

with Theorem 3.3.5 in Kemeny and Snell (1976), E
[
NMD
i

]
=
∑D−1

j=1 Fjiα0j .

The sojourn time parameters. By the renewal property of the semi-Markov process,

the sojourn times in state {i} when the next state is {j} form a sequence (Xk
ij)k≥1 of i.i.d

random variables, with density f(., θ0ij ). We get with Wald’s identity,

Eα0,P0,θ0

NM
ij∑

k=1

ln
(
f
(
Xk
ij , θij

)) = Eα0,P0,θ0

[
NM
ij

]
Eα0,P0,θ0 [ln(f(Xij , θij))]

where Xij is a random variable with density f(., θ0ij ). Define Qθ0(θ) to be the expectation

of Q̂θ(θ), with respect to the distribution characterized by parameter θ0, we have

Qθ0(θ) = Eα0,P0,θ0

[
Q̂θ(θ)

]
=
∑
i,j∈E
j 6=i

Eα0,P0,θ0

[
NM
ij

]
Eθ0 [ln(f(Xij , θij))] . (27)

We deduce from A4 and A5 and the information inequality given in Lemma 2.2 in Newey

and McFadden (1994) that Eθ0 [ln(f(Xij , θij))] has a unique maximum at θij = θ0ij . Since
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Eα0,P0,θ0

[
NM
ij

]
> 0 and by the additivity of Qθ0(θ) given in (27) we get that Qθ0(θ)

attains its unique maximum at θ = θ0. We can note that Qθ0 is continuous since it is the

sum of continuous functions.

By assumption A5,
∑

i,j∈E
j 6=i

∑NM
ij

k=1 ln
(
f
(
Xk,l
ij , θij

))
is continuous at each θ ∈ Θ with

probability one, and we have∣∣∣∣∣∣∣∣
∑
i,j∈E
j 6=i

NM
ij∑

k=1

ln
(
f
(
Xk,l
ij , θij

))∣∣∣∣∣∣∣∣ ≤
∑
i,j∈E
j 6=i

NM
ij∑

k=1

∣∣∣ln(f (Xk,l
ij , θij

))∣∣∣

≤
∑
i,j∈E
j 6=i

NM
ij∑

k=1

g(Xk,l
ij )

with g(X) defined as supθ∈Θ |ln f(X, θ)| which is reached as Θ is compact and the function

ln f(X, θ) is continuous in θ (assumption A5). We get with Wald’s identity that

Eα0,P0,θ0

∑
i,j∈E
j 6=i

NM
ij∑

k=1

g(Xk,l
ij )

 =
∑
i,j∈E
j 6=i

Eα0,P0,θ0

[
NM
ij

]
Eα0,P0,θ0 [g(Xij)] .

Thanks to assumption A5, Eθ0 [g(X)] <∞ and by hypothesis Eα0,P0,θ0

[
NM
ij

]
<∞. Thus,

we have Eα0,P0,θ0

[∑
i,j∈E
j 6=i

∑NM
ij

k=1 g(Xk,l
ij )

]
<∞.

The independence of the n trajectories, the additional compactness assumption A3 and

Lemma 2.4 in Newey and McFadden (1994) allows to obtain a uniform law of large num-

bers,

sup
θ∈Θ

∣∣∣Q̂θ(θ)−Qθ0(θ)
∣∣∣→ 0 almost surely when n tends to infinity.

We can finally deduce from Theorem 2.1 in Newey and McFadden (1994) that θ̂ converges

almost surely to θ0.

Proof. of Theorem 3.2.

The case with an absorbing state {D} follows the same lines as the proof without any

absorbing state and is not given. First note that by the additive property of the average

likelihood criterion (7) the covariance between
√
n(p̂−p0) and

√
n(θ̂−θ0) is equal to zero.

We first derive the asymptotic normality of p̂.

The transition probabilities. The proof is similar to the proof of Lemma 4.2 in Trevezas

and Limnios (2011) and relies on the multivariate central limit theorem applied on the el-

ements of the empirical score, ∇PQ̂P(P) which are i.i.d, with expectation zero at p = p0.
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As n tends to infinity, we have

√
n∇pQ̂p(p0) N (0,∆p)

where the covariance terms are defined as follows

∆pij,ab = Eα0,P0,θ0

[(
NM
ij

p0ij

−NM
i

)(
NM
ab

p0ab

−NM
a

)]
.

