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UPPER BOUNDS FOR THE BLOW-UP TIME OF THE 2-D

PARABOLIC-ELLIPTIC PATLAK-KELLER-SEGEL MODEL OF

CHEMOTAXIS

PATRICK MAHEUX

Friday 23rd June, 2023

Abstract. In this paper, we obtain upper bounds for the critical time T ∗ of the blow-
up for the parabolic-elliptic Patlak-Keller-Segel system on the 2D-Euclidean space. Such
estimates is rarely obtained and discuss in the papers on the subject No moment condition
or/and entropy condition are required on the initial data; only the usual assumptions of
non-negativity and finiteness of the mass is assumed. The result is expressed not only
in terms of the supercritical mass M > 8π, but also in terms of the shape of the initial
data.
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1. General upper bound on T ∗ for the (PKS) system

In this paper, we consider the following Patlak-Keller-Segel (PKS) model for chemotaxis
in the whole plane R2 [23, 34, 22]:

(1.1)
∂

∂t
n(x, t) = ∆n(x, t)−∇.(n∇c)(x, t), x ∈ R2, t > 0,

(1.2) (−∆)c(x, t) = n(x, t), x ∈ R2, t > 0,

(1.3) n(0, x) = n0(x), x ∈ R2, 0 ≤ n0 ∈ L1(R2),

where n0 denotes the initial data. The function n(x, t) represents the density of cells, and
c(x, t) the density of the chemical secreted by themselves that attracts them and makes
them to aggregate.

There is a huge bibliography on this type of systems and its variants. The geometric
framework is usually Rn or bounded domains on Rn with different kind of results depending
on the dimension n = 1, 2 or n ≥ 3 and assumptions of the initial data. Note that there are
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also some recent works for specific manifolds with curvature, see [26, 32, 37] for instance.
Diverse analytic settings for the existence of the solutions for the (PKS) systems have been
introduced as classical solutions, strong solutions, entropy solutions, various notions of
weak solutions; see [5] and references therein. Stochastic Keller-Segel particle models have
been also introduced for the existence and the uniqueness of solution of (PKS) systems,
see for instance [10, 40, 17] and [16] for numerical simulations.

For various versions of the (PKS) systems, blow-up time bounds have been obtained
more or less explicitly. For instance, upper bounds on the maximal existence time T ∗ have
been mentioned on the disk Ω = BR (R > 0) of R2 in [11, Thm 1.1, eq. (2.1)] for the
parabolic-parabolic (PKS) systems (but not explicitly given). Always for the parabolic-
parabolic (PKS) systems, we can also mention [8, Thm. 1.2] for a study on the whole plane
under a second moment condition for n0. In higher dimensions, we can see for instance [9,
Section 4.1], also [12, Thm 1.1, Lemma 4.1]. In many papers, the bounds on T ∗ are not
explicit and/or impose some extra-assumptions on the initial data. It is not our intention
to cite all the possible articles on this subject. So, we shall limit ourselves to mention a
few of the papers on (PKS) systems related to bounds on the maximal existence time T ∗,
especially on R2 which is the setting of study in this paper. We apologize in advance for
not mentioning more articles, in particular those dealing with generalizations of (PKS)
systems and/or studying other types of questions for these systems. More references can
be found in the recent book by P.Biler [5].

Among many papers on the subject, we can mention some of them historically at the
beginning of the study of the blowup in finite time, on chemotactic collapse (convergence
to Dirac measure plus possibly a L1 function at the critical time T ∗), and on the profile of
solutions at t = T ∗ on bounded domain, or on the whole R2 for (radial) solutions of (PKS)
systems: see [19, 20, 21, 29, 30, 31] and, more recently, [28, 13] and references therein. A
variant of the (PKS) system on a ball of Rn, n ≥ 2 is studied in [43] for which a novel
type of critical mass phenomenon for radially symmetric initial data and linked to the
concept of concentration comparison is described implying that the solutions blow up in
finite time. Note that the concept of concentration comparison takes into account in some
way of the shape of the initial data n0, see Theorem 1.1 in [43]. See also [3] for a model
of (PKS) system with consumption term on R2. We shall not involved in such refinement
but our estimates depend also on the shape of the initial data n0.

It seems that no specific attempt has been made to estimate the critical time T ∗ over
the whole space R2 with minimal assumptions on the initial data. In this paper, we make
some progress in this direction by providing information on upper bounds on T ∗. But
we shall not be concerned with lower bounds on T ∗ with this generality in this article.
Nevertheless, we notice that in [24, p.355], and for some specific situations, some lower
bounds on T ∗ have been obtained over the whole space R2. On bounded convex domains of
R2 and R3, lower bounds on the maximal existence time T ∗ in case of blow-up (with various
notions of blow-up) have been investigated first by Payne-Song, see [35, 36]. See also [27,
Th. 3.4] for a recent work dealing with more general (PKS) systems on bounded smooth
domains of Rn with n ≥ 1. In [15], some numerical simulations are given and compared
with analytic bounds of [35, 36]. The study of lower bounds on maximal existence time T ∗

has regained some interest more recently, in particular for some variants of the parabolic-
parabolic version of (PKS) on bounded domains with smooth boundary; see [39, 33, 27]
and references therein.

Let us return to the main subject of this paper. In the framework of weak solutions,
it is proved in [7, Cor.2.2], under finite second moment condition and finite entropy of
n0, the following result. For M > 8π, the maximal existence time T ∗ of the solutions is
bounded as follows,

(1.4) T ∗ ≤ 2πI(0)

M(M − 8π)
,
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where I(0) =
∫
R2 |x|2n0(x) dx is the second moment of n0. The inequality (1.4) expresses

a blow-up of the solutions of the (PKS) system, i.e. T ∗ < ∞. Note that this result also
holds true with I(0) replaced by

MV (0) =

∫
R2
|x−B0|2n0(x) dx,

where V (0) is the variance of the initial data n0 defined by

V (0) = V2(n0) =
1

M

∫
R2
|x−B0|2n0(x) dx,

and B0 is given by

B0 = B0(t) =
1

M

∫
R2
x.nt(x) dx =

1

M

∫
R2
x.n0(x) dx ∈ R2, t ∈ (0, T ∗).

Here, the measure n0(x)
M dx can be seen as a probability measure since n0 is non-negative

and non identically zero. For a study of (PKS) system with Borel measures as initial
data, see [1]. It can be easily seen that the barycenter B0(t) is (formally) independent of
t ∈ (0, T ∗) for any solution (nt) of the (PKS) system. Thus we have the following easy
improvement of (1.4), namely

(1.5) T ∗ ≤ T ∗v :=
2πV (0)

M − 8π
.

Let us recall the formal arguments of the proof for these inequalities (1.4) and (1.5). It is
first enough to show (1.5). We have the following exact formula,

I ′(s) :=
d

ds

(∫
R2
|x|2ns(x) dx

)
= 4M

(
1− M

8π

)
, s ∈ (0, T ∗),

for any weak solution (nt) of (PKS) system with mass M = ||n0||1 such that∫
R2
|x|2n0(x) dx < +∞,

see [7, Lemma 2.1]. Let V (s) = 1
M

∫
R2 |x − B0|2ns(x) dx = I(s)

M − |B0|2. The derivative
just above can also be written as

V ′(s) =
1

M
I ′(s) = 4

(
1− M

8π

)
, s ∈ (0, T ∗).

By integration with respect to s, this leads to the next formula

V (t) = V (0) + 4

(
1− M

8π

)
t, 0 < t < T ∗.

By maximal principle nt ≥ 0, so V (t) is non-negative for all 0 < t < T ∗. Thus, we obtain

V (0)− 4t

(
M − 8π

8π

)
≥ 0, 0 < t < T ∗.

Hence, we conclude that t
(
M−8π

2π

)
≤ V (0) for all 0 < t < T ∗. Letting t goes to T ∗, we

deduce (1.5) when M > 8π. Now, note that (1.5) implies (1.4) because

MV (0) = I(0)−M |B0|2 ≤ I(0).

Note that usually the barycenter is rarely mentioned in most papers due probably to the
fact that the initial data is often assumed to be radially symmetric, hence B0 = 0. But we
see some advantages to consider barycenters B0 6= 0 and the variance in the formulation
of some of our results. Recall that the variance measures the spread of the data around

the mean. In particular, when we mention the variance of the density n0(x)
M dx. Later on,

this result has been generalized in [24, Th.2] where the second equation (1.2) of the (PKS)
system is replaced by

(−∆)c(x, t) + γc(x, t) = n(x, t), x ∈ R2, t > 0,
3



with γ ≥ 0. When γ > 0, we say that we have a consumption term. In that case, an
additional assumption on I(0) of the form I(0) ≤ h1(M) for some function h1 of the mass
M is imposed to obtain the blow-up in the supercritical case.

A result has recently been obtained for the analogue of the (PKS) system on the 2-D
hyperbolic space. More precisely, with an appropriate definition of the moment I(0) for
the initial data n0, and under a similar additional condition of the form I(0) ≤ h(M) for
some function h of the mass M , a blow-up is proved for the solution of (PKS) system.
Moreover, the maximal time T ∗ is bounded by an explicit function of the mass M and I(0);
analogue to (1.5), see [26]. This last situation shares some similarity with the Euclidean
case with consumption, (i.e. γ > 0), certainly due to the spectral gap of the Laplacian on
the hyperbolic space. Recently, local criteria have been introduced for blow-up of radial
solutions in 2-dimensional chemotaxis models have been obtained by P. Biler et al., using
weighted averages on disks. See [4], where the Laplacian ∆ is replaced by some powers of

the Laplacian (−∆)α/2. See also [3], when the consumption term with γ > 0 is considered.
Let us mention also the case of critical mass M = 8π on the plane for which the critical

time is T ∗ = +∞, i.e. solutions are global in time, when assumptions of finite 2-moment
and entropy are made on the initial condition n0. Moreover, the solutions blow up as the
delta Dirac 8πδz0 at the center of mass z0 = MB0 when t → T ∗ = +∞, see [6] [Th.1.3,
p.1453], see also [21] and the recent long preprint [14]. In our study, we shall see that
the upper bound T ∗c of T ∗ is consistent with this result when M → 8π+. See Remark 1.4
below.

The aim of the present work is to provide an upper bound on the maximal existence
time T ∗ in the case of blow-up M > 8π by removing the second moment condition and/or
the entropy condition on the initial data n0. We only assume that n0 is non-negative and
integrable on R2.

Throughout this paper, we shall use the definition of mild solution n(t) of the (PKS)
system on R2 taken from [41, p.392]. Let T > 0 be fixed. We say that n(t) = n(., t),
0 < t < T , is a mild solution of the (PKS) system if,

n ∈ Cw([0, T ), L1(R2)), sup
t∈(0,T )

t
1
4 ||n(t)||

L
4
3
< +∞,

and n(t) satisfies the following Duhamel integration equation for all t ∈ (0, T ),

(1.6) n(t) = et∆n0 −
∫ t

0
e(t−s)∆div(n(s)∇c(s)) ds,

with −∆c(t) = n(t) in the sense

∇c(x, t) = − 1

2π

∫
R2

x− y
|x− y|2

n(t, y) dy, x ∈ R2, t ∈ (0, T ).

Here, the space Cw([0, T ), L1(R2)) is the space of (weakly) continuous functions with values
in L1(R2). Recall that, for any initial data 0 ≤ n0 ∈ L1(R2), there exists a mild solution
(n(t))0<t<T ∗ of the (PKS) system where T ∗ ∈ (0,+∞] denotes the maximal existence
time of the solution (see [41, 5]). For the case of existence of (global) weak solutions with
measures as initial data on R2, we can refer to the recent paper [18] where a simple proof
of this fact is given.

Recently, Dongyi Wei has proved the following remarkable dichotomy result.

Theorem 1.1. [41, Th. 1.1 p.390] Assume that 0 ≤ n0 ∈ L1(R2) and M = ||n0||1. Let
T ∗ be the maximal existence time of the mild solution. Then T ∗ = +∞ if and only if
M ≤ 8π.

As already described above, an additional finite second moment condition on the initial
data n0 is often used to imply by a simple virial argument the blow-up of the solution
and to provide an explicit upper bound on the maximal existence time T ∗ of the solution
when M > 8π, see for instance [7, 24]. The main novelty of the result of D. Wei is that no
moment condition (nor entropy) is imposed on the initial data n0 other than the minimal
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ones (1.3). In other words, his result can be rephrased as follows: the (mild) solution
blows up, i.e. T ∗ < +∞, if and only M > 8π. But it seems that there are no explicit
estimates of T ∗ deduced from the study carried out in [41].

Before describing the main results of this paper, we make some general comments on
the approach which consists in replacing the unbounded weight |x|2 appearing in the
definition of the second moment by a family of bounded weights: Gaussian weights (i.e.
heat kernels). We start our discussion by some simple facts related to the heat equation
which is known to play an important role in the study of (PKS) systems, in particular
by the Duhamel formula (1.6). This importance is due to the fact that the heat kernel
is related to the linear part of the (PKS) equation (1.1), i.e. to the Laplacian ∆. Let us
denote by ps be the heat kernel on R2 defined by

ps(x) = (4πs)−1 exp

(
−|x|

2

4s

)
for all x ∈ R2 and all s > 0. We also denote by Hz(s) = Hz,n0(s) the following function

Hz,n0(s) := 4πs es∆n0(z) = 4πs ps ? n0(z) =

∫
R2

exp

(
−|x− z|

2

4s

)
n0(x) dx

for all z ∈ R2 and all s > 0. The family of functions Hz,n0 can be seen as particular
weighted integrals. The general interest of studying weighted integrals of the form

Iw(t) :=

∫
R2
w(x)nt(x) dx, 0 < t < T ∗,

for some positive weight w is to detect and measure in average the effect of the evolution
in time of the density (nt)0<t<T ∗ of cells. If the chosen weight w is constant, the only fact
that can be observed is that the mass of cells is preserved. Indeed, the mass of n(x, t)
given by Iw(t) with w ≡ 1, i.e.,

M(t) =

∫
R2
n(x, t) dx = M(0) = M =

∫
R2
n0(x) dx,

is preserved along the time evolution of the (PKS) system. When one considers the weight
w(x) = |x|2, such a weight imposes an additional condition on n0, i.e., the finiteness of
the second-moment

∫
|x|2n0(x) dx, which leads automatically to a lack of generality. See

(1.4) above for the corresponding bound on T ∗.
Other choices of w may detect other behaviours of the solution (nt) in the sense that the

quantity Iw(t) may evolve with t in diverse ways, see for instance [5] eq. 5.3.13 p.160. This
is what happens when we choose the heat kernel as weight to describe a two parameters
family of weights, namely ws,z(x) = 4πsps(x − z) with s > 0 and z ∈ R2 be fixed. The
use of the heat kernel as weight has at least three features. The first interest is that the
weight

ws,z(x) = 4πsps(x− z) = exp

(
−|x− z|

2

4s

)
is nowhere constant, smooth and uniformly bounded by 1 for all s > 0 and z ∈ R2. In
particular, the function (s, z) 7→ Hz,n0(s) defined above is always finite, more precisely
Hz(s) ≤ M where M is the mass of n0 which is assumed to be finite. In this way, no
additional condition on n0 than n0 ∈ L1(R2) is necessary to study the quantity Hz,n0(s).
The second argument is that the function s 7→ Hz,n0(s) is continuous, monotonically
increasing with s, and its range is (0,M) for a non-negative non-zero initial data n0.
Furthermore, choosing the point z ∈ R2 allows us to emphasize the behavior of the initial
data n0 around this point due to the rapid decay of the heat kernel at infinity. Finally,
the third reason and probably the most important is that the heat kernel has a strong
relationship with the (PKS) system. Indeed, the simplest linearized form of the non-linear
equation (1.1), i.e. without the aggregation term −∇.(n∇c), is the heat equation, i.e.,
∂
∂tu(x, t) = ∆u(x, t).
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The aim of this paper is to provide a general upper bound on the maximal existence
time T ∗ of mild solutions of (PKS) system in the supercritical case M > 8π without
further conditions on the initial data n0 other than 0 ≤ n0 ∈ L1(R2). This is achieved
by Theorem 1.2 below, which proposes a general formula for an upper bound T ∗c (n0) of
T ∗. Later on, in Theorem 1.7, we specify the form of the bound on T ∗c (n0) for radially
symmetric initial data, which allows us to use the Laplace transform. The main interest
of the theorem just below is to evaluate an upper bound on the maximal existence time
T ∗. No additional conditions, as a moment condition and/or an entropy condition, are
imposed on the initial data n0.