Conditioning on NM
i we get that ∆pij,ab = 0 if a 6= i so that ∆p is block diagonal. Further-

more, given NM
i , the vector with components NM

ij for j 6= i has a multinomial distribution,

with probability of success p0ij . We thus obtain that ∆pij,ij =

(
1

p0ij
− 1

)
Eα0,P0,θ0

[
NM
i

]
and for b 6= j, ∆pij,ib = −Eα0,P0,θ0

[
NM
i

]
.

We have,

∇pabpij Q̂p(p) = 0

∇pijpij Q̂p(p) = − 1

n

n∑
l=1

N `
ij

p2
ij

.

Let HM (p) be Eα0,p0,θ0

[
∇ppQ̂p(p)

]
. Thanks to the weak law of large numbers and the

Continuous Mapping Theorem, we obtain that, as n → +∞, ∇ppQ̂p(p̂) → HM (p0) in

probability so that

sup
p∈N

∥∥∥∇ppQ̂p(p)−HM (p)
∥∥∥→ 0 in probability.

Let HM
p be HM (p0) which is a diagonal matrix composed of the terms −

Eα0,P0,θ0

[
NM
i

]
p0ij

.

As each term p0ij > 0 (condition A2), the matrix HM
p is non singular and its inverse is

diagonal and composed of the terms −
p0ij

Eα0,P0,θ0

[
NM
i

] .
We get by Theorem 3.1 in Newey and McFadden (1994) that

√
n (p̂− p0) N

(
0,
(
HM
p

)−1
∆p

(
HM
p

)−1
)
.

Simple calculations enable to obtain that
(
HM
p

)−1
∆p

(
HM
p

)−1 is equal to ΓMp0 .

The sojourn time parameters. Consider the partial derivatives of Q̂θ(θ) and denote

by ∇θij Q̂θ(θ) the gradient vector partial derivatives with respect to the components of θij:

∇θij Q̂θ(θ) =

(
∂Q̂θ
∂θij,1

, . . . ,
∂Q̂θ
∂θij,d

)
∈ Rd
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for i = 1, . . . , D and j = 1, . . . , D and j 6= i. We have

∇θij Q̂θ(θ) =
1

n

n∑
`=1

N
(`)
ij∑

k=1

∇θij ln
(
f(x

(`,k)
ij , θij)

)
. (28)

Taking the expectation, we get with Wald’s identity that

E
[
∇θij Q̂θ(θ)

]
= Eα0,P0,θ0

[
NM
ij

]
Eα0,P0,θ0

[
∇θij ln (f(Xij ; θij))

]
so that, when θij = θ0ij and hypothesis A6 ((iv to vi) which allows to interchange the

order of integration and differentiation) is true, E
[
∇θij Q̂θ0(θ)

]
= 0. The variance and

covariance terms can be calculated by applying Wald’s identity for the covariance terms

(see Theorem 6.1 in the Appendix). We get

∆θij = Eα0,P0,θ0


NM

ij∑
k=1

∇θij ln
(
f(Xk

ij , θ0ij )
)NM

ij∑
k=1

∇θij ln
(
f(Xk

ij , θ0ij )
)>


= Eα0,P0,θ0

[
NM
ij

]
Eα0,P0,θ0

[
∇θij ln

(
f(Xij , θ0ij )

)
∇θij ln

(
f(Xij , θ0ij )

)>]
,

which is a full rank d×d matrix under assumption A6 (v) and since Eα0,P0,θ0

[
NM
ij

]
=

p0ijEα0,P0,θ0

[
NM
i

]
> 0. It can be shown that the covariance terms, for (i, j) 6= (a, b)

are equal to zero by conditioning on NM
ij and NM

ab and the fact that ln
(
f(Xij , θ0ij )

)
and

ln (f(Xab, θ0ab)) are independent centered random variables,

Eα0,P0,θ0

[
∇θij ln

(
f(Xij , θ0ij )

)
∇θab ln (f(Xab, θ0ab))

>
]

= 0.