These estimates could be used as time bounds for numerical simulations on the time
interval [0, T ) observing with certainty the blow-up phenomenon on the plane by choosing
T ≥ T ∗c (n0) ≥ T ∗, see Theorem 1.9. But for a reasonable simulation, i.e on a bounded
domain Ω with smooth boundary ∂Ω, it would be necessary to consider the case where
the cells are located at time t = 0 in a set at a very large distance from the boundary of
the domain to avoid possible boundary effects. Recall that n0 represents the repartition
of the cells at time t = 0. So, the condition will certainly be described by a control of the
form dist(suppn0, ∂Ω) ≥ C with C > 0 large enough.

Here is the first main result of this paper.

Theorem 1.2. Let 0 ≤ n0 ∈ L1(R2) of mass M =
∫
R2 n0(x) dx > 8π and T ∗ be the

maximal existence time of a mild solution (nt) of the Patlak-Keller-Segel system (1.1)-
(1.2)-(1.3). Then the following statements hold true.

(1) The maximal existence time T ∗ is finite and satisfies the following estimate,

(1.7) Hz,n0(T ∗) :=

∫
R2

exp

(
−|x− z|

2

4T ∗

)
n0(x) dx ≤ 2M2

3M − 8π
,

for all z ∈ R2. In particular, T ∗ is finite.

Or equivalently, for all 0 < s < T ∗ and all z ∈ R2,

(1.8) Hz,n0(s) :=

∫
R2

exp

(
−|x− z|

2

4s

)
n0(x) dx ≤ 2M2

3M − 8π
.

(2) For z ∈ R2, let T ∗c,z(n0) := H−1
z,n0

(
2M2

3M−8π

)
. Then we have

(1.9) T ∗ ≤ T ∗c (n0) := inf
z∈R2

T ∗c,z(n0) < +∞.

(3) Moreover, if there exists z0 ∈ R2 such that Hz,n0(s) ≤ Hz0,n0(s) for all s > 0

and all z ∈ R2, then T ∗c (n0) = T ∗c,z0(n0). In particular, if n0 is a non-increasing
radially symmetric integrable function, then

T ∗c (n0) = T ∗c,z=0(n0) = H−1
0,n0

(
2M2

3M − 8π

)
.

(4) The value T ∗c (n0) is translation-invariant in the sense that T ∗c (n0) = T ∗c (m0) for
any m0 of the form m0(x) = n0(x+ z0), x ∈ R2 for fixed z0 ∈ R2.

Before giving the proof of the theorem just above, we make several comments.

Remark 1.3. At first sight, the inequality (1.8) comes as a surprise since the full range
of Hz(s) := Hz,n0(s), s > 0, is a priori (0,M) whenever n0 6= 0 and n0 ∈ L1(R2). Note
that Hz(s) only depends on the Gaussian and any initial data n0. The inequality (1.8) is
a limitation of this range since we easily see that

2M2

3M − 8π
< M,
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when M > 8π. Hence, we deduce qualitatively that T ∗ is finite. Indeed, if T ∗ = +∞ we
can take the limit as s goes to infinity in (1.8), and by monotone convergence we get

M = lim
s→+∞

Hz,n0(s) ≤ 2M2

3M − 8π
,

for any z ∈ R2. Contradiction. This argument also implies that all the quantities T ∗c,z(n0)
defined in Theorem 1.2 are finite since s → Hz,n0(s) is strictly increasing, hence it is

invertible on its range (0,M) which contains 2M2

3M−8π . In particular, the inequality T ∗ ≤
T ∗c,z(n0) holds true for all z ∈ R2 when M > 8π which allows us to optimize over z. Thus,
the lower bound of the upper bounds T ∗c,z(n0) over z will provide an upper bound on T ∗.

Remark 1.4. The constant 2M2

3M−8π in the inequality (1.7)-(1.8) is sharp for the supercrit-

ical case in the sense that the inequality R(M) := 2M2

3M−8π < M holds for all M > 8π, and

this inequality becomes an equality when M → 8π+. Note that this sharpness is essen-
tial for the proof of the dichotomy result of Theorem 1.1 in [41], and consequently also for
Theorem 1.2 of this article. Note that when M = 8π, then R(M) = M = 8π, and formally

T ∗ = T ∗c (n0) = T ∗c,z(n0) = lim
M→8π+

H−1
z,n0

(
2M2

3M − 8π

)
= +∞

for all z ∈ R2. Recall that when M = 8π then we have T ∗ = +∞, see [41, Th. 1.1 p.390],
recalled in Theorem 1.1 of this paper. This is consistent with a former existence result of
[6] of global solutions for the critical mass M = 8π when 2-moment and entropy of the
initial data n0 are assumed to be finite. Moreover, in [6], a more precise study of the blow-
up is made by obtaining the convergence of the solutions to the 8π-delta-Dirac measure
concentrated at the center of mass of n0. See also [2] for a study of radially symmetric
solutions for M = 8π on R2, [21] on a ball, and on a domain [30, 31], for instance. We
can also refer to [38, Th. 2 and 3, p.24-25] for the finite number of blow-up points, and
for the relation between blow-up points and chemotatic collapse (Dirac measure).

Remark 1.5. In the course of the proof of Theorem 1.2, we shall see that the intriguing
inequality (1.8) is a consequence of the fact that there exists a mild solution (nt) of the
(PKS) system with n0 as initial data. More precisely, the weak continuity at 0+ of nt
”attaches” the free initial data n0 to the solution (nt) for t > 0.

Remark 1.6. The left-hand side term of the inequality (1.7) is equal to (4πT ∗)pT ∗ ?n0(z).
This term is clearly related to the linear part of the (PKS) system via the heat semigroup
e−t∆ without mentioning any explicit connection with the non-linear non-local term of the
(PKS) system. The right-hand side term of (1.7) is mainly related to the non-linearity of
the (PKS) system via the rational function R(M) of the mass M defined in Remark 1.4.

Proof of Theorem 1.2. The proof of (1.9) is essentially a re-interpretation of the
proof of the blow-up phenomenon when M > 8π given in [41, p.397] in order to evaluate
blow-up time upper bounds. The inequality (1.8) is due to Dongyi Wei [41]. For the sake
of clarity, we provide the main part of the arguments, with some comments inserted in
the course of the proof. This paper is dedicated more precisely to the study of estimates
of the critical time T ∗c (n0).

Fix 0 ≤ n0 ∈ L1, n0 6= 0. We assume that the mass M =
∫
R2 n0(x) dx satisfies M > 8π

and we consider nt(x) = n(x, t) a mild solution of the (PKS) system on R2.

(1) (i) Proof of the inequality (1.8) and the finiteness of T ∗.

The main tool is the introduction of the following specific heat regularization function
t→ ñ(z, t, s) = ps−t ?nt(z) for all (t, s) satisfying t < T ∗ and t < s < +∞ for fixed z ∈ R2.
Here pt(x) = (4πt)−1 exp(−|x|2/4t) denotes the heat kernel on R2. (At this stage, note
that s is not necessarily bounded by T ∗ itself). The function t→ ñ(z, t, s) can be seen as
a perturbation and a regularization of the solution (nt)t∈(0,T ∗) of the (PKS) system by the
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heat semigroup. It consists also to consider the (PKS) solution nt at time t as the initial
data (in L1) of the heat equation, and to compute the solution of the heat equation at time
s − t for a priori any s > t by convolution with the heat kernel ps−t. This construction
is suggested by the non-linear term of the Duhamel formula (1.6). The role of reversing
the time by −t in the heat kernel is that the time derivative of ñ will depend only on the
non-linear (here bilinear) term of the (PKS) system. The linear part represented by the
Laplacian disappears in this process. Indeed, we have

∂tñ(z, t, s) =
1

4π

∫
R2

∫
R2
K1(x− z, y − z, s− t)nt(x)nt(y) dxdy,

where the convolution kernel in space variables is given by

K1(x, y, t) = − [∇pt(x)−∇pt(y)] .(x− y)

|x− y|2
.

This kernel K1 is independent of the (PKS) solution. See [41, p.392-393] for the details
of computation. In [41, Prop.3.1], the following monotonicity inequality for the map
t 7→ ñ(z, t, s) has been proved

(1.10)
3M ñ(z, t, s)

8π(s− t)
− M2

16π2(s− t)2
≤ ∂tñ(z, t, s),

for all z ∈ R2 and all (t, s) such that 0 < t < min(s, T ∗). This result follows from
the existence of a solution and the structure of the (PKS) system, and some geometric
estimates on the heat kernel pt on R2. Multiplying the inequality (1.10) by the positive
term (s− t)a with a := 3M

8π leads to

∂t [(s− t)añ(z, t, s)] = −a(s− t)a−1ñ(z, t, s) + (s− t)a∂tñ(z, t, s) ≥ −M
2

16π2
(s− t)a−2,

for all z ∈ R2 and all 0 < t < s < T ∗. Now, by integrating over the interval (0, s) with
respect to t we obtain the following inequality

lim
t→s−

(s− t)a−1(s− t)ps−t ? nt(z)− lim
t→0+

(s− t)aps−t ? nt(z) = 0− saps ? n0(z)

≥ −M2

16π2(a− 1)
sa−1 =

−M2

2π(3M − 8π)
sa−1,

for all 0 < s < T ∗. The first limit is zero since we have

0 ≤ (s− t)aps−t ? nt(z) ≤
(s− t)a−1

4π

∫
R2
nt(x) dx =

(s− t)a−1

4π
M,

for all 0 < t < s < T ∗, and a > 1. The second limit is obtained by using in a crucial way
the weak continuity at t = 0+ of the solution n ∈ Cw([0, T ∗), L1(R2)) which attaches the
free data n0 to the solution (nt)t∈[0,T ∗) of the (PKS) system. Note also that integration
on t over (0, s) imposes necessarily that s < T ∗ in the conclusion since 0 < t < min(s, T ∗).
Finally after simplification, we get

Hz,n0(s) := 4πsps ? n0(z) ≤ 2M2

3M − 8π
.

Thus, the inequality (1.8) is proved for any non-negative initial data n0 ∈ L1(R2) of the
(PKS) system, and for all 0 < s < T ∗ and all z ∈ R2.

We now recall how we deduce from (1.8) that T ∗ is finite when M > 8π. To prove this,
we suppose the contrary, i.e. T ∗ = +∞. We can take the limit as s goes to infinity in
(1.8) and, by monotone convergence theorem, we obtain

M = lim
s→+∞

Hz,n0(s) ≤ 2M2

3M − 8π
.

This implies M ≤ 8π. Contradiction.
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(1)(ii) Proof of (1.7). We have seen in (1)(i) that T ∗ is finite. Now by Fatou lemma,
we can write

Hz,n0(T ∗) :=

∫
R2

exp

(
−|x− z|

2

4T ∗

)
n0(x) dx =

∫
R2

lim inf
s→T ∗,−

exp

(
−|x− z|

2

4s

)
n0(x) dx

≤ lim inf
s→T ∗,−

∫
R2

exp

(
−|x− z|

2

4s

)
n0(x) dx ≤ 2M2

3M − 8π
.

This proves (1.7).

(1)(iii) Proof of the converse: (1.7)⇒ (1.8). Conversely, the inequality (1.7) implies
the inequality (1.8) because s ∈ (0,+∞) 7→ Hz,n0(s) is clearly an increasing function.

(2) Let z ∈ R2, n0 ∈ L1(R2) be fixed. We also assume that n0 6= 0 and n0 ≥ 0. It is
easy to see that the function

s ∈ (0,+∞)→ Hz,n0(s) :=

∫
R2

exp

(
−|x− z|

2

4s

)
n0(x) dx ∈ (0,M),

is continuous and strictly increasing on (0,+∞) with range (0,M). Indeed, by monotone
convergence theorem, we deduce that Hz,n0(0+) = 0, Hz,n0(+∞) = M and Hz,n0 is
continuous on (0,+∞). The function Hz,n0 is strictly increasing because n0 ≥ 0 and
n0 6= 0. Hence, Hz,n0 is a bijection from (0,+∞) onto (0,M). We denote by H−1

z,n0
:

(0,M)→ (0,+∞) its inverse function. It is also a strictly increasing continuous function.

For M > 8π, we have 0 < 2M2

3M−8π < M . Hence, the value T ∗c,n0
(z) = H−1

z,n0

(
2M2

3M−8π

)
is

well-defined and finite. By (1.7), i.e. Hz,n0(T ∗) ≤ 2M2

3M−8π , and by monotonicity of H−1
z,n0

,
this is equivalent to the following bound

T ∗ ≤ H−1
z,n0

(
2M2

3M − 8π

)
=: T ∗c,z(n0) < +∞,

for all z ∈ R2. Thus, we obtain simultaneously a quantitative upper bound on the blow-up
time T ∗, and again its finiteness. Now taking the infimum over z, we deduce the upper
bound (1.9) on the maximal existence time T ∗.

(3) (i) Now assume that there exists z0 ∈ R2 such that we have Hz,n0(s) ≤ Hz0,n0(s)

for all s > 0 and all z ∈ R2. Since Hz,n0 and Hz0,n0 are increasing and Hz,n0(0+) =
Hz0,n0(0+) = 0, Hz,n0(+∞) = Hz0,n0(+∞) = M , then we have H−1

z0,n0
(m) ≤ H−1

z,n0
(m) for

all m ∈ (0,M) and all z ∈ R2. Hence, we obtain

inf
z∈R2

H−1
z,n0

(m) = H−1
z0,n0

(m),

for all m ∈ (0,M). Applying this result to m = 2M2

3M−8π with M > 8π, we obtain

T ∗c (n0) := inf
z∈R2

H−1
z,n0

(
2M2

3M − 8π

)
= H−1

z0,n0

(
2M2

3M − 8π

)
= T ∗c,z0(n0).

This concludes the first part of the assertion (3).

(3) (ii) On Rn, let f and g be two non-negative non-increasing radially symmetric
integrable functions, then it is known that the convolution f ?g is also a non-negative non-
increasing radially symmetric integrable function. In particular, if moreover z 7→ f ?g(z) is
continuous, we deduce that 0 ≤ f ? g(z) ≤ f ? g(0), for all z ∈ Rn. Here, we have assumed
that g = n0 is a non-negative non-increasing radially symmetric integrable function. Since
f = ps is also a non-negative non-increasing radially symmetric integrable function, then
the function z ∈ R2 7→ Hz,n0(s) = 4πs ps ? n0(z) is a (continuous) non-negative non-
increasing radially symmetric integrable function.

As a consequence, we have Hz,n0(s) ≤ H0,n0(s) for all s > 0 and all z ∈ R2. We conclude
by applying (3)(i) proved just above with z0 = 0. This concludes the second part of the
assertion (3).
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(4) First note that the masses M := M(n0) =
∫
R2 n0(x) dx = M(m0) are equal since the

Lebesgue measure is translation-invariant. Moreover, it is easy to check that Hz,m0(s) =

Hz+z0,n0(s) for all z, z0 ∈ R2 and all s > 0 with m0(x) = n0(x+ z0). This yields

T ∗c (m0) := inf
z∈R2

H−1
z,m0

(L(M)) = inf
z∈R2

H−1
z+z0,n0

(L(M)) = inf
z∈R2

H−1
z,n0

(L(M)) =: T ∗c (n0),

where L(M) = 2M2

3M−8π . This leads to the stated invariance.

This concludes the proof of Theorem 1.2. �

In the second part of this section, we are interested in estimating the critical time
T ∗c = T ∗c (n0) defined in Theorem 1.2 for the particular case where n0 is a non-increasing
z0-radially symmetric initial data. Recall that a function n0 is said radially symmetric
on Rn if, for all x, y ∈ Rn such that |x| = |y| then n0(x) = n0(y). We say that n0 is
non-increasing radially symmetric on Rn if n0 satisfies for all x, y ∈ Rn such that |x| ≤ |y|,
we have n0(x) ≥ n0(y). This is equivalent to say that n0 is radially symmetric and the
function ñ0 defined by r 7→ ñ0(r) = n0(x) for x ∈ Rn with r = |x|, is non-increasing
on [0,+∞). Fix z0 ∈ Rn, we say that a function n0 is a z0-radially symmetric (resp.
non-increasing z0-radially symmetric) function if x 7→ m0(x) := n0(x + z0) is a radially
symmetric (resp. non-increasing radially symmetric) function is the sense given above.

In the following results, we shall use the Laplace transform of a function f denoted by
Lf(v) =

∫ +∞
0 e−vuf(u) du (v > 0). This Laplace transform will be used in association

with radially symmetric initial data n0.

Theorem 1.7. Under the assumptions of Theorem 1.2 and denoting by T ∗c (n0) the critical
time defined by (1.9). We have the next statements.

(1) If n0 is a z0-radially symmetric non-negative integrable function then

(1.11) T ∗ ≤ T ∗c (n0) ≤ 1

4(Lf)−1
(
L(M)
π

) ,
with f(u) = m̃0(

√
u), u > 0, where m̃0(|x|) = m0(x) = n0(x+ z0), x, z0 ∈ R2, and

L(M) = 2M2

3M−8π .

(2) Moreover, suppose that n0 is a non-increasing z0-radially symmetric non-negative
integrable function. Then we have

(1.12) T ∗ ≤ T ∗c (n0) =
1

4(Lf)−1
(
L(M)
π

) ,
with f as in (1.11).

Note that the upper bound on T ∗c (n0) in (1.11) is now an equality in (1.12) when n0 is a
non-increasing z0-radially symmetric function. So, the estimate (1.11) of T ∗c (n0) is sharp
for the sub-class of non-increasing z0-radially symmetric data n0.

Proof. By applying (1.9) and the statement (4) of Theorem 1.2, we obtain

T ∗ ≤ T ∗c (n0) = T ∗c (m0) ≤ T ∗c,0(m0) = H−1
0,m0

(L(M)) .

Now, since the function m0 is a radially symmetric, the function H0,m0 can expressed via
the Laplace transform as follows,

H0,m0(s) =

∫
R2

exp

(
−|x|

2

4s

)
m0(x) dx =

∫
R2

exp

(
−|x|

2

4s

)
m̃0(|x|) dx.

By the change of variables using polar coordinates, we deduce that

H0,m0(s) = 2π

∫ +∞

0
e−r

2/4sm̃0(r)rdr = π

∫ +∞

0
e−r

2/4sm̃0(
√
r2) d(r2)
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= π

∫ +∞

0
e−ρ/4sm̃0(

√
ρ) dρ = π

∫ +∞

0
e−ρ/4sf(ρ) dρ = π(Lf)(1/4s),

with f(ρ) = m̃0(
√
ρ). The last line is obtained by the change of variable ρ = r2. The

function v → Lf(v) is invertible since H0,m0 is invertible. Finally, we conclude that

H−1
0,m0

(L(M)) =
1

4(Lf)−1
(
L(M)
π

) .
This proves the inequality (1.11).

We now prove the inequality (1.12) as follows. Since n0 is a non-increasing z0-radially
symmetric function, then m0 is a non-increasing radially symmetric function. We apply
(3) of Theorem 1.2 to obtain the next equality

T ∗c (n0) = T ∗c (m0) = inf
z∈R2

H−1
z,m0

(L(M)) = H−1
0,m0

(L(M)) =
1

4(Lf)−1
(
L(M)
π

) .
This concludes the proof of Theorem 1.7. �

The other sections of this paper are organized as follows.

In Section 2, since generally it is difficult to compute T ∗c (n0) explicitly, we extend our
investigation of upper bounds on T ∗ by providing various (more or less explicit) upper
bounds on the bound T ∗c (n0) itself. We also prove lower bounds on T ∗c (n0) in Section 3
showing (in some cases) the sharpness of the corresponding upper bounds on T ∗c (n0). In
Section 4, we finally exhibit explicit bounds on T ∗c (n0) for several families of examples of
initial data. In particular, we can compute explicitly T ∗c (n0) for some examples of radially
symmetric initial data n0 by applying Theorem 1.7 using the Laplace transform.

2. Estimates on the critical time bound T ∗c (n0)

In general, the functions H−1
z,n0

of Theorem 1.2 are not given explicitly. Nevertheless,
from this theorem we are able to derive various types of explicit upper bounds on T ∗

from those on T ∗c (n0), for all 0 ≤ n0 ∈ L1(R2), with or without any specific additional
assumptions. Such estimates may be useful by providing an explicit interval of time
(0, T̃ ) ⊇ (0, T ∗c (n0)) ⊇ (0, T ∗) for numerical simulations on which the blow-up will certainly
be observed.

We first obtain an upper bound on T ∗(n0) as an infimum over two parameters of a
function expressed in terms of convolutions with Gaussian-type weights of the initial data
n0. We denote by ln+ v = sup(ln v, 0), v > 0, and ||f ||∞ = supz∈R2 |f(z)| for a bounded
function f .

Corollary 2.1. Let T ∗ = T ∗(n0) be the maximal existence time of a solution of the (PKS)

system with initial data 0 ≤ n0 ∈ L1 satisfying M = ||n0||1 > 8π. Let L(M) = 2M2

3M−8π .
Then we have

(2.13) T ∗ ≤ T ∗c (n0) ≤ T ∗c1 := inf
q>1, λ>0

λq−1/q

[
ln+

(
||ωq,λ ? n0||∞

L(M)

)]−1/q

,

where ωq,λ(x) = exp(−cq,λ|x|
2q
q−1 ) with cq,λ = q−1

q (4λ)
− q
q−1 , for all 1 < q < ∞ and all

λ > 0. In particular, if n0 is a non-increasing radially symmetric function, then

||ωq,λ ? n0||∞ = ωq,λ ? n0(0) =

∫
R2

exp
(
−cq,λ|x|

2q
q−1

)
n0(x) dx.

We make some comments on these results before giving the proof.

Remark 2.2. Note that the weight ωq,λ does not depend on T ∗. In fact, the parameter λ
in the formula (2.13) plays a similar role to T ∗ but now it can be taken freely in the full
interval (0,+∞).
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Remark 2.3. The value T ∗c1 is finite. We prove it as follows. Let p = q
q−1 with 1 < q <∞.

For all 1 < q < +∞ and all z ∈ R2, we have by dominated convergence theorem,

lim
λ→+∞

ωq,λ ? n0(z)

L(M)
=

1

L(M)

∫
R2

lim
λ→+∞

exp

[
−1

p

(
|x− z|2

4λ

)p ]
n0(x) dx =

M

L(M)
> 1,

whenever M > 8π. Thus, we get for all 1 < q < +∞ and λ ≥ λq (large enough),

0 = ln+ 1 < ln+

(
||ωq,λ ? n0||∞

L(M)

)
.

This implies that T ∗c1 defined by (2.13) is finite.

Proof. The main idea of proof is to obtain a lower bound for the integral Hz,n0(s)
by a product of two functions, one depending on the time variable s and the other one
depending on the space variable z, in order to get a lower bound of the following form,

g(s)(ω ? n0)(z) ≤
∫
R2

exp

(
−|x− z|

2

4s

)
n0(x) dx = Hz,n0(s), z ∈ R2, s > 0.

Here, we expect that s 7→ g(s) will be an invertible function explicitly given, and the
function x ∈ R2 7→ ω(x) will also be an explicit (bounded) weight of the space variable x.

More explicitly, we prove the corollary a follows. We apply the next well-known Young’s
inequality,

ab ≤ ap

pλp
+
λqbq

q
,

for all a, b ≥ 0, λ > 0, where 1 < p, q < +∞ satisfies 1/p+ 1/q = 1 (i.e., p = q
q−1). We set

a = |x− z|2/4 and b = 1/s for all x, z ∈ R2 and all s > 0. Then we deduce that

|x− z|2

4s
≤ `|x− z|2p +

k

sq
,

with ` = p−1(4λ)−p and k = q−1λq. This implies that

e−ks
−q
∫
R2

exp
(
−`|x− z|2p

)
n0(x) dx ≤

∫
R2

exp

(
−|x− z|

2

4s

)
n0(x) dx,

for all z ∈ R2 and all s > 0. By setting ωq,λ(x) = exp
(
−`|x|2p

)
, our result reads as a

convolution inequality,

e−ks
−q
ωq,λ ? n0(z) ≤ Hz,n0(s).

Recall that T ∗c = T ∗c (n0) := infz∈R2 T ∗c,z(n0), and that T ∗c,z := T ∗c,z(n0) is defined as the

unique solution of Hz,n0(T ∗c,z) = L(M) for any fixed z ∈ R2. By monotonicity of the
functions s 7→ Hz,n0(s) and using the definition of T ∗c , we deduce from this convolution
inequality that

e−ks
−q
ωq,λ ? n0(z) ≤ Hz,n0(T ∗c ) ≤ Hz,n0(T ∗c,z) = L(M).

for all 0 < s ≤ T ∗c and all z ∈ R2. Now taking the supremum over z ∈ R2 and s = T ∗c , we
obtain the next inequality,

e−k(T ∗c )−q ||ωq,λ ? n0||∞ ≤ L(M).

From the inequation (1.9) of Theorem 1.2, we deduce that

T ∗ ≤ T ∗c (n0) ≤ k1/q

[
ln+

(
||ωq,λ ? n0||∞

L(M)

)]−1/q

= λq−1/q

[
ln+

(
||ωq,λ ? n0||∞

L(M)

)]−1/q

,

for all 1 < q < +∞ and all λ > 0.
Finally, by taking the infimum over the parameters q > 1 and λ > 0, we obtain the

inequality (2.13).
12



Now we prove the last statement of Corollary 2.1 as follows. By assumption, n0 is a
non-increasing radially symmetric function, and since the function

x 7→ ωq,λ(x) = exp(−cq,λ|x|
2q
q−1 )

has clearly the same property, then the convolution of these two functions, i.e. z 7→
ωq,λ ? n0(z), is also a non-increasing radially symmetric (continuous) function. Thus, it
attains its supremum at z = 0. This concludes the proof of Corollary 2.1. �

Unfortunately, despite its theoretical interest, it is difficult to estimate the infimum T ∗c1
in (2.13) of Corollary 2.1, even for the simplest case of the characteristic function of a disk,
i.e. n0 = 1B(0,R). Nevertheless, in the general situation we can choose any fixed couple
of parameter q > 1 and λ > 0 to bound T ∗c (n0), hence T ∗ too. In the next corollary, we
propose several approaches to obtain more explicit bounds on T ∗c (n0). The first one is
given in terms of averages of n0 on the family of disks B(z, ρ) of radius ρ > 0 centered
at z ∈ R2, and valid for any initial data n0. Next, in this corollary, we rewrite this result
differently. The last result mentioned in this corollary deals with the case of data with
compact support. All these results are applied to obtain explicit upper bounds on T ∗ for
several families of examples, see Section 4.

Corollary 2.4. Let T ∗ be the maximal existence time of a solution of the (PKS) system

(1.1)-(1.3) with initial data n0 ≥ 0 of mass M > 8π. Let L(M) = 2M2

3M−8π .

(1) We have T ∗ ≤ T ∗c := T ∗c (n0) with

(2.14) T ∗c ≤ T ∗c2 := inf
ρ>0,z∈R2

ρ2

4

[
ln+

(
Mz(ρ)

L(M)

)]−1

,

where Mz(ρ) :=
∫
B(z,ρ) n0(x) dx and B(z, ρ) is the Euclidean disk of radius ρ >

0 centered at z ∈ R2. Moreover, if n0 is a non-increasing radially symmetric
(integrable) function, then we have

(2.15) T ∗ ≤ T ∗c ≤ T ∗c2 = inf
ρ>0

ρ2

4

[
ln+

(
M0(ρ)

L(M)

)]−1

.

(2) For each fixed z ∈ R2 and ρ > 0, let gz(ρ) = 1
M

∫
B(z,ρ) n0(x) dx. We denote by g←z

the generalized inverse of g defined by

g←z (m) := inf{ρ > 0 : gz(ρ) ≥ m}, m ∈ (0, 1).

For all z ∈ R2, let

T ∗c2(z) := inf
ρ>0

ρ2

4

[
ln+

(
Mz(ρ)

L(M)

)]−1

.

Then we have

(2.16) T ∗c2(z) =
1

4 ln
(
1 + M−8π

2M

) . inf
θ∈(0,1)

([
g←z (aθ)

]2
(1− θ)

)
,

with a := L(M)
M = 2M

3M−8π ∈ (0, 1). Hence, we also have

(2.17) T ∗ ≤ T ∗c ≤ T ∗c2 =
1

4 ln
(
1 + M−8π

2M

) . inf
z∈R2,θ∈(0,1)

([
g←z (aθ)

]2
(1− θ)

)
.

(3) Assume that n0 has compact support denoted by K. Let iK(z) = supx∈K |x − z|
for all z ∈ R2, and R0 = infz∈R2 iK(z). Then we have

(2.18) T ∗ ≤ T ∗c ≤ T ∗c3 :=
R2

0

4 ln
(
1 + M−8π

2M

) .
13



The value R0 is also the radius of the smallest closed disk containing K. In par-
ticular, we have

(2.19) T ∗ ≤ T ∗c ≤ T ∗c3 ≤
D2

12 ln
(
1 + M−8π

2M

) ,
where D is the diameter of K.

Before giving the proof of this corollary, we make some comments on these results.

Remark 2.5. By translation invariance of T ∗c (n0) as mentioned in Theorem 1.2 (4), the
inequality (2.15) is still valid when n0 is a non-increasing z0-radially symmetric function
changing M0(ρ) by Mz0(ρ).

Remark 2.6. The ratio 1
4 ln(1+M−8π

2M )
appears naturally in the proof of (2.18). The inequal-

ity (2.17) proposes a more general version where this ratio appears without any compact
support condition on the initial data n0.

Remark 2.7. (1) The range of the non-decreasing continuous function [0,+∞) 3
ρ 7→ gz(ρ) is either the interval [0, 1) or [0, 1]. Indeed, we have gz(0) = 0,
limρ→+∞ gz(ρ) = 1 and gz is continuous on its domain [0,+∞) for all z ∈ R2.
This function may not be a strictly increasing function on [0,+∞). In particu-
lar, it can be constant on an interval. For instance if gz(ρ1) = gz(ρ2) for some
0 < ρ1 < ρ2 ≤ +∞ and for some fixed z ∈ R2, then the (non-negative) initial
data n0 is almost everywhere zero in the annulus B(z, ρ2) \ B(z, ρ1). It is easy
to construct such examples of initial data. For instance, we can simply consider
the characteristic function of the disk B(z0, ρ1) and the function gz0 for a fixed z0

(here, ρ2 = +∞). More generally, we can consider an initial data with compact
support.

(2) If gz is strictly increasing on [0,+∞), then its range is [0, 1). Thus, the function
gz : [0,+∞) → [0, 1) is a bijection and g←z is the usual inverse function g−1

z :
[0, 1) → [0,+∞) of gz. Indeed, the value 1 cannot be in the range of gz, if not,
there exists 0 < ρ0 < +∞ such that gz(ρ0) = 1, then we have gz(ρ) = 1 for all
ρ ≥ ρ0, since gz is non-decreasing and bounded by 1. Contradiction: gz is not
strictly increasing.

(3) If the value 1 is in the range of gz, i.e. there exists 0 < ρ0 < +∞ such that
gz(ρ0) = 1, then we deduce that g←z (1) is defined, and

g←z (1) := inf{ρ > 0, gz(ρ) ≥ 1} = inf{ρ > 0, gz(ρ) = 1} ≤ ρ0.

So, g←z (1) is defined and finite. In fact, g←z (1) is defined and finite if and only

if the (essential) support of n0 ≥ 0 is included in a closed disk B(z, ρ0) for some
0 < ρ0 < +∞. In that situation, we shall simply say that the initial data n0 has
compact support. It remains to prove the converse. Assume that g←z (1) is defined
and finite. Let ρ1 := g←z (1) < +∞. Then, we have gz(ρ0) = 1 for at least one
ρ0 ≥ ρ1. Thus, we obtain

0 = 1− gz(ρ0) =
1

M

∫
Bc(z,ρ0)

n0(x) dx.