We thus get with the multivariate central limit theorem that

√
n∇θQ̂θ(θ0) N (0,∆θ0) (29)

where ∆θ0 is a block diagonal matrix, with diagonal elements ∆θij , i = 1, . . . , D, j 6= i.

Each sub-matrix ∆θij being non singular, matrix ∆ admits an inverse, which is also a

block diagonal matrix, with diagonal elements
(
∆θij

)−1.

Note now that condition A6 (iv to vi) which allows to interchange the order of integra-

tion and differentiation implies that (see Theorem 3.3 in Newey and McFadden (1994)),

Eα0,P0,θ0

[
∇θij ln

(
f(Xij , θ0ij )

)
∇θij ln

(
f(Xij , θ0ij )

)>]
= −Eα0,P0,θ0

[
∇θijθij ln

(
f(Xij , θ0ij )

)]
.

We denote by ∇θabθij Q̂θ the Hessian matrix with generic elements,

[
∇θabθij Q̂θ(θ)

]
u,v

=
∂2Q̂θ(θ)

∂θij,v∂θab,u
, u, v = 1, . . . , d.

It is clear from (28) that if (i, j) 6= (a, b) then ∇θabθij Q̂θ(θ) = 0 so that the global Hessian

matrix ∇θθQ̂θ(θ) is block diagonal.
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Following the lines of the Proof of Theorem 3.3 in Newey and McFadden (1994) and

using now the set of first order conditions given in (17), we have with the mean value

theorem,

0 = ∇θQ̂θ(θ0) +
[
∇θθQ̂θ(θ)

] (
θ̂ − θ0

)
(30)

where each component of θ belongs to the segment defined by the corresponding components

of θ0 and θ̂.

Defining the global neighborhood N of θ as the Cartesian product of the neighborhoods

Nij of θij, we get as n→ +∞,

sup
θ∈N

∥∥∥∇θθQ̂θ(θ)−HM (θ)
∥∥∥→ 0 in probability

where HM (θ) = Eα0,P0,θ0

[
∇θθQ̂θ(θ)

]
so that ∇θθQ̂θ(θ̂)→ HM (θ0) in probability. Com-

bining finally (29) and (30), we get with Slustky’s theorem

√
n
(
θ̂ − θ0

)
 N

(
0,
(
HM (θ0)

)−1
∆θ0

(
HM (θ0)

)−1
)

with HM (θ0) = −∆θ0 and thus ΓMθ0 =
(
−HM (θ0)

)−1. This concludes the proof.

Proof. of Theorem 4.1. The additive structure of the log likelihood and the fact that the

asymptotic variance matrix of the maximum likelihood estimators is block diagonal lead to

the following Taylor expansion of −2 lnλn about
(
p̂, θ̂

)
,

−2 lnλn = −n
(

(p̂− p0)>∇ppQ̂p(p) (p̂− p0) +
(
θ̂ − θ0

)>
∇θθQ̂θ(θ)

(
θ̂ − θ0

))
. (31)

We use also the fact that the maximum likelihood estimators satisfy ∇pQ̂p(p̂) = 0 and

∇θQ̂θ(θ̂) = 0. The equality holds for some θ (resp. p) belonging elementwise to the

segment defined by θ̂ and θ0 (resp. by p̂ and p0). The log-likelihood can be studied inde-

pendently for the sojourn times and the transition probabilities.

The sojourn time parameters. Let −2 lnλn,θ be the part of the test statistics corre-

sponding to the sojourn time parameters:

−2 lnλn,θ = −n
(
θ̂ − θ0

)>
∇θθQ̂θ(θ)

(
θ̂ − θ0

)
.