Since n0 is non-negative, we deduce that n0 = 0 almost everywhere on R2\B(z, ρ0),
which proves the assertion.

(4) If the value 1 is not in the range of gz (i.e. n0 has no compact support), and if
needed, we shall let g←z (1) = +∞.

(5) The function g←z will be called the generalized right-inverse of gz. It can also be
called the radial cumulative distribution function centered at z ∈ R2 of the density
of probability dµ(x) = 1

M n0(x) dx.
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Remark 2.8. During the proof, we shall see that both inequalities (2.15) and (2.17) are
equivalent. But in the second inequality (2.17), the following quantity

1

4 ln
(
1 + M−8π

2M

)
appears naturally in the estimate of the upper bound of T ∗c (n0), and also in (2.18) and
(2.19). Note that this term is independent of the particular shape of the initial data n0,
and depends only on the mass M . Such a logarithmic term is mentioned here because it
also occurs in Theorem 3.1 below for lower bounds to T ∗c (n0).

Remark 2.9. The quantity iK(z) = supx∈K |x − z| = |x0 − z| is the distance from z to
one of the farthest point x0 = x0(z,K) in K. Such a point x0 exists because the function
x→ |x− z| is continuous on the compact set K. Hence, the supremum is attained and is,
in fact, a maximum. In particular, we have for all z ∈ R2,

K ⊂ B ′(z, iK(z)) := {y ∈ R2 : |z − y| ≤ iK(z)},

and iK(z) is exactly the smallest radius R ≥ 0 such that K ⊂ B ′(z,R) for this fixed
z ∈ R2. Now, the quantity R0 = infz∈R2 iK(z) consists in choosing ideally a closed disk of
minimal radius, i.e. R0, containing K. More precisely, it can be proved that z → iK(z) is
1-Lipschitz (so, it is continuous), and

lim
|z|→+∞

iK(z) = +∞.

Since iK ≥ 0 then the infimum defining R0 is attained at some point z0 ∈ R2, i.e. R0 =
iK(z0) = |z0 − x0| for some x0 ∈ K. Then K ⊂ B ′(z0, R0) where R0 is easily seen as the
minimal radius R such that K is enclosed in a closed disk B ′(z,R) for some z ∈ R2 (z
is not necessarily in K). See the examples of initial data n0 given by the characteristic
function of K where K is a closed disk or an annulus treated in Section 4. In any metric
space, it can be easily shown that

1

2
D ≤ R0 ≤ D,

where D := diam(K) = supx,y∈K |x− y| is the diameter of the bounded (compact) set K.

In R2, it may happen that 1
2D < R0 (R0 = D/

√
3 for the equilateral triangle) or R0 < D

(always true in Rn). Indeed, by Jung’s Theorem [42] we have on Rn,

R0 ≤ D
√

n

2(n+ 1)
.

The case of equality is attained by the regular n-simplex. In particular on R2, we obtain

R0 ≤ D/
√

3.

Remark 2.10. The upper bound T ∗c (n0) of T ∗ depends not only of the mass of the initial
data n0 but also of its shape. Indeed, for instance, the radial distribution Mz(ρ), ρ >
0, z ∈ R2 appearing in (1) of Corollary 2.4 ”encodes” a part of the information on the
shape of n0. In Corollary 2.4 (2), the geometric information is encoded by the generalized
inverse g←z , z ∈ R2. For explicit shape expressions, see the examples described in Section
4.

Remark 2.11. It can be noticed that the result (1) of Corollary 2.4 is sharp in the sense
that the set of information {Mz(ρ), ρ > 0, z ∈ R2} is equivalent to the knowledge of the
initial data n0 since n0 ∈ L1

loc. Indeed, by Lebesgue differentiation theorem, we have

lim
ρ→0+

1

|B(z, ρ)|
Mz(ρ) = n0(z),

for almost all z ∈ R2.
15



Proof of Corollary 2.4

(1) (a) Our proof starts from (1.7) of Theorem 1.2. To simplify the notation, we set
T = T ∗c (n0). Since n0 ≥ 0, we have for all z ∈ R2 and all ρ > 0,

e−
ρ2

4TMz(ρ) =

∫
B(z,ρ)

e−
ρ2

4T n0(x) dx ≤
∫
R2

exp

(
−|x− z|

2

4T

)
n0(x) dx = L(M),

with L(M) = 2M2

3M−8π . It follows easily that, for all z ∈ R2 and all ρ > 0,

T ≤ ρ2

4 ln+

(
Mz(ρ)
L(M)

) ≤ +∞.

Now by taking the infimum over z ∈ R2 and ρ > 0, we deduce that

T = T ∗c (n0) ≤ T ∗c2 := inf
ρ>0,z∈R2

ρ2

4

[
ln+

(
Mz(ρ)

L(M)

)]−1

.

It remains to prove that T ∗c2 is finite for any non-negative integrable function n0. The

proof is as follows. We note that for all z ∈ R2,

lim
ρ→+∞

ln+

(
Mz(ρ)

L(M)

)
= ln+

(
M

L(M)

)
> 0,

by continuity of ln+ and monotone convergence theorem. The last inequality is due to the
fact that L(M) < M when M > 8π. Then for one (all) z ∈ R2, there exists 0 < ρ0 < +∞
large enough such that,

ln+

(
Mz(ρ0)

L(M)

)
> 0.

Hence, it yields

0 ≤ ρ2
0

4

[
ln+

(
Mz(ρ0)

L(M)

)]−1

< +∞.

This implies the finiteness of T ∗c2 . The upper bound (2.14) on T ∗c (n0) is now proved.

(1) (b) For the proof of the second part of (1), we just need to prove for any non-negative
non-increasing radially symmetric function n0 that

(2.20) sup
z∈R2

Mz(ρ) =M0(ρ), ρ > 0.

This result is well-known but we provide below details for completeness. Let z ∈ R2

be fixed. For all x ∈ B(0, ρ) \ U and all y ∈ B(z, ρ) \ U with U = B(0, ρ) ∩ B(z, ρ),
we have |x| ≤ ρ ≤ |y|. This implies that n0(x) ≥ n0(y) because n0 is a non-increasing
radially symmetric function. We integrate this last inequality with respect to the couple
of variables (x, y) ∈ (B(0, ρ) \ U)× (B(z, ρ) \ U), and get by Fubini’s theorem,

|B(z, ρ) \ U |.
∫
B(0,ρ)\U

n0(x) dx ≥ |B(0, ρ) \ U |.
∫
B(z,ρ)\U

n0(y) dy.

Here, |A| denotes the Lebesgue measure of the measurable set A ⊂ R2. Since U ⊂ B(z, ρ)
and U ⊂ B(0, ρ), we have

|B(z, ρ) \ U | = |B(z, ρ)| − |U | = |B(0, ρ)| − |U | = |B(0, ρ) \ U |.

It immediately yields

(2.21)

∫
B(0,ρ)\U

n0(x) dx ≥
∫
B(z,ρ)\U

n0(y) dy

16



when |B(z, ρ) \ U | > 0. If |B(z, ρ) \ U | = 0 then B(z, ρ) = B(0, ρ) ∩ B(z, ρ) ⊂ B(0, ρ).
This implies that z = 0 ∈ R2 and (2.21) holds trivially. Thus, we deduce that

Mz(ρ)−M0(ρ) =

∫
B(z,ρ)\U

n0(y) dy −
∫
B(0,ρ)\U

n0(x) dx ≤ 0.

Finally, we have for all z ∈ R2 and all ρ > 0,

Mz(ρ) ≤M0(ρ).

Thus, the formula (2.20) follows.

(2) The proof relies on a change of variables of exponential type. We first start with
some useful properties of the distribution function gz for any z ∈ R2, see also Remark 2.7
above. We denote gz by g at some places for short.

The function g : [0,+∞) → [0, 1] is a non-decreasing continuous function with range
included in [0, 1]. Since g(0) = 0, g(+∞) = 1 and g is continuous, then for each m ∈
(0, 1) there exists ρ1 > 0 such that g(ρ1) = m by the intermediate value theorem. Let
G(m) = {ρ > 0 : g(ρ) = m} with m ∈ (0, 1). Then the set Gm is not empty and bounded
from below by 0, hence the infimum of Gm exists for all m ∈ (0, 1). It is also a minimum
because G(m) is closed (g is continuous). We set g←(m) := minGm. The function g← is
a right-inverse of the function g since we have g ◦ g←(m) = m for all m ∈ (0, 1). This is
simply due to the fact that g←(m) ∈ G(m). Note that g← is not necessarily a left-inverse
of the function g, in particular if gz is constant on some (closed) interval. Moreover, it
can be shown by monotonicity of g that we also have

g←(m) = inf Gm = inf{ρ > 0 : g(ρ) ≥ m}.

Hence, the function g← is non-decreasing on (0, 1) but not necessarily continuous. Its
range is included in (0,+∞). Of course, if g is strictly increasing from (0,+∞) onto (0, 1)
then g← = g−1 is the usual inverse function to g.

Now we are in position to prove (2.18) of Corollary 2.4. Let z ∈ R2 be fixed. We set

a = L(M)
M = 2M

3M−8π . Since M > 8π, we have a ∈ (0, 1). By definition of T ∗c2(z), we can
write for all ρ > 0,

T ∗c2(z) ≤ ρ2

4

[
ln+

(
Mz(ρ)

L(M)

)]−1

=
ρ2

4

[
ln+

(
gz(ρ)

a

)]−1

,

because Mz(ρ)/L(M) = gz(ρ)/a. Let θ ∈ (0, 1) then we have aθ ∈ (0, 1). We set
ρ∗ = g←z (aθ) then we have ρ∗ ∈ (0,+∞) and gz(ρ∗) = aθ. The inequality just above with
ρ = ρ∗ implies that

T ∗c2 ≤
[
g←z (aθ)

]2
4 ln+ (aθ−1)

=

[
g←z (aθ)

]2
4(1− θ) ln( 1

a)
.

By minimization over θ ∈ (0, 1), we obtain T ∗c2 ≤ T̃ , with

T̃ := inf
0<θ<1

[
g←z (aθ)

]2
4(1− θ) ln( 1

a)
.

It remains to prove the reverse inequality, namely T̃ ≤ T ∗c2 . We fix z ∈ R2. We discuss
three cases. (The last case may not appear for some functions gz).

First case. Let ρ ∈ (0,+∞) such that a < gz(ρ) < 1. Then there exists θ ∈ (0, 1) such
that gz(ρ) = aθ. Since g←z (aθ) ≤ ρ by definition of g←z , we can say that

(2.22) T̃ ≤
[
g←z (aθ)

]2
4(1− θ) ln( 1

a)
≤ ρ2

4 ln(aθ−1)
=

ρ2

4 ln+

(
gz(ρ)
a

) =
ρ2

4 ln+

(
Mz(ρ)
L(M)

) ,
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using the relations aθ−1 = a−1gz(ρ) = Mz(ρ)
L(M) .

Second case. Assume that gz(ρ) ≤ a, then the inequality (2.22) holds true trivially since
the right-hand side is infinite. Thus, from the first and second case, we deduce that the
inequality (2.22) holds true whenever gz(ρ) < 1.

Third case. If it happens that gz(ρ) = 1 for some finite ρ > 0, by the same argument
defining g←(m) for m ∈ (0, 1), we set

ρ0 = inf{ρ′ > 0, gz(ρ
′) = 1} = min{ρ′ > 0, gz(ρ

′) = 1}.

So, we have 0 < ρ0 ≤ ρ for ρ > 0 such that gz(ρ) = 1. For any sequence (rn) such that
rn < ρ0 and limn rn = ρ0, then we have gz(rn) < gz(ρ0) = gz(ρ) = 1. We can apply the
result of the first or second case just above to such sequence (rn), i.e (2.22), and write for
all n,

T̃ ≤ r2
n

4 ln+

(
Mz(rn)
L(M)

) .
Now, taking the limit as n goes to infinity and using the continuity of the function r 7→
Mz(r), we obtain

T̃ ≤ ρ2
0

4 ln+

(
Mz(ρ0)
L(M)

) ≤ ρ2

4 ln+

(
Mz(ρ)
L(M)

) .
The last inequality is due to the equality gz(ρ0) = gz(ρ) = 1, i.e. Mz(ρ) =Mz(ρ0) = M
and 0 < ρ0 ≤ ρ.

Conclusion. Gathering the three cases above, we can assert that the inequality (2.22)

holds true for all ρ > 0. Hence, we obtain T̃ ≤ T ∗c2 by minimization over ρ > 0 of the

utmost right-hand side term of the inequality (2.22). Ultimately, we get T̃ = T ∗c2 since

T̃ ≥ T ∗c2 has already been proved in the first part of the proof. Finally, the last statement

of part (2) of Corollary 2.4 holds true by noting that 1
a = 1 + M−8π

2M .

(3) The proof is similar to the proof of the first part of Corollary 2.4. We assume that
n0 has compact support in R2, here denoted by K. Let T = T ∗c,z(n0) as in Theorem 1.2

for fixed z ∈ R2. By (1.7) of Theorem 1.2, we have

e−i
2
K(z)/4T .M =

(
e− supx∈K

|x−z|2
4T

)
.M =

(
inf
x∈K

e−
|x−z|2

4T

)
.

∫
K
n0(y) dy

=

∫
K

inf
x∈K

e−
|x−z|2

4T n0(y) dy ≤
∫
K
e−
|y−z|2

4T n0(y) dy

=

∫
R2
e−
|y−z|2

4T n0(y) dy = Hz,n0(T ) = L(M),

with L(M) = 2M2

3M−8π . This implies that, for all z ∈ R2,

T = T ∗c,z ≤
i2K(z)

4 ln
(

M
L(M)

) ,
due to the fact that ln (M/L(M)) > 0 since L(M) < M for M > 8π. By minimization
over z ∈ R2, the conclusion follows:

T ∗ ≤ T ∗c ≤ T ∗c3 :=
R2

0

4 ln
(

M
L(M)

) =
R2

0

4 ln
(
1 + M−8π

2M

) .
An alternative proof of this inequality (2.18) is as follows. In the inequality (2.17), we

can consider the value θ = 0 (i.e. the limit case θ where goes to 0). Indeed, g←z (1) is finite
18



for all z ∈ R2 (due to the assumption of compact support on n0) and g←z (aθ) ≤ g←z (1)
since t 7→ g←z (t) is non-decreasing and aθ < 1. So, we can write

T ∗c2 ≤
1

4 ln
(
1 + M−8π

2M

) . inf
z∈R2,θ∈(0,1)

([
g←z (aθ)

]2
(1− θ)

)
≤ 1

4 ln
(
1 + M−8π

2M

) . inf
z∈R2

[g←z (1)]2 ,

Now, it can be easily shown that g←z (1) = iK(z) for all z ∈ R2. Hence, we get

R2
0 = inf

z∈R2
[g←z (1)]2 .

Thus, we conclude that T ∗c2 ≤ T
∗
c3 . So, the inequality (2.18) also follows from (2.17). This

finishes this second proof.

The inequality (2.19) is a consequence of Jung’s Theorem [42] applied to the two-
dimensional case. Indeed, we have R0 ≤ D/

√
3, where D is the diameter of K, see

Remark 2.9 above. This concludes the proof of Corollary 2.4. �

In the next statement, we give practical criteria for obtaining bounds on T ∗c2(0) of

Corollary 2.4. Under natural additional assumptions on the function h := (g←0 )2 appearing
in the inequality (2.18) of Corollary 2.4, we prove the existence of a unique extremum at
θ0 ∈ (0, 1), or at θ0 = 0+ of the infimum over θ ∈ (0, 1) used in (2.17). We also provide
an expression of T ∗c2(0) by evaluating the value of θ0 by inverting some function, namely
F canonically associated with g←0 when g←0 is smooth enough (see below). In Section 4,
we apply these estimates to obtain explicit bounds on the critical time T ∗c2(0) for several
families of examples of initial data.

Corollary 2.12. Let M > 8π and T ∗c2(0) given in (2) of Corollary 2.4, i.e.

T ∗c2(0) =
1

4 ln (1/a)
. inf
θ∈(0,1)

h(aθ)

(1− θ)
,

with a = 2M
3M−8π ∈ (2

3 , 1) (thus 1
a = 1 + M−8π

2M ∈ (1, 3
2)). Here, the function h is defined by

h(t) := [g←0 (t)]2, t ∈ (a, 1). Assume that h is continuous and has derivative h′(t) > 0 for
all t ∈ (a, 1). Let F be given by

(2.23) F (X) = X + eX
(
h

h′

)
(e−X), X ∈ (0, ln(1/a)).

We have the next two results.

(1) If F is non-decreasing and F (0+) ≥ ln(1/a), i.e.
(
h
h′

)
(1−) ≥ ln(1/a), then we

have

(2.24) T ∗c2(0) =
h(1−)

4 ln(1/a)
.

(2) If F is continuous and strictly increasing on (0, ln(1/a)), and satisfies the next
conditions,
(i) F (0+) < ln(1/a), i.e.

(
h
h′

)
(1−) < ln(1/a),

(ii) F ([ln(1/a)]−) > ln(1/a), i.e.
(
h
h′

)
(a+) > 0,

then we have

(2.25) T ∗c2(0) = S

(
ln

1

a

)
,

where

(2.26) S(Y ) :=
h(e−F

−1(Y ))

4 [Y − F−1(Y )]
=

1

4
e−F

−1(Y )h′(e−F
−1(Y )), Y ∈ Dom(F−1),

and F−1 is the inverse function of F .

We make some comments on these results.
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Remark 2.13. The functions S and h are formally independent of the mass M . These
functions depends on the shape of the initial data n0 via the repartition function g←0 . Both
expressions (2.24) and (2.25) are expressed respectively in terms of the functions h and
S of the variable Y evaluated at Y0 = Y0(M) := ln( 1

a) = ln
(
1 + M−8π

2M

)
where M is the

mass of the initial data n0 with M > 8π. Note that we have ln( 1
a) ∈ (0, ln(3/2)) where

ln(3/2) ∼ 0.40, thus ln( 1
a) ∈ (0, 0.41) for all M > 8π. These comments are provided so

that the reader can get an idea of the quantities involved in the computations.

Remark 2.14. In Section 4, we evaluate the function F for some families of examples of
initial data. But unfortunately, the inverse function F−1 can not always be given explicitly
as simple functions. Nevertheless for some examples, the function F−1 can be bounded
above and below by explicit functions useful for estimating T ∗c (n0). Hence, it is also useful
to provide an upper bound on T ∗. Since only the evaluation of F−1 at Y0 = ln( 1

a) is involved

in (2.25), the quantity F−1(ln 1
a) may certainly be estimated by numerical methods as the

unique zero of the function Q := F + ln a. But we shall not continue in that direction in
this paper.

Remark 2.15. The map M ∈ (8π,+∞) → (2
3 , 1) defined by a = a(M) = 2M

3M−8π is

a decreasing bijection. Hence h is defined at least on (a, 1) for all a ∈ (2
3 , 1), i.e. on

(2
3 , 1) itself. This implies that F defined in Corollary 2.12 must have a domain containing

(0, ln(3
2)). So, the function F does not depend on a. In fact, the function F is often

defined on the whole interval (0,+∞).

Remark 2.16. The assumption
(
h
h′

)
(a+) > 0 in the second part of the corollary can be

replaced by the simple assumption h′(a+) > 0. Indeed, it is enough to show that we always
have h(a+) > 0. This is deduced as follows. Since we have h = (g←0 )2 ≥ 0, we have
h(a+) ≥ 0. It remains to show that h(a+) 6= 0. To prove this, we suppose the contrary,
i.e. h(a+) = 0. Thus, for any sequence (an) such that a ≤ an < 1 and limn an = a, then
we have h(a+) = limn h(an) = 0. This implies that limn g

←
0 (an) = 0. Thus, on one hand

we get

lim
n
g0(g←0 (an)) = g0(0) = 0,

by continuity of g0. On the other hand, we have

lim
n

(g0 ◦ g←0 )(an) = lim
n
an = a,

due to the fact that g←0 is a right-inverse of g0. So, we deduce that a = 2M
3M−8π = 0, which

contradicts the assumption M > 8π.

Remark 2.17. For any z ∈ R2, and under similar assumptions on hz := (g←z )2 as those
imposed on h = h0, we can prove similar estimates as (2.24) and (2.25) for T ∗c2(z) with
the corresponding Fz.

Proof of Corollary 2.12 . We first need some preparation. Let a and h := h0 defined
as in Corollary 2.12 (z = 0 ∈ R2). We assume that h is continuous and it has a positive

derivative. We set V (θ) := h(aθ)
(1−θ) with θ ∈ (0, 1). The derivative of the function V satisfies

the following equation

(1− θ)2V ′(θ) = (1− θ)(ln a)h′(aθ)aθ + h(aθ).

We make the following change of variables X = X(θ) = −θ ln a = θ ln(1/a). The map X
is an increasing bijection from (0, 1) onto (0, ln(1/a)). We deduce that aθ = e−X , and

(1− θ)2V ′(θ) = (1− θ)(ln a)h′(e−X)e−X + h(e−X)

= (ln a)h′(e−X)e−X +Xh′(e−X)e−X + h(e−X) = h′(e−X)e−XQ(X),

with Q(X) := F (X) + ln a, and F given by (2.23). From the assumption h′ > 0, we get
Q(X) > 0 ⇐⇒ V ′(θ) > 0 and Q(X) = 0 ⇐⇒ V ′(θ) = 0, where the relationship between
X and θ is given by X = −θ ln a . Now we are in position to prove our statements.
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(1) Under the assumptions of (1) of Corollary 2.12, we have Q(0+) = F (0+) + ln a ≥ 0,
and Q (also F ) is non-decreasing. This implies that Q(X) ≥ Q(0+) ≥ 0, for all X ∈
(0, ln(1/a)). Thus, we have V ′(θ) ≥ 0 for all θ ∈ (0, 1), i.e. V is non-decreasing. Hence,
we deduce that

inf
0<θ<1

V (θ) = V (0+) = h(1−).

Then the formula (2.24) follows from (2.17) of Corollary 2.4 with z = 0. This proves the
first statement.

(2) Under the assumptions of (2) of Corollary 2.12, the function Q(X) = F (X)+ln a is a
strictly increasing continuous function, and by (i) and (ii), we have successively Q(0+) < 0
and Q([ln(1/a)]−) > 0. By the intermediate value theorem, there exists a unique zero
X0 ∈ (0, ln(1/a)) of Q(X) = F (X) + ln a, i.e. F (X0) = ln(1/a), and finally X0 =
F−1(ln 1

a). Indeed, F is bijective from (0, ln(1/a)) onto its range which contains ln(1/a)

since F (0+) < ln 1
a < F ([ln(1/a)]−) by assumptions (i) and (ii). We also obtain

Q(X) < 0 ⇐⇒ 0 < X < X0, and Q(X) = 0 ⇐⇒ X = X0,

which is equivalent to

V ′(θ) < 0 ⇐⇒ 0 < θ < θ0, and V ′(θ) = 0 ⇐⇒ θ = θ0,

with the relations X = θ ln(1/a) and X0 = θ0 ln(1/a). This implies that the infimum of
V (θ) over θ ∈ (0, 1) is attained at this point θ0 ∈ (0, 1), i.e.

inf
0<θ<1

V (θ) = V (θ0),

with

θ0 =
X0

ln(1/a)
=
F−1(ln 1

a)

ln(1/a)
.

Thus, we derive the next formula

T ∗c2(0) =
1

4 ln (1/a)
.V (θ0) =

1

4 ln (1/a)
.
h(aθ0)

(1− θ0)
=

h
(
e−F

−1(ln 1
a

)
)

4
[
ln( 1

a)− F−1(ln 1
a)
] .

Now let X = F−1(Y ) with Y ∈ Dom(F−1) := ImF in the definition (2.23) of F (X). We
get the following expression

Y − F−1(Y ) = eF
−1(Y )

(
h

h′

)
(e−F

−1(Y )).

From which we deduce both formulas for the function S, namely

S(Y ) :=
h(e−F

−1(Y ))

4 [Y − F−1(Y )]
=

1

4
e−F

−1(Y )h′(e−F
−1(Y )).

Finally, this yields the expected result

T ∗c2(0) = S

(
ln

1

a

)
where S(Y ) is described just above, and Y = ln( 1

a). Statement (2) is proved and the proof
of Corollary 2.12 is now complete. �

Now, we present another consequence of Theorem 1.2 under an additional assumption
of finite centralized and normalized β-variance of the initial data n0 defined as follows.
We assume that n0 has a moment of order β ≥ 1, i.e.∫

R2
|x|βn0(x) dx < +∞.
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Then, we denote the (normalized) barycenter of n0 by B0 = 1
M

∫
R2 x.n0(x) dx. This is a

well defined vector in R2, since by Hölder’s inequality, we obtain

1

M

∫
R2
|x|n0(x) dx ≤

(
1

M

∫
R2
|x|βn0(x) dx

)1/β

< +∞,

for any 1 ≤ β < +∞. We also denote by Vβ(n0) the centralized and normalized β-variance
of n0 defined by

Vβ(n0) :=

[
1

M

∫
R2
|x−B0|βn0(x) dx

]2/β

.

Let us mention some basic properties of the β-variance of n0 useful for this paper.

(a) The β-variance, seen as a function of β, i.e. β ∈ [2,+∞) 7→ Vβ(n0), is non-
decreasing. Indeed, by Hölder’s inequality, we have for all 2 ≤ β ≤ γ,

Vβ(n0) =

[
1

M

∫
R2
|x−B0|βn0(x) dx

]2/β

≤
[

1

M

∫
R2
|x−B0|pβn0(x) dx

]2/pβ

= Vγ(n0),

where p = γ/β ≥ 1. As a particular case, we get

V2(n0) =
1

M

∫
R2
|x−B0|2n0(x) dx ≤ Vβ(n0) =

[
1

M

∫
R2
|x−B0|βn0(x) dx

]2/β

,

for all 2 ≤ β < +∞. As a consequence, if Vβ(n0) is finite for some β ≥ 2 then V2(n0) is
also finite.

(b) We have the following infimum estimate

(2.27)
1

4
Vβ(n0) ≤ inf

z∈R2

[
1

M

∫
R2
|x− z|βn0(x) dx

]2/β

≤ Vβ(n0).

(c) In case β = 2, we have an equality of the infimum with the upper bound in (2.27),

(2.28) inf
z∈R2

[∫
R2
|x− z|2 n0(x)

M
dx

]
= V2(n0) =

∫
R2
|x−B0|2

n0(x)

M
dx.

Note that the quantity V2(n0) is simply denoted by V (0) in the first section of this paper.

The proof of the lower bound of (2.27) for β ≥ 2 is as follows. (The upper bound is
obvious taking z = B0). From (discrete) Hölder’s inequality, we get

(a+ b)β ≤ 2β−1
(
aβ + bβ

)
, a, b ≥ 0.

Then, from this inequality and triangle inequality, we deduce that

|x−B0|β ≤ 2β−1
(
|x− z|β + |z −B0|β

)
,

for all x, z ∈ R2. We multiply this expression by the non-negative function n0/M and
integrate it with respect to x over R2, we then obtain∫

R2
|x−B0|β

n0(x)

M
dx ≤ 2β−1

(∫
R2
|x− z|β n0(x)

M
dx+ |z −B0|β

)
.

On the other hand, we have

|z −B0|β = |
∫
R2

(z − x)
n0(x)

M
dx|β ≤

(∫
R2
|z − x| n0(x)

M
dx

)β
≤
∫
R2
|z − x|β n0(x)

M
dx.

The last inequality is obtained by applying Jensen’s inequality to the probability measure
n0(x)
M dx (or simply by applying Hölder’s inequality). It follows that∫

R2
|x−B0|β

n0(x)

M
dx ≤ 2β

∫
R2
|x− z|β n0(x)

M
dx,
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for all z ∈ R2. We conclude the proof of the lower bound of (2.27) by raising the expression
just above to the power of 2/β and by taking the infimum over z ∈ R2.

The next result emphasizes the importance of the role of the normalized barycenter B0

of n0 in the issue of estimating T ∗c (n0) (hence T ∗ also) under a β-moment assumption on
the initial data n0.

Corollary 2.18. (Finite Variance)

(1) Assume that the initial data n0 has a 2-moment. Then, we have the following
estimate

(2.29) T ∗ ≤ T ∗c (n0) ≤ T ∗c4 :=
V2(n0)

4 ln
(
1 + M−8π

2M

) ,
where V2(n0) is the normalized variance of n0. (V2(n0) is also denoted by V (0) in
(1.4) above).

(2) More generally, assume that n0 has a β-moment with β ≥ 2. Then we have

(2.30) T ∗ ≤ T ∗c (n0) ≤ T ∗c5 :=
infz∈R2

[∫
R2 |x− z|β n0(x) dx

]2/β
4M2/β ln

(
1 + M−8π

2M

) .

In particular, we obtain

(2.31) T ∗ ≤ T ∗c (n0) ≤
Vβ(n0)

4 ln
(
1 + M−8π

2M

) , β ≥ 2.

We make some comments on these results.

Remark 2.19. The estimate (2.30) is apparently better than the estimate (2.31) (except
the case β = 2 for which we have equality). See Remarks (2.27) and (2.28).

Remark 2.20. Here again, the term [ln(1/a)]−1 =
[
ln
(
1 + M−8π

2M

)]−1
appears in our

estimates of T ∗c (n0) as in Corollary 2.4 and Corollary 2.12. Note that this term tends to
+∞ when M → 8π+, see comments in first section .

Remark 2.21. In the case of finite second-moment for the initial data n0, we can compare
two asymptotic results. From (1.5), we first recall that we can write the next upper bound

(2.32) T ∗ ≤ 2πV2(n0)

M − 8π
,

for all M > 8π. On the other hand, from (2.29) we have

(2.33) T ∗ ≤ T ∗c (n0) ≤ V2(n0)

4 ln
(
1 + M−8π

2M

) , M > 8π.

(i) When M is closed to 8π. The right-hand side of (2.33) is estimated formally as
follows

V2(n0)

4 ln
(
1 + M−8π

2M

) ∼ 4πV2(n0)

M − 8π
, M → 8π+.

(i.e. when considering V2(n0) is fixed). So, the estimate of T ∗ obtained from (2.33)
is twice larger than the estimate (2.32) as M tends to 8π+.

(ii) The asymptotic case M → +∞. From (2.33), we have formally

V2(n0)

4 ln
(
1 + M−8π

2M

) ∼ V2(n0)

4 ln(3/2)
,

as M tends to infinity, which is clearly not as good as the estimate (2.32) of T ∗.
Indeed, the right-hand side term of (2.32) tends to zero as M tends to infinity.

The fact that the estimate (2.32) of T ∗ is better than (2.33) is due to a direct
study of the evolution in time of the second moment of the solution (nt). For this
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particular case, the general approach used in this paper with the heat kernel is not
specific enough for obtaining an accurate result.

Remark 2.22. Assume that n0 has compact support. Let K denote the support of n0.
Then for any R0 > 0, and any z0 ∈ R2 such that K ⊂ B′(z0, R0) (closed ball). Then, it is
easy to show that

inf
z∈R2

[
1

M

∫
R2
|x− z|βn0(x) dx

]2/β

≤

[
1

M

∫
B′(z0,R0)

|x− z0|βn0(x) dx

]2/β

≤ R2
0,

for all β ≥ 2. Thus, the inequality (2.30) immediately implies the inequality (2.18) of
Corollary 2.4. Note also that the β-variance Vβ(n0) is finite since we have 1

4Vβ(n0) ≤ R2
0

obtained from the inequality (2.27). More precisely for the case β = 2, we obtain the
following family of inequalities,

V2(n0) =
1

M

∫
R2
|x|2n0(x) dx− |B0|2 ≤ R2

0 − |B0|2 ≤ R2
0,

where B0 = 1
M

∫
R2 x.n0(x) dx (∈ R2) is the (normalized) barycenter of n0. From these last

remarks, we can see that the bounds on T ∗c (n0) obtained with the variance are stronger in
general than the one obtained with the minimal radius R0 for the case where n0 has compact
support. Note also that the scope of applications with the variance is wider. Indeed, the
variance of n0 can be finite without compact support condition for n0. See the examples
of Section 4.