Thanks to the weak law of large numbers and the Continuous Mapping Theorem, we have

the convergence in probability −∇θθQ̂θ(θ) →
(
ΓMθ0
)−1 which means that −∇θθQ̂θ(θ) =(

ΓMθ0
)−1

+ op(1) (see van der Vaart (1998) Section 2.2 for the definition of notations
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op(1) and Op(1)). If H0 holds and under the hypotheses of Theorem 3.2 we have that
√
n
(
θ̂ − θ0

)
 N

(
0,ΓMθ0

)
. Then, we obtain the approximation:

−2 lnλn,θ =
√
n
(
θ̂ − θ0

)> (
ΓMθ0
)−1

(
θ̂ − θ0

)
+ op(1)

=

(√
n
(
ΓMθ0
)− 1

2

(
θ̂ − θ0

))>(√
n
(
ΓMθ0
)− 1

2

(
θ̂ − θ0

))
+ op(1)

where
√
n
(
ΓMθ0
)− 1

2

(
θ̂ − θ0

)
 N (0, I) with I the identity matrix of size D(D − 1)d if

there is no absorbing state and (D − 1)2d else.

Finally, we obtain:

−2 lnλn,θ  χ2
D(D−1)d

when there is no absorbing state and

−2 lnλn,θ  χ2
(D−1)2d

else.

The transition probabilities. The idea of the proof is the same as the one for the

sojourn times but the difference is due to the fact that the matrix ΓMp0 is singular.

Let −2 lnλn,p be the part of the test statistics corresponding to the transition probabili-

ties:

−2 lnλn,p = −n (p̂− p0)>∇ppQ̂p(p) (p̂− p0) .

As for the sojourn times, thanks to the weak law of large numbers and the Continuous

Mapping Theorem, we have the convergence in probability ∇ppQ̂p(p)→HM
p which can be

written as ∇ppQ̂p(p) = HM
p + op(1). We have also under the hypotheses of Theorem 3.2

and if H0 holds that
√
n (p̂− p0) N

(
0,ΓMp0

)
.

Let √p0i
T be the vector of size D − 1 defined as

(√
p0i1 , . . . ,

√
p0ij , . . . ,

√
p0iD

)
with j 6= i

and let U i be the matrix I −√p0i
√
p0i

T with I the identity matrix of size (D− 1). Simple

calculations enable to show that
(
−HM

p

) 1
2 ΓMp0

(
−HM

p

) 1
2 is a block diagonal matrix of size

D(D − 1) if there is no absorbing state and (D − 1)2 else with diagonal terms U i. It is

easy to see that I − √p0i
√
p0i

T is an orthogonal projection matrix of rank D − 2. Thus,

there exists Oi an orthogonal matrix such that ∆i = Oi

(
I −√p0i

√
p0i

T
)
OT
i with ∆i the

diagonal matrix with D − 2 values of 1 and one 0 for the diagonal. Thus, we have:

−2 lnλn,p = −n (p̂− p0)>
(
−HM

p

)
(p̂− p0) + op(1)

=

(√
n
(
−HM

p

) 1
2 (p̂− p0)

)>(√
n
(
−HM

p

) 1
2 (p̂− p0)

)
+ op(1)
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with
(
√
n
(
−HM

p

) 1
2 (p̂− p0)

)
 N

(
0,O>∆O

)
where O (respectively ∆) is the diagonal

block matrix composed of the terms Oi (respectively ∆i).

Thus, we obtain that:

−2 lnλn,p  χ2
rank(∆)

where rank(∆) = D(D − 2) when there is no absorbing state and (D − 1)(D − 2) else.

The test statistics. In conclusion, we have, thanks to the asymptotic normality and the

block diagonal structure of the asymptotic variance,

−2 lnλn = −2 lnλn,p − 2 lnλn,θ

 χ2
D(D−2) + χ2

D(D−1)d = χ2
D(D−2)+D(D−1)d

when there is no absorbing state and

−2 lnλn  χ2
(D−1)(D−2) + χ2

(D−1)2d = χ2
(D−1)(D−2)+(D−1)2d (32)

when there is an absorbing state and the sequence is observed until absorption.