Proof of Corollary 2.18
Assume that n0 ∈ L1 with n0 6= 0 and it has a β-moment with β ≥ 2. So, the β-variance

Vβ(n0) is finite. To prove the corollary, it is enough to prove the inequality (2.30). Indeed,
this implies (2.29) with β = 2 by using the relation (2.28). This also gives (2.31) by using
the upper bound of (2.27) proved independently and above the statement of Corollary
2.18. The lower bound in (2.27) shows the sharpness of the result (2.31) with respect to
(2.30) (up to the multiplicative constant 1/4).

Let M > 8π, z ∈ R2, and β ≥ 2 be fixed. By definition of T := T ∗c (n0) as defined in (1.9)
of Theorem 1.2, we have T ≤ T ∗c,z for all z ∈ R2. Since s 7→ Hz,n0(s) is non-decreasing,
then we deduce that∫

R2
exp

(
−|x− z|

2

4T

)
n0(x) dx = Hz,n0(T ) ≤ Hz,n0(T ∗c,z) =

2M2

3M − 8π
.

We can rewrite this inequality in the following form,∫
R2

Ψ

([
|x− z|
2
√
T

]β)
dµ(x) =

∫
R2

exp

(
−|x− z|

2

4T

)
n0(x)

M
dx ≤ 2M

3M − 8π
,

with Ψ(r) = exp(−rγ), γ = 2/β ≤ 1 and dµ(x) = n0(x)
M dx. Now, because the function

Ψ is convex and µ is a probability measure, we can apply Jensen’s inequality and deduce
that

Ψ

(∫
R2

[
|x− z|
2
√
T

]β
dµ(x)

)
≤
∫
R2

Ψ

([
|x− z|
2
√
T

]β)
dµ(x).

Thus, we obtain

(2.34) Ψ

(∫
R2

[
|x− z|
2
√
T

]β
dµ(x)

)
≤ a,

where a = 2M
3M−8π < 1 (since M > 8π). The function Ψ is strictly decreasing from (0,+∞)

onto (0, 1), then it is invertible with Ψ−1 its decreasing inverse. By applying Ψ−1 on both
sides of the inequality (2.34) (and reversing the inequality), this leads to

1

2βT β/2

∫
R2
|x− z|β n0(x)

M
dx =

∫
R2

[
|x− z|
2
√
T

]β
dµ(x) ≥ Ψ−1(a) > 0.

24



This yields,

T ∗c (n0) =: T ≤ 1

4[Ψ−1(a)]2/β

[∫
R2
|x− z|β n0(x)

M
dx

]2/β

.

It is easy to verify that
[
Ψ−1(a)

]2/β
= ln(1/a). For all z ∈ R2, we finally get

T ∗c ≤
1

4 ln(1/a)

[∫
R2
|x− z|β n0(x)

M
dx

]2/β

.

This implies the inequality (2.30) after minimizing over z ∈ R2. This concludes the proof
of Corollary 2.18. �

Remark 2.23. With the same argument of proof as in the proof of Corollary 2.18, we
can also show that

T ∗c,z ≤
1

4 ln(1/a)

[∫
R2
|x− z|β n0(x)

M
dx

]2/β

,

for all z ∈ R2. Obviously, this also implies the inequality (2.30).

Remark 2.24. A variant of the proof of (2.31), for any β ≥ 2, can be given using the
inequality (2.29) proved as the inequality (2.31) for the particular case β = 2, and using
the fact that the map

β ∈ (0,+∞)→ Ṽz(β) :=

(∫
R2
|x− z|β n0(x)

M
dx

)2/β

is non-decreasing for all z ∈ R2. Indeed, this last fact can be shown as follows. For any
0 < γ ≤ β = pγ, we have by Jensen’s inequality (or Hölder’s inequality) the next inequality(∫

R2
|x− z|γ n0(x)

M
dx

)p
≤
∫
R2
|x− z|γpn0(x)

M
dx =

∫
R2
|x− z|β n0(x)

M
dx,

since p = β
γ ≥ 1. So, we immediately deduce the inequality Ṽz(γ) ≤ Ṽz(β) for all z ∈ R2.

Thus, the inequality (2.31) follows from (2.29) for all β ≥ γ = 2 by taking z = B0, since

V2(n0) = ṼB0(2) ≤ ṼB0(β) = Vβ(n0).

3. Lower bounds on T ∗c (n0)

The aim of this section is to provide a lower bound on the critical time T ∗c (n0) (but
unfortunately not on T ∗) under some additional Lp properties of the initial data n0. Note
that during the proof, we have the opportunity to use the best bounds of the Lp − Lq
embedding theorem of the heat semigroup. For the definition of T ∗c (n0), see (1.9) above.

Theorem 3.1. Assume that n0 ∈ L1 ∩ Lp for some 1 < p ≤ +∞ and M = ||n0||1 > 8π.
The following lower bounds on T ∗c (n0) hold true.

(1) We have

(3.35) T ∗c5 :=
1

4π
sup

1<q≤p
q′
[
L(M)

||n0||q

]q′
≤ T ∗c (n0),

where L(M) = 2M2

3M−8π and 1
q + 1

q ′ = 1.

(2) Let p0 =
[
ln(2e

3 )
]−1

, (p0 ∼ 1, 682).

(a) If p0 ≤ p ≤ +∞ or if 1 < p < p0 and M ≤ 8π
3−2e(1−1/p) , then we have

(3.36)
(πe)−1

4 ln
(
1 + M−8π

2M

) [ M

||n0||p

]p′
≤ T ∗c (n0).

In particular for p = +∞, we have

(3.37)
(πe)−1

4 ln
(
1 + M−8π

2M

) [ M

||n0||∞

]
≤ T ∗c (n0).

25



(b) If 1 < p < p0 and M > 8π
3−2e(1−1/p) , then we have

(3.38)
p′

4π

[
L(M)

||n0||p

]p′
≤ T ∗c (n0),

where 1
p + 1

p ′ = 1.

For applications of Theorem 3.1, see Section 4.

We make some comments on these results.

Remark 3.2. If n0 ∈ L1 ∩ Lp then n0 ∈ Lq for all q ∈ [1, p] by interpolation (generalized
Hölder’s inequality). Thus, the expression T ∗c5 of the left-hand side of (3.35) is well-defined.

Remark 3.3. By L∞−L∞ contraction of the heat semigroup (et∆)t≥0, the following sharp
inequality in L∞ is well-known,

||ps ? f ||∞ ≤ ||f ||∞,

for all f ∈ L∞ and all s > 0. Let T = T ∗c,z(n0) with z ∈ R2 be fixed as in Theorem 1.2

(2), and n0 ∈ L1 ∩ L∞. As a consequence of the above inequality, we can deduce that

L(M) = Hz,n0(T ) = (4πT ) pT ? n0(z) ≤ 4πT ||n0||∞,

where L(M) = 2M2

3M−8π and M = ||n0||1. Thus, we obtain

L(M)

4π||n0||∞
≤ T ∗c,z(n0),

for all z ∈ R2. Hence, by minimization over z ∈ R2 and replacing L(M) by its explicit
expression, we can write

(3.39)
π−1

4
(
1 + M−8π

2M

) . [ M

||n0||∞

]
≤ inf

z∈R2
T ∗c,z(n0) = T ∗c (n0),

for all n0 ∈ L1 ∩ L∞.

We can prove that the inequality (3.37) is stronger than (3.39). Indeed, we can easily
prove the next sharp pointwise inequality,

1

1 + u
≤ κ e−1

ln(1 + u)
≤ e−1

ln(1 + u)
, 0 ≤ u ≤ 1

2
,

where κ = (2e/3) ln(3/2) ∼ 0, 735 < 1. But note that a reverse inequality doesn’t hold.
Indeed, there exists no δ > 0 such that

δ

ln(1 + u)
≤ 1

1 + u
, 0 < u ≤ 1

2
.

(Just by taking u → 0+). Then, we can apply the inequalities just above with u = M−8π
2M

with M > 8π, since 0 < u < 1/2, which shows that the inequality (3.37) is stronger than
the inequality (3.39). The reason of this improvement (3.37) with respect to (3.39) is that
n0 ∈ L1 ∩ L∞ implies n0 ∈ Lp for any 1 ≤ p ≤ ∞ by interpolation, not only n0 ∈ L∞.
This allows us to use all the scale of Lp-spaces, and not only L1 and L∞. For details, see
the proof of Theorem 3.1 below.

Remark 3.4. As a consequence of (3.37), the singularity of the ratio 1
4 ln(1+M−8π

2M )
as M

tends to 8π+ leads to the following expected consequence,

lim
M→8π+

T ∗c (n0) = +∞,

for all n0 ∈ L1 ∩ Lp, 1 < p ≤ +∞. Note that this result can not be obtained directly from
(3.39).
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Remark 3.5. A lower bound on T ∗ of similar form as in (3.35) for T ∗c has been obtained
in [24, Th. 1 (i)] when n0 ∈ Lp with the restriction 1 < p < 2. See also [24, Prop.1.1] for
n0 ∈ L∞.

Proof of Theorem 3.1. (1) We first recall a general result about Lp−Lq contractions
of the heat semigroup (et∆)t≥0 defined by convolution with the heat kernel pt. On Rn, we
have the next inequality,

||pt ? f ||q = ||et∆f ||q ≤ C(n, p, q)t
−n

2
( 1
p
− 1
q

)||f ||p, t > 0, f ∈ Lp(Rn),

with sharp constants

C(n, p, q) =

(
Cp
Cq

)n [ 4π

(1
p −

1
q )

]−n
2

( 1
p
− 1
q

)

,

where 1 ≤ p ≤ q ≤ +∞, and C2
p = p1/p/p′1/p

′
with p′ the conjugate index of p ∈ [1,+∞]

in the sense that 1
p + 1

p′ = 1. This is a particular use of the sharp version of Young’s

inequality for which the maximizers exist and are Gaussian functions; see [25] p.98. This
is explicitly written page 223 Equation (2) in [25]. In particular, this yields for q = +∞,
and for all p such that 1 ≤ p ≤ +∞,

||pt ? f ||∞ = ||et∆f ||∞ ≤ C(n, p)t
− n

2p ||f ||p, t > 0,

where

(3.40) C(n, p) := C(n, p,+∞) = (p′)
− n

2p′ (4π)
− n

2p .

We use this contraction property of the heat semigroup on R2 (n = 2) as follows. For
all n0 ∈ L1(R2) ∩ Lp(R2), we have

||ps ? n0||∞ ≤
C(2, p)

s1/p
||n0||p, s > 0,

where 1 ≤ p ≤ +∞, and the constant C(2, p) = (p′)
− 1
p′ (4π)

− 1
p is obtained from (3.40).

Hence, we deduce that, for all s > 0 and z ∈ R2,

Hz(s) = 4πs ps ? n0(z) ≤ (4πs)1−1/pWp||n0||p,

with Wp = (p′)
− 1
p′ .

Now by definition of T := T ∗c,z(n0), we deduce that

Hz,n0(T ) = L(M) ≤ (4πT )
1− 1

pWp||n0||p = (4πT )
1
p′Wp||n0||p.

Since we assume that p > 1, we have 1
p′ = 1 − 1

p > 0. We easily solve this inequality for

T , and get the following lower bound for T = T ∗c,z(n0),

1

4π

[
L(M)

Wp||n0||p

]p′
≤ T ∗c,z(n0).

By taking the infimum over z ∈ R2, we get

1

4π

[
L(M)

Wp||n0||p

]p′
≤ T ∗c (n0).

Since n0 ∈ L1 ∩ Lp ⊂ Lq for all 1 < q ≤ p, the same estimate holds with q, i.e.

q′

4π

[
L(M)

||n0||q

]q′
=

1

4π

[
L(M)

Wq||n0||q

]q′
≤ T ∗c (n0).

Finally, we conclude the proof of (3.35) by taking the supremum over q ∈ (1, p].

(2) Let 1 < p ≤ +∞. By the generalized Hölder’s inequality, we can write for all
1 < q ≤ p,

||n0||q ≤M1−p′/q′ ||n0||p
′/q′
p ,
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where M = ||n0||1. Here, p′, q′ are respectively the indices conjugate to p, q. From the
inequality (3.35), we deduce that

1

4π
sup

1<q≤p
q′

[
L(M)

M1−p′/q′ ||n0||p
′/q′
p

]q′
≤ T ∗c (n0),

or equivalently,

1

4π
sup

q′∈[p′,+∞)
q′
[
L(M)

M

]q′ [ M

||n0||p

]p′
≤ T ∗c (n0).

This lower bound on T ∗c (n0) can be written as,

1

4π

[
M

||n0||p

]p′
sup

q′∈[p′,+∞)
q′aq

′ ≤ T ∗c (n0).

where a := L(M)
M = 2M

3M−8π .

Thus, we just need to estimate the supremum just above. Set h(r) = rar, r > 0. Recall
that a ∈ (0, 1) when M > 8π. It is easily shown that h is increasing on the interval (0, r0)
and decreasing on (r0,+∞), where

r0 =
1

ln(1/a)
=

1

ln
(
1 + M−8π

2M

) .
Thus, h attains its maximum at r0 on (0,+∞). We deduce that

sup
r>0

h(r) = maxr>0 h(r) = h(r0) =
e−1

ln
(
1 + M−8π

2M

) .
This leads us to discuss two cases for evaluating supq′∈[p′+∞) q

′aq
′

for fixed p′ ∈ [1,+∞).

(i) If p′ ≤ r0, then we have

sup
q′∈[p′+∞)

q′aq
′

=
e−1

ln
(
1 + M−8π

2M

) .
(ii) If p′ > r0, then we have

sup
q′∈[p′+∞)

q′aq
′

= p′ap
′
.

This implies that

(iii) If 3− 2e1−1/p ≤ 8π
M (i.e. p′ ≤ r0), then we have

(πe)−1

4 ln
(
1 + M−8π

2M

) [ M

||n0||p

]p′
≤ T ∗c (n0).

(iv) If 3− 2e1−1/p > 8π
M (i.e. p′ > r0), then we have

p′

4π

(
L(M)

||n0||p

)p′
≤ T ∗c (n0).

Now we are in position to discuss both cases (a) and (b) of Theorem 3.1 (2).

(a) Let p0 =
[
ln(2e

3 )
]−1

(∼ 1, 682). Assume that p0 ≤ p ≤ +∞. This condition is

equivalent to 3 − 2e1−1/p ≤ 0 (p0 is the unique root of v(p) = 3 − 2e1−1/p). Thus, the
condition of (iii) just above is trivial for any M > 8π. Consequently, the inequality (3.36)
holds true. Now, let 1 < p < p0 and M ≤ 8π

3−2e1−1/p . Then this last inequality is equivalent

to 0 < 3− 2e1−1/p ≤ 8π
M , and again (3.36) holds true by virtue of (iii).
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(b) Let 1 < p < p0 and M > 8π
3−2e1−1/p . Then this second inequality is equivalent to

3− 2e1−1/p > 8π
M , hence the inequality (3.38) holds true by virtue of (iv).

This concludes the proof of Theorem 3.1. �

Remark 3.6. Let a = L(M)
M = 2M

3M−8π with M > 8π. From the study of the function h

defined above, it is easy to compare formally both inequalities (3.36) and (3.38). We can
see that (3.36) is stronger than (3.38) (at least for p′ ≤ r0). We have the next inequality,

h(p′) = p′ap
′
< sup

r∈[p′,+∞)
h(r) = h(r0) =

e−1

ln
(

1
a

) .
Now, assuming (3.36) we would have the next inequality,

p′

4π

(
L(M)

||n0||p

)p′
=

p′

4π
ap
′
(

M

||n0||p

)p′ e−1

4π ln
(

1
a

) ( M

||n0||p

)p′
≤ T ∗c (n0),

i.e. (3.38). This proves the assertion.