Proof. of Lemma 4.1. This Lemma is a direct consequence of the asymptotic normality

stated in Theorem 3.2 for the maximum likelihood estimators computed from the two inde-

pendent samples of sequences (S1
` )`=1,...,n1 and (S2

` )`=1,...,n2. We have

√
n1n2

n1 + n2

p̂(1) − p1

θ̂
(1)
− θ1

 N (0, f

(
ΓM1

p1
0

0 ΓM1

θ1

))

and √
n1n2

n1 + n2

p̂(2) − p2

θ̂
(2)
− θ2

 N (0, (1− f)

(
ΓM2

p2
0

0 ΓM2

θ2

))

and the announced result by taking the difference and the independence assumption of the

two samples.

Proof. of Theorem 4.2. The proof of Theorem 4.2 is immediate with Lemma 4.1 and the

fact that with the continuous mapping theorem Γ̂
fn
p,θ converges in probability to Γfp,θ. We

deduce that Wn1,n2 converges in distribution to a χ2 law with degrees of freedom equal to

the rank of Γfp,θ.
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Proof. of Theorem 4.3.

As in (7), we use the additive structure of the log-likelihood of the sequences (S1
` )`=1,...,n1

and (S2
` )`=1,...,n2 and decompose the global log-likelihood under the alternative hypothesis

into four terms:

−2 log(λn1,n2) = 2
[(
n1Q̂p1

(
p̂1
)

+ n2Q̂p2

(
p̂2
))
−
(
n1Q̂p1

(
p1
)

+ n2Q̂p2
(
p2
))]

+ 2
[(
n1Q̂θ1

(
θ̂

1
)

+ n2Q̂θ2

(
θ̂

2
))
−
(
n1Q̂θ1

(
θ1
)

+ n2Q̂θ2
(
θ2
))]

− 2
[(
n1Q̂p1 (p̂) + n2Q̂p2 (p̂)

)
−
(
n1Q̂p1

(
p1
)

+ n2Q̂p2
(
p2
))]

− 2
[(
n1Q̂θ1

(
θ̂
)

+ n2Q̂θ2

(
θ̂
))
−
(
n1Q̂θ1

(
θ1
)

+ n2Q̂θ2
(
θ2
))]

= Ap +Aθ −Bp −Bθ

with Ap = 2
[(
n1Q̂p1

(
p̂1
)

+ n2Q̂p2

(
p̂2
))
−
(
n1Q̂p1

(
p1
)

+ n2Q̂p2
(
p2
))]

,

Aθ = 2
[(
n1Q̂θ1

(
θ̂

1
)

+ n2Q̂θ2

(
θ̂

2
))
−
(
n1Q̂θ1

(
θ1
)

+ n2Q̂θ2
(
θ2
))]

,

Bp = 2
[(
n1Q̂p1 (p̂) + n2Q̂p2 (p̂)

)
−
(
n1Q̂p1

(
p1
)

+ n2Q̂p2
(
p2
))]

and

Bθ = 2
[(
n1Q̂θ1

(
θ̂
)

+ n2Q̂θ2

(
θ̂
))
−
(
n1Q̂θ1

(
θ1
)

+ n2Q̂θ2
(
θ2
))]

.

We can note that the estimators (p̂1, θ̂
1
) and (p̂2, θ̂

2
) satisfy the first order condi-

tions ∇p1Q̂p1(p̂1) = 0 and ∇θ1Q̂θ1(θ̂
1
) = 0 and ∇p2Q̂p2(p̂2) = 0 and ∇θ2Q̂θ2(θ̂

2
) = 0

whereas the estimators (p̂, θ̂) satisfy n1∇p1Q̂p1(p̂)+n2∇p2Q̂p2(p̂) = 0 and n1∇θ1Q̂θ1(θ̂)+

n2∇θ2Q̂θ2(θ̂) = 0.

We present only the proof corresponding to the part of the likelihood ratio related to the

sojourn times. The same calculus would lead to similar results for the transition matrices

and are not presented.

Study of Aθ. Using a Taylor expansion of the log-likelihood around θ̂
1
and θ̂

2
, we get,

similarly to (31),

Aθ =

(
θ1 − θ̂

1

θ2 − θ̂
2

)> [
−

(
n1∇θ1θ1Q̂θ1(θ

1
) 0

0 n2∇θ2θ2Q̂θ2(θ
2
)

)](
θ1 − θ̂

1

θ2 − θ̂
2

)
.

To find the asymptotic distribution of

(
θ1 − θ̂

1

θ2 − θ̂
2

)>
we make a Taylor expansion about

(θ̂
1
, θ̂

2
) of the gradient of the log-likelihood evaluated at (θ1,θ2). We have, for parameters

θ1 and θ2,(
n1∇θ1Q̂θ1(θ1)

n2∇θ2Q̂θ2(θ2)

)
= 0 +

(
n1∇θ1θ1Q̂θ1(θ

1
) 0

0 n2∇θ2θ2Q̂θ2(θ
2
)

)(
θ1 − θ̂

1

θ2 − θ̂
2

)
(33)
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which enables us to obtain

Aθ = − 1

n1 + n2

(
n1∇θ1Q̂θ1(θ1)

n2∇θ2Q̂θ2(θ2)

)>(
n1+n2
n1
∇θ1θ1Q̂θ1(θ

1
) 0

0 n1+n2
n2
∇θ2θ2Q̂θ2(θ

2
)

)(
n1∇θ1Q̂θ1(θ1)

n2∇θ2Q̂θ2(θ2)

)
.

Thanks to the weak law of large numbers and the continuous mapping Theorem, we

have the convergence in probability −∇θ1θ1Q̂θ1(θ1) →
(
ΓM1
θ1

)−1
and −∇θ2θ2Q̂θ2(θ2) →(

ΓM2
θ2

)−1
. We have from (29) in the proof of Theorem 3.2, that

 n1√
n1+n2

∇θ1Q̂θ1(θ1)

n2√
n1+n2

∇θ2Q̂θ2(θ2)

 is

bounded in probability. We obtain finally

Aθ =
1

n1 + n2

(
n1∇θ1Q̂θ1(θ1)

n2∇θ2Q̂θ2(θ2)

)>
Γfθ1,θ2

(
n1∇θ1Q̂θ1(θ1)

n2∇θ2Q̂θ2(θ2)

)
+ op(1)

with Γfθ1,θ2 =

(
1

1−fΓM1
θ1

0

0 1
fΓM2

θ2

)
.

Study of Bθ. The hypothesis H0 can be written using a differentiable map of dimension

r, with H0 : a
(
θ1,θ2

)
= 0. We suppose that 0 is a regular value of the map, thus we can

find an injective mapping φ, which is C2, such as a(φ(x)) = 0 and x0 is the only value that

checks φ(x0) =
(
θ1,θ2

)
of dimension 2k− r with k the dimension of θ1 which is the same

as the one of θ2. Thus, k = D(D−1)d when there is no absorbing state and k = (D−1)2d

else.

We set Q̂(θ1,θ2) = n1Q̂θ1(θ1) + n2Q̂θ2(θ2). Then, Bθ can be written as:

Bθ = 2[Q̂(θ̂, θ̂)− Q̂(θ1,θ2)]

= 2[Q̂(φ(x̂))− Q̂(φ(x0))]

where φ(x̂) = (θ̂, θ̂) and x̂ is a consistent estimator of x0. We can note that the gradient

and the hessian matrix are:

∇x
(
Q̂ ◦ φ

)
(x) = ∇xφ(x)∇φ(x)Q̂(φ(x))

∇xx
(
Q̂ ◦ φ(x)

)
= ∇xx (φ(x))∇φ(x)Q̂(φ(x)) +∇xφ(x)∇φ(x)φ(x)Q̂(φ(x))∇xφ(x)>.

Thanks to a Taylor expansion of Q̂(φ(x)), we obtain,

Bθ = (x0 − x̂)>
[
−∇xx

(
Q̂ ◦ φ(x)

)]
(x0 − x̂)

where x belongs elementwise to segment defined by x0 and x̂. We make a Taylor expansion

of ∇x
(
Q̂ ◦ φ

)
in order to obtain the law of x0 − x̂ :
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∇x
(
Q̂ ◦ φ

)
(x0) = ∇x

(
Q̂ ◦ φ

)
(x̂) +∇xx

(
Q̂ ◦ φ

)
(x)(x0 − x̂).