4. Examples of initial data

This section is devoted to applications of Theorem 1.2, 1.7, and Corollaries 2.1, 2.4,
2.12, 2.18, providing upper estimates on the critical time T ∗c (n0) to solutions of the (PKS)
system for several families of explicit initial data n0 with supercritical mass M > 8π.
Theorem 3.1 is applied to provide lower bounds on T ∗c (n0). We shall also compare the
different estimates of T ∗c (n0) obtained from these methods. As a consequence, we deduce
explicit upper bounds for the maximal existence time T ∗ of the (PKS) system. See Sections
1, 2 and 3. Note that Corollary 2.1 is not used in this section for the examples described
below due to the difficulty for obtaining explicit computations.

4.1. Gaussian initial data n0. Our first family of examples of initial data n0 consists
of Gaussian functions written in the following form,

n0(x) =
M

4πσ
e−
|x−z0|

2

4σ = Mpσ(x− z0), x ∈ R2,

where σ > 0 and z0 ∈ R2 are fixed. Here, the function pσ denotes the Gaussian (or heat)
kernel. For all these data n0, the mass is ||n0||1 = M and the normalized barycenter is
B0 = z0. In the whole section, we shall assume that M > 8π. By applying part (3) and
(4) of Theorem 1.2, we obtain the exact value of T ∗c (n0), and also the next upper bound
for the maximal existence time T ∗ of the (PKS) system,

(4.41) T ∗ ≤ T ∗c (n0) := σ
2M

M − 8π
.

The proof is as follows. The function n0 is a non-increasing z0-radially symmetric function.
We set m0(x) = n0(x+z0), x ∈ R2. So, m0 is a non-increasing radially symmetric function.
By (4) of Theorem 1.2, we have T ∗c (n0) = T ∗c (m0). We determine the function Hz,m0

evaluated at z = 0 and get the next formula

H0,m0(s) = 4πsM ps ? pσ(0) = 4πsM ps+σ(0) =
sM

s+ σ
, s > 0.

The inverse of H0,m0 is easily deduced, we have

s = H−1
0,m0

(u) =
σu

M − u
, u ∈ (0,M).

Finally, we deduce by (3) of Theorem 1.2 that

T ∗c (n0) = T ∗c (m0) = H−1
0,m0

(
2M2

3M − 8π

)
= σ

2M

M − 8π
.

Alternatively, we can apply (1.12) of Theorem 1.7 (but the computation is longer) and
obtain the same result for the value of T ∗c (n0). Note that T ∗c (n0) depends not only of the
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mass M but also of the shape of the Gaussian pσ via the function H−1
0,m0

, in particular
through the variance parameter σ. Of course, the shape does not depend on the spacial
position parametrized by the translation term z0 of the Gaussian function pσ. In the limit
case of concentration σ = 0, we would obtain T ∗c (n0) = 0 (the mass M remains fixed),
i.e. an immediate blow-up of the solution of the (PKS) system as it can be expected. This
is not physically surprising since the initial data should be considered at this limit case
as a Dirac measure at z0 and the result is consistent with our intuition. On the other
hand, for the behavior of a radially symmetric solution (i.e. z0 = 0) closed to the blow-up
time T ∗, we can refer for instance to [7, 6] (and the references therein) for a mathematical
statement of the blow-up profile.

As already mentioned, whenever the second moment of n0 is finite and for which an
estimate is available, we shall compare the upper bound T ∗v of T ∗ (see (1.5)) and the one
given by T ∗c (n0) obtained in this paper. This is done in (1) below.

(1) Second moment method. We deduce from the inequality (1.5) the next estimate of
T ∗,

T ∗ ≤ T ∗v :=
2πV2(n0)

M − 8π
= σ

8π

M − 8π
,

for all σ > 0 and all z0 ∈ R2. Indeed, it is easy to check that B0 = z0 and the
well-known variance of the Gaussian function pσ in R2 is given by

(4.42) V2(n0) =
1

M

∫
R2
|x−B0|2n0(x) dx =

∫
R2
|x|2pσ(x) dx = 4σ.

This upper bound T ∗v is obviously a better bound of T ∗ than the one given by
(4.41) since M > 8π. This is due to the fact that T ∗v is deduced directly from the
second moment evolution equation for a solution of the (PKS) system under finite
second moment assumption of the initial data n0 (see details below (1.5)). This
additional information on n0 leads to a better estimate compared to the general
bound T ∗c (n0) in (1.9) of T ∗ valid for any initial data n0.

(2) Various estimates from the general case. As much as possible, we now explicit
various estimates of T ∗c (n0) = σ 2M

M−8π obtained by the corollaries described after

Theorem 1.2 and by Theorem 1.7, and compare them with the exact formula (4.41)
of T ∗c (n0). Note that this comparison concerns the upper bound T ∗c (n0) of T ∗ and
not T ∗ itself. Below, we present the results not necessarily in the order of the
corollaries.

About lower bounds given by Theorem 3.1. The inequality (3.35) is, in fact, an equality,
i.e.

(4.43)
1

4π
sup

1<q≤p
q′
[
L(M)

||n0||q

]q′
= σ

2M

M − 8π
= T ∗c (n0).

It comes as no surprise because the proof of Corollary 3.1 relies on sharp Young’s inequal-
ities for which optimizers are Gaussians (see [25] p.99). This shows that the inequality
(3.35) can be optimal at least for this family of examples. Let us prove this equality. For
1 < q < +∞, the Lq-norm of n0 is given explicitly by

||n0||q = M ||pσ||q = M
(4πσ)−1+1/q

q1/q
.

Thus, we can set

R(q′) :=
q′

4π

[
L(M)

||n0||q

]q′
= σaq

′
q′qq

′/q,
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with a = L(M)
M = 2M

3M−8π . Now, since q′/q = q′ − 1 and q = q′

q′−1 , we can write

R(q′) = σaq
′
q′qq

′−1 = σaq
′
(q′/q)qq

′
= σaq

′
(q′ − 1)

(
q′

q′ − 1

)q′
= σaq

′
(q′ − 1)1−q′(q′)q

′
.

We set ρ = q′ ≥ p′. Then, for p = p(M) large enough so that p′ ≤ 1
1−a , we have

1

4π
sup

1<q≤p
q′
[
L(M)

||n0||q

]q′
= sup

q′≥p′
R(q′) = σ sup

q′≥p′
aq
′
(q′ − 1)1−q′(q′)q

′

= σ sup
ρ≥p′

eH(ρ) = σ sup
ρ≥1

eH(ρ) = σeH( 1
1−a ) = σ

a

1− a
= σ

2M

M − 8π
,

where H(ρ) = ρ ln a+ (1− ρ) ln(ρ− 1) + ρ ln ρ. Indeed, from the study of the derivative

H ′(ρ) = ln a+ ln

(
ρ

ρ− 1

)
,

we deduce that the function ρ 7→ H(ρ) is increasing on the interval (1, 1
1−a), and decreasing

on the interval ( 1
1−a ,+∞). Thus, the supremum of H on (1,+∞) is achieved for ρ0 =

1
1−a > 1. Now, since n0 is in Lp for all p ≥ 1, we can choose p large enough, so that

p′ ≤ ρ0. This leads to the expected equality (4.43).

The estimates of T ∗c (n0) obtained from part 2 of Theorem 3.1 are, of course, less precise.
Just below, we list them. Under the corresponding assumptions for each assertion, we can
write

(a) from (3.36),

σ
e−1pp

′−1

ln(1 + M−8π
2M )

≤ T ∗c (n0),

(b) from (3.37),

σ
e−1

ln(1 + M−8π
2M )

≤ T ∗c (n0),

(c) from (3.38),

σ
p′ pp

′−1

(1 + M−8π
2M )p′

≤ T ∗c (n0).

A priori, none of these inequalities are sharp. They don’t lead to the optimal estimate
(3.35) of T ∗c (n0) (case of equality for Gaussians). Nevertheless, the inequalities (3.36) and
(3.37) are all of the next form,

σ
k

ln(1 + M−8π
2M )

≤ T ∗c (n0),

for some constant k > 0 (independent of M). Then we can compare these estimates with
the exact value of T ∗c (n0) as M goes to 8π+,

σ
k

ln(1 + M−8π
2M )

∼ k 2σM

M − 8π
= kT ∗c (n0).

We now compare the exact value of T ∗c (n0) with various upper bounds on T ∗c (n0) ob-
tained from the corollaries of Theorem 1.2 of Section 2 for Gaussian initial data.

From Corollary 2.4. In order to apply (2.15), we first compute

Mz0(ρ) :=

∫
B(z0,ρ)

n0(x) dx = M(1− e−
ρ2

4σ ), ρ > 0.

Hence, we get
Mz0(ρ)

L(M)
=

1

a
(1− e−

ρ2

4σ ),
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where 1
a = 1 + M−8π

2M . Using the fact that n0 is non-increasing z0-radially symmetric, we
can apply (2.15) (by invariance, it is sufficient to consider the case z0 = 0). Thus we
obtain

T ∗c (n0) ≤ T ∗c2 := inf
ρ>0

ρ2

4

ln+

 1− e−
ρ2

4σ

a

−1

.

By setting s = ρ2

4σ , this implies that

T ∗c (n0) ≤ T ∗c2 := σ inf
s>0

s

[
ln+

(
1− e−s

a

)]−1

= σ inf
s>0,1−e−s>a

s

ln(1− e−s) + ln(1/a)
.

Unfortunately, it is not clear if we can estimate this infimum in such a way that it is closed
to the value of T ∗c (n0) given above. We can deduce that we have for all ε ∈ (0, 1− a),

T ∗c (n0) ≤ σ cε

ln(1−ε
a )

,

with cε = ln(1
ε ) > 0 by taking s = cε. We shall see below that we can obtain a more

interesting upper bound on T ∗c (n0) of the form σ 1
ln( 1

a
)

using the finite variance of the

initial data n0 by applying Corollary 2.18. This will improve the upper bound on T ∗c (n0)
just above obtained by Corollary 2.4.

Another bound is also obtained from the expression ofMz0(ρ). Indeed, we deduce that

gz0(ρ) :=
1

M

∫
B(z0,ρ)

n0(x) dx = 1− e−
ρ2

4σ .

Thus, for all m ∈ (0, 1) we have

h(m) =
[
g←z0 (m)

]2
=
[
g−1
z0 (m)

]2
= ρ2 = −4σ ln(1−m).

Applying (2.17), we can write

T ∗c2 ≤
σ

ln
(
1 + M−8π

2M

) . inf
θ∈(0,1)

(
− ln(1− aθ)

(1− θ)

)
.

Here again, it is not clear if we can estimate this infimum in such a way that the right-hand
side of the preceding inequality is closed to T ∗c (n0).

Finally, note that the inequalities (2.18) and (2.19) of Corollary 2.4 do not apply here
since n0 has no compact support.

From Corollary 2.12. We can compute explicitly F and study its properties. We have

h

h′
(m) = −(1−m) ln(1−m), m ∈ (0, 1).

Then F is given by

F (X) = X + eX
(
h

h′

)
(e−X) = X − (eX − 1) ln(1− e−X), X > 0.

and its derivative by

F ′(X) = −eX ln(1− e−X), X > 0.

The condition (2.24), namely
(
h
h′

)
(1−) = 0 ≥ ln(1/a), is not satisfied since a ∈ (0, 1).

Then (1) of Corollary 2.12 does not apply. But the conditions of part (2) are easily
satisfied. Indeed, the function F is clearly continuous and strictly increasing (F ′(X) > 0
for all X > 0). Condition (i) is satisfied, i.e.

(
h
h′

)
(1−) = 0 < ln(1/a) holds true, and (ii)

is also satisfied, i.e. (
h

h′

)
(a+) = −(1− a) ln(1− a) > 0.
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By applying (2.25), we get

T ∗c2(0) = S (Y0) =
σ

eF−1(Y0) − 1
,

where Y0 = ln 1
a .

We now compare T ∗c2(0) with T ∗c (n0). It is clear that for all X > 0, we have X < F (X).

So, we get F−1(Y ) < Y for all Y ∈ Im(F ). This implies that

σ

eY − 1
, <

σ

eF−1(Y ) − 1

which, evaluated at Y = Y0, gives us

T ∗c (n0) = σ
2M

M − 8π
=

σ

eY0 − 1
<

σ

eF−1(Y0) − 1
= T ∗c2(0).

This proves again that T ∗c (n0) ≤ T ∗c2(0) but clearly T ∗c (n0) 6= T ∗c2(0) for the family of
Gaussian initial data.

The inverse function F−1 of F can not be given explicitly for this particular case.
Then we look for an upper bound on T ∗c2(0). A first approach should be to note that
F (X) ≤ X + G(ln(1/a)) < X + 1 for X ∈ (0, ln(1/a)) with G(X) = F (X) − X (G
is an increasing function). This yields Y0 − G(ln(1/a)) ≤ F−1(Y0). But unfortunately
Y0−G(ln(1/a) < 0. Thus we cannot deduce an upper bound for T ∗c2(0) from this approach.
Another approach will be to find some finite constant c > 0 such that F (x) ≤ cX for all
X ∈ (0, ln(1/a)) ⊂ (0, 0.41). But we are facing to the problem that limX→0+ F (X)/X =
+∞ which contradicts such an estimate. Since we cannot conclude here on this point, we
shall not go further in our analysis of F−1.

From Corollary 2.18. We obtain an explicit upper bound on T ∗c (n0) using T ∗c4 given by
(2.29). This estimate is sharp when M is closed to 8π. We also deduce interesting upper
and lower bounds of T ∗c (n0) in terms of T ∗c4 . First, from the value of the variance V2(n0)
of n0 given by (4.42) and applying (2.29), it follows immediately that

T ∗c (n0) = σ
2M

M − 8π
≤ T ∗c4 = σ

1

ln(1 + M−8π
2M )

.

This explicit result is sharp when M → 8π+, since we have the following asymptotic
behaviour

T ∗c4 = σ
1

ln(1 + M−8π
2M )

∼ σ 2M

M − 8π
= T ∗c (n0), M → 8π+.

On the other hand, by a direct study of the function y 7→ v(y) = ln(1+y)
y which is a

decreasing function on (0, 1/2), we deduce that

c0
1

ln(1 + y)
≤ 1

y
≤ 1

ln(1 + y)
, y ∈ (0, 1/2),

where c0 := v(1/2) = 2 ln(3/2). We apply this inequality to y = M−8π
2M ∈ (0, 1/2) with

M > 8π, and get

c0
σ

ln(1 + M−8π
2M )

≤ σ 2M

M − 8π
≤ σ

ln(1 + M−8π
2M )

, M > 8π.

In other words, we have obtained the following comparison estimates between T ∗c (n0) and
T ∗c4 ,

c0T
∗
c4 ≤ T

∗
c (n0) ≤ T ∗c4 ,

where c0 ∼ 0.8109 and c0 ≥ 0.8109. Note that the upper bound just above is already
known from Corollary 2.18. The lower bound is of interest for estimating T ∗c (n0) by
keeping in mind the fact that T ∗c (n0) tends to infinity when M → 8π+ (hence also T ∗c4).
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Recall here that our main goal in this section is to compare general results obtained in
Corollaries 2.4, 2.12, 2.18 and Theorem 3.1 with the known and explicit value

T ∗c (n0) = σ
2M

M − 8π
,

obtained by Theorem 1.2, or Theorem 1.7. We summarize the most interesting results of
this comparison of T ∗c (n0) with various T ∗ci for the gaussian initial data as follows. From
Corollary 2.18 using the variance of the initial data and Theorem 3.1, we have obtained
the following estimates of T ∗c (n0), namely

T ∗c5 = T ∗c (n0) = σ
2M

M − 8π
≤ T ∗c4 = σ

1

ln(1 + M−8π
2M )

≤ 1

c0
T ∗c (n0).

Moreover, Theorem 3.1 provides an optimal result (equality case). We have also seen that
the estimate of T ∗c (n0) by T ∗c4 of Corollary 2.18 is asymptotically sharp in the sense that
T ∗c4 ∼ T ∗c (n0) when M → 8π+. The method of estimating T ∗c (n0) from the variance is
particularly interesting for the Gaussian initial data.