Then, we have

(x0 − x̂)> =
[
∇x
(
Q̂ ◦ φ

)
(x0)

]> [
∇xx

(
Q̂ ◦ φ

)
(x)
]−1

and

Bθ =
[
∇x
(
Q̂ ◦ φ

)
(x0)

]> [
−∇xx

(
Q̂ ◦ φ

)
(x)
]−1
∇x
(
Q̂ ◦ φ

)
(x0)

=

[
∇xφ(x0)

(
n1∇θ1Q̂θ1(θ1)

n2∇θ2Q̂θ2(θ2)

)]> [
−∇xx

(
Q̂ ◦ φ

)
(x)
]−1

[
∇xφ(x0)

(
n1∇θ1Q̂θ1(θ1)

n2∇θ2Q̂θ2(θ2)

)]
.

As x is consistent and thanks to the continuous mapping theorem, we get the conver-

gence in probability,

1

n1 + n2

[
−∇xx

(
Q̂ ◦ φ

)
(x)
]
→
[
∇xφ(x0)

]>
Γfθ1,θ2∇xφ(x0).

Finally, we have,

Bθ =
1

n1 + n2

(
n1∇θ1Q̂θ1(θ1)

n2∇θ2Q̂θ2(θ2)

)>
∇xφ(x0)

[
∇xφ(x0)>Γfθ1,θ2∇xφ(x0)

]−1
∇xφ(x0)>

(
n1∇θ1Q̂θ1(θ1)

n2∇θ2Q̂θ2(θ2)

)
+ op(1).

Study of the test statistics. We deduce from (29), the convergence in distribution

1√
n1 + n2

(
Γfθ1,θ2

) 1
2

(
n1∇θ1Q̂θ1(θ1)

n2∇θ2Q̂θ2(θ2)

)
 N (0, I2k×2k) .

Thus, the test statistics (considering only the sojourn times) can be written as follows,

Aθ −Bθ =
1√

n1 + n2

(
n1∇θ1Q̂θ1(θ1)

n2∇θ2Q̂θ2(θ2)

)> (
Γfθ1,θ2

) 1
2
M θ

(
Γfθ1,θ2

) 1
2

(
n1∇θ1Q̂θ1(θ1)

n2∇θ2Q̂θ2(θ2)

)
1√

n1 + n2

+ op(1)

with Mθ = I2k×2k−
(
Γfθ1,θ2

)− 1
2 ∇xφ(x0)

[
∇xφ(x0)>Γfθ1,θ2∇xφ(x0)

]−1
∇xφ(x0)>

(
Γfθ1,θ2

)− 1
2 .

Noting that Mθ is an orthogonal projection matrix, the asymptotic distribution of Aθ−
Bθ is a χ2 law whose degrees of freedom is equal to the rank of Mθ, which is equal to its
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trace,

Tr (Mθ) = Tr
(
I2k×2k −

(
Γfθ1,θ2

)− 1
2 ∇xφ(x0)

[
∇xφ(x0)>Γfθ1,θ2∇xφ(x0)

]−1
∇xφ(x0)>

(
Γfθ1,θ2

)− 1
2

)
= Tr (I2k×2k)− Tr

((
Γfθ1,θ2

)− 1
2 ∇xφ(x0)

[
∇xφ(x0)>Γfθ1,θ2∇xφ(x0)

]−1
∇xφ(x0)>

(
Γfθ1,θ2

)− 1
2

)
= Tr (I2k×2k)− Tr

([
∇xφ(x0)>Γfθ1,θ2∇xφ(x0)

] [
∇xφ(x0)>Γfθ1,θ2∇xφ(x0)

]−1
)

= r.

Similarly to the case of the sojourn time parameters and the case of the transition

probabilities for one sample, we obtain for the part of the transition probabilities a matrix

Mp whose rank is equal to D(D−2) when there is no absorbing state and (D−1)(D−2) else.

In conclusion, we have, thanks to the asymptotic normality and the block diagonal

structure of the asymptotic variance that the test statistics has, under the null hypothesis,

a χ2 distribution whose degrees of freedom is the sum of the ranks of Mθ and of Mp.
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