4.2. Characteristic function of a disk. A natural situation is when the cells are uni-
formly distributed in a disk B(z0, R) with some accumulation height σ > 0. This leads
to consider an initial data of the type n0 = σ1B(z0,R) for fixed z0 ∈ R2 and R > 0. Here
1B(z0,R) denotes the characteristic function of the disk B(z0, R) of radius R centered at

z0. We assume to be in the supercritical case M > 8π, i.e. σR2 > 8. In that case, we can
describe the bound T ∗c (n0) as follows.

Proposition 4.1. Let n0 = σ1B(z0,R) be the initial data for the (PKS) system. Here,

z0 ∈ R2 and σ > 0 are fixed. Assume that M = πσR2 > 8π.

(1) Then the maximal existence time T ∗ of the solution of (PKS) system with initial
data n0 is bounded as follows:

(4.44) T ∗ ≤ T ∗c (n0) :=
R2

4f−1( 2M
3M−8π )

=
M

4πσf−1( 2M
3M−8π )

,

where f−1 is the inverse of the function f(λ) = 1−e−λ
λ , λ > 0. In particular, we

have

(4.45) 0, 286.R2 ∼ R2

4f−1(2
3)
≤ T ∗c (n0),

with f−1(2
3) ∼ 0.874 21. As a consequence of (4.44), let σ → +∞ for fixed R > 0

(so, M → +∞), we have

(4.46) T ∗c (n0) ∼ R2

4f−1(2
3)
∼ 0, 286.R2.

(2) We have also the following uniform estimate for M > 8π,

(4.47) e−1 R2

4 ln
(
1 + M−8π

2M

) ≤ T ∗c (n0) ≤ R2

4 ln
(
1 + M−8π

2M

) .
(3) The following asymptotic estimate holds true when M is closed to the supercritical

mass 8π.
(a) Let R > 0 be fixed. Then we have

(4.48) T ∗c (n0) ∼ 2πR2

M − 8π
=

2R2

σR2 − 8
, as σ →

(
8/R2

)+
.

(b) Let σ > 0 be fixed. Then we have

(4.49) T ∗c (n0) ∼ 16π

σ(M − 8π)
=

16

σ(σR2 − 8)
, as R→

(√
8/σ

)+
.
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As already mentioned, the bound T ∗c (n0) does not depend on the normalized barycenter
B0 = z0 by translation invariance. Indeed, we should expect from a physical point of view
that the evolution of cells should be the same if we make a translation in the space variable
by any z0 ∈ R2 of the initial data n0 by considering the new initial data x 7→ n0(x+ z0).
Of course, this due to the implicit isotropic environment of R2 here (flat curvature).

As described by (4.44), the critical time T ∗c (n0) can be alternatively expressed with the
radius R (which measures essentially the size of the support of n0), or with the height
σ (i.e. the sup norm of n0) for n0 with fixed mass M > 8π. As a consequence, if we
fix the mass M > 8π and let R → 0 (i.e., σ → +∞), we deduce that T ∗c (n0) tends
to 0, and consequently T ∗ too. In particular, again with a fixed mass M > 8π, if we
consider a sequence of initial data of the form n0,k = σk1B(z0,Rk) with Rk → 0 (i.e.,

σk = M
πR2

k
→ +∞), which approximates Mδz0 in a weak sense, then we obtain from (4.44)

that limk T
∗
c (n0,k) = 0. Here, δz0 denotes the Dirac measure at z0 ∈ R2. Heuristically,

it should not be surprising to observe an instantaneous explosion if we consider Mδz0 as
initial data with M > 8π.

Now if we fix R > 0 (i.e. the support of n0 is fixed) and let the accumulation height σ of
cells goes to infinity, then we deduce from (4.46) that the critical time T ∗c (n0), respectively
T ∗, is uniformly bounded above by cR2 for some constant c.

Proof of Proposition 4.1 . (1) We start from the upper bound (1.7) on T ∗. Since
the function n0(x) = σ1B(z0,R)(x) = σ1B(0,R)(x − z0) is the translated by z0 of a radial
function, then we have

T ∗c (n0) = H−1
z0

(
2M2

3M − 8π

)
,

where

Hz0(T ) =

∫
R2

exp

(
−|x− z0|2

4T

)
n0(x) dx = σ

∫
B(0,R)

exp

(
−|y|

2

4T

)
dy

= 2πσ

∫ R

0
exp

(
−r2

4T

)
rdr = 2πσ

[
−2T exp

(
−r2

4T

)]r=R
r=0

= 4πσT (1− e−
R2

4T ).

This result is obtained by the change of variables y = x− z0 and using polar coordinates.
Now from the relation πσ = M

R2 , this implies

Hz0(T ) = M

(
4T

R2

)(
1− e−

R2

4T

)
= Mf

(
R2

4T

)
,

where the function f : (0,+∞)→ (0, 1) is defined by f(λ) = 1−e−λ
λ .

Since the function f is a continuous (convex) strictly decreasing function with range
(0, 1) then f is invertible. Then the inverse function f−1 : (0, 1) → (0,+∞) of f is
also a continuous (convex) strictly decreasing function. Hence, we obtain the following
expression

H−1
z0 (u) =

R2

4f−1( uM )
,

for all u ∈ (0,M). From the relation M = σπR2, this yields the next upper bound on T ∗,

T ∗ ≤ T ∗c (n0) := H−1
z0

(
2M2

3M − 8π

)
=

R2

4f−1( 2M
3M−8π )

=
M

4πσf−1
(

2M
3M−8π

) .
This proves the inequality (4.44) which is the first part of (1) of the proposition.

We finish the proof of this part (1) as follows. First, we note that 2M
3M−8π ≥ 2/3 for

M > 8π and f−1 is decreasing, thus the lower bound (4.45) on T ∗c (n0) follows immediately.
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The approximation f−1(2
3) ∼ 0.874 21 is obtained using any simple numerical calculation

software.

(2) The upper bound in (4.47) follows from (4.44) and the fact that

1

f−1(a)
=

1

f−1( 2M
3M−8π )

≤ 1

ln
(
1 + M−8π

2M

) =
1

ln
(

1
a

) ,
where a = 2M

3M−8π =
(
1 + M−8π

2M

)−1 ∈ (0, 1). Indeed, if we set f−1(a) = λ > 0, i.e.

f(λ) = a, then it is enough to show that

ln

(
λ

1− e−λ

)
≤ λ, λ > 0.

This is equivalent to the trivial inequality 1 + λ ≤ eλ for λ ≥ 0. So, the upper bound
(4.47) follows.

The lower bound of (4.47) is straightforward from (3.37) of Theorem 3.1 since M =
π||n0||∞R2. It can also be obtained from (3.36) with a well-chosen finite p. Indeed, the
function n0 is in all Lp and its Lp-norm is explicitly computable. More precisely, we have
||n0||p = σ(πR2)1/p for all 1 ≤ p ≤ +∞. So, we get M := ||n0||1 = σ(πR2) and[

M

||n0||p

]p′
= πR2, 1 ≤ p ≤ +∞,

which proves (4.47) by applying (3.36) with p chosen large enough.

(3) One can easily prove that f−1(v) ∼ 2(1 − v) as v → 1−. Now since we have
limM→8π+

2M
3M−8π = 1−, this implies that

f−1

(
2M

3M − 8π

)
∼ M − 8π

8π
, as M → 8π+.

Finally, we conclude the estimates (4.48) and (4.49) since πσR2 = M and M → 8π+.

This concludes the proof of Proposition 4.1. �

Next, we compare the estimates of T ∗c (n0) that can be obtained from the corollaries of
Section 2 with the results of Proposition 4.1.

• The first alternative to obtain the upper bound of (4.47) is by applying (2.18) of
Corollary 2.4 (or equivalently in this case (2.14)). This can be done because we can only
consider the case z0 = 0 by translation invariance of T ∗c (n0), and by the fact that n0

is a non-increasing radially symmetric function when z0 = 0. In our situation, we can
explicitly compute T ∗c2(z) for z = 0. For this purpose, we compute g←0 (t) for t ∈ [0, 1). We
first easily obtain

g(ρ) =
M0(ρ)

M
= [inf(1, ρ/R)]2 , ρ > 0.

Hence, we get g←0 (t) = R
√
t for all t ∈ (0, 1). By taking t = aθ ∈ (0, 1) where a = 2M

3M−8π ,
it follows that

T ∗c2(0) =
1

4 ln
(
1 + M−8π

2M

) . inf
θ∈(0,1)

([
g←0 (aθ)

]2
1− θ

)
=

R2

4 ln
(
1 + M−8π

2M

) . inf
θ∈(0,1)

(
aθ

1− θ

)
.

It is easily shown that infθ∈(0,1)

(
aθ

1−θ

)
= limθ→0+

(
aθ

1−θ

)
= 1 using the fact that a ∈

(2/3, 1), hence a ≥ e−1. Finally, we conclude that

T ∗c ≤ T ∗c2(0) =
R2

4 ln
(
1 + M−8π

2M

) .
This proves once again the upper bound as in (4.47).
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• A second possibility of getting the exact value of T ∗c2(z0) is to apply part (1) of
Corollary 2.12. As already said, by translation invariance we only need to consider the
case z0 = 0. From the expression of g←0 (t) = R

√
t described above, we deduce that

h(t) := (g←0 )2(t) = R2t for t ∈ (0, 1). (Note that this formula is also valid for t ∈ [0, 1]). It
is easy to check the sufficient conditions of part (1) of Corollary 2.12. Indeed, the function
h is continuous and h′ = R2 > 0. The associated function F is given by F (X) = X + 1
is a non-decreasing. We check that F (0+) = 1 ≥ ln( 1

a) since we always have 1
a ≤

3
2 ≤ e.

Thus, the inequality (2.24) of Corollary 2.12 asserts that

T ∗c2(0) =
h(1−)

4 ln(1/a)
=

R2

4 ln(1/a)
,

which is the expected result.

• Again, a third alternative to obtain the upper bound of (4.47) is direct application of
(2.18) of Corollary 2.4 because n0 has compact support. To get the value of T ∗c3 in (2.18),

we need to compute R0 with K = B(0, R). This can be done as follows. We first prove
that iK(z) = |z|+ R for all z ∈ R2, and we deduce that R0 = infz∈K iK(z) = iK(0) = R.
We apply (2.18) of Corollary 2.4 to finally obtain

T ∗ ≤ T ∗c3 :=
R2

4 ln
(
1 + M−8π

2M

) .
A more heuristic and geometric proof to see that R0 = R in (2.18) is to find the smallest

closed disk containing K = B(0, R), the support of n0, which is obviously K = B(0, R)
itself.

Remark 4.2. The lower and upper bound of T ∗c (n0) in (4.47) show that Corollary 2.4 and
(1) of Corollary 2.12, and also Theorem 3.1 are sharp for estimating T ∗c (n0) for the class of
initial data n0 of characteristic functions of disks (up to universal multiplicative constants).
More precisely, each result of Corollary 2.4 or Theorem 3.1 shows the sharpness of each
other. A similar remark also holds with part (1) of Corollary 2.12 and Theorem 3.1.

Remark 4.3. From the upper bound of T ∗ by T ∗c3 described just above, we deduce the next
asymptotic estimate

T ∗ ≤ T ∗c3 ∼
2M2

4πσ(M − 8π)
∼ 2(16π)

σ(M − 8π)
, M → 8π+,

for fixed σ > 0. This asymptotic behaviour of T ∗c3 can be compared with the asymptotic
behaviour of T ∗c (n0) obtained in (4.49) as M → 8π+ (for fixed σ > 0). In this case, it
follows immediately that T ∗c3 ∼ 2T ∗c (n0). Thus, the upper estimate (2.18) of T ∗ in Corollary
2.4 is twice greater than the upper estimate of T ∗ obtained from T ∗c (n0) in (4.49). The
same remark holds true with the estimate (4.48) instead of (4.49) when now R > 0 is fixed
and M → 8π+. This is deduced from the next asymptotic estimate

T ∗c3 ∼
4πR2

M − 8π
, M → 8π+,

for fixed R > 0.

Remark 4.4. For practical purposes, the quantity f−1( 2M
3M−8π ) can certainly be evaluated

by numerical approximations for any given mass M > 8π. So, the critical time T ∗ can
explicitly be bounded using the inequality (4.44).

We conclude this section with an improvement for the upper bound on T ∗c (n0) by
applying the inequality (2.29) of Corollary 2.18. Indeed, it is easy to show that the 2-
variance of the initial data n0 is finite and given by V2(n0) = R2/2. Thus, we have the
next result.
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Proposition 4.5. Let n0 = σ1B(z0,R), for fixed z0 ∈ R2 and σ,R > 0. Assume that

M = πσR2 > 8π. Then we have

(4.50) T ∗ ≤ T ∗c (n0) ≤ T ∗c4 =
2−1R2

4 ln
(
1 + M−8π

2M

) .
Remark 4.6. The inequality (4.50) clearly improves by half the upper bound of T ∗c (n0) in
the inequality (4.47) of Proposition 4.1.

4.3. More examples of initial data. Many other examples could be presented in this
paper, but we shall limit ourselves to a few of them in this last section.

(1) Initial data uniformly supported by an annulus
For instance, we can consider the situation where the cells are uniformly dis-

tributed on an annulus in the plane corresponding to the following initial data,

n0(x) = σ
(
1B(z0,R2)(x)− 1B(z0,R1)(x)

)
, x ∈ R2,

where σ > 0 and 0 < R1 < R2. For this example, we can prove similarly to the
case of the characteristic function of a disk the following result,

(4.51) T ∗ ≤ T ∗c (n0) ≤ 1

4h−1
(
L(M)
σπ

) ,
where h−1 the inverse of the function h(s) = s−1

[
e−R

2
1s − e−R2

2s
]
, s > 0, and

L(M) = 2M2

3M−8π . This example is an example of a z0-radially symmetric initial data
with compact support but not non-increasing. Similar results as in Proposition
4.1 obtained for the case of a characteristic function of a disk could be given. Let
just mention at least two explicit results about T ∗c (n0):

e−1 R2
2 −R2

1

4 ln
(
1 + M−8π

2M

) ≤ T ∗c (n0) ≤ R2
2 +R2

1

8 ln
(
1 + M−8π

2M

) .
The upper bound is obtained from an easy computation of the variance V2(n0).
We shall not provide the details here.

Other examples of radially symmetric (but not necessarily non-increasing) ini-
tial data n0 for which the inverse function of the Laplace transform is explicitly
computable can be treated by applying Theorem 1.7. For instance, we can consider
the following limited list of examples. Recall that a > 0 is defined by the next
formula: 1

a = M
L(M) = 1 + M−8π

2M .

(2) Initial data of the polynomial-Gaussian form. Let n0 defined by

n0(x) = σ|x− z0|2ne−α|x−z0|
2
, x ∈ R2,

where n ∈ N, σ, α > 0 and z0 ∈ R2. Let M = σπn!α−n−1 > 8π. By applying
Theorem 1.7, we can prove that

(4.52) T ∗ ≤ T ∗c (n0) ≤ (4α)−1

[(
1

a

) 1
n+1

− 1

]−1

.

(3) Initial data obtained by difference of two Gaussian functions. Let z0 ∈ R2, 0 <
d < b < +∞ and σ > 0 be fixed. Let

n0(x) =
σ

b− d

(
e−d|x−z0|

2 − e−b|x−z0|2
)
, x ∈ R2,

and let M = πσ
db > 8π (i.e. σ > 8db). By applying Theorem 1.7, we can prove that

(4.53) T ∗ ≤ T ∗c (n0) ≤

[
2

(√
(b− d)2 +

4bd

a
− (b+ d)

)]−1

.
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As already seen for the other examples treated in this paper, the computation of
the 2-variance is rather easy. We have V2(n0) = b+d

bd . By applying Corollary 2.18,
we get immediately

(4.54) T ∗ ≤ T ∗c (n0) ≤ T ∗c4 =

(
b+d
bd

)
4 ln

(
1 + M−8π

2M

) .
We do not provide here the details of computations for the examples introduced in

this short section, nor a detailed comparison of the results that could be deduced from
Theorem 3.1 and Corollaries 2.1, 2.4, 2.12, 2.18 to avoid a lengthy paper.
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