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Abstract

In this paper, we present a boundary-volume based Lippmann Schwinger

integral equation for numerical homogenization problems of heterogeneous

conductive materials with arbitrary contrast ratio and imperfect interface

behavior. It is shown that the interior temperature gradient within each

homogeneous phase is connected to the material dissimilarity quantities at

all boundaries between different phases. The Kapitza interface model can also

be included in the formulation. The basic FFT iteration schemes converge

fast even for infinite contrast in the case of usual interface conditions. In the

case of Kapitza’s interface, Conjugate Gradient schemes based on the new

formulation converge fast and yield accurate results when compared with

standard Finite Element Method.
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1. Introduction

Among the numerical homogenization methods in material science, Fast

Fourier Transform based methods have seen a rapid development during the

last decade and have been recognized as an efficient alternative to the tradi-

tional finite element method. Given a boundary value problem in the unit

cell, the Lippmann Schwinger (LS) type integral equations (Brown Jr, 1955;

Kröner, 1977) is first derived and the iterative resolution schemes are then

employed to obtain the solution. The robust Fourier Transform algorithm

is used to switch between the Fourier and the physical space and evaluate

efficiently the mathematical operations in Fourier space, e.g convolution in-

tegrals involving the Green functions. The method works on regular grids,

which is compatible with tomography image and does not require the assem-

bly of stiffness matrices like the Finite Element Method.

The first papers that included those elements and established the FFT nu-

merical homogenization method can be traced back to (Moulinec and Suquet,

1994; Michel et al., 1999) in the context of elasticity. They used a basic form

of iterative scheme which is subject to limitations, especially slow conver-

gence at high contrast ratio. To improve the performance, the accelerated

scheme (Eyre and Milton, 1999; Monchiet and Bonnet, 2012) and augmented

Lagrange scheme (Michel et al., 2001) were proposed. The Newton-Krylov

solvers can be also used as an efficient resolution method (Zeman et al.,

2010; Vondřejc et al., 2014; Schneider, 2019; Kabel et al., 2014; Brisard and

Dormieux, 2010) for LS equations. As shown by (Moulinec and Silva, 2014),

all the iterative schemes have convergence issues at the infinite contrast,

specifically they fail to match the demanding criteria on the stress equilib-

rium condition. Willot et al. (2014) used a finite difference scheme leading to

a modified expression of Green tensors, that improves the results for infinite

contrast cases. In the case of porous materials, a technique is to eliminate

the void field which is not unique and establish the new LS equations for
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the skeleton field (To and Bonnet, 2020; To et al., 2021). The basic iteration

scheme (i.e. scheme equivalent to the Neumann series) of the latter con-

verges fast even with the demanding convergence criteria. Recently, Schnei-

der (2020) suggested that the ill convergent behavior for porous material of

Michel-Moulinec related schemes can be avoided using alternative discretiza-

tions.

In addition to infinite contrast issue, composite materials can have a spe-

cific behavior between two different phases that involve a discontinuity at

the interface of some local fields (displacement, temperature,...). A recent

work by Monchiet (2018) studied this problem in the context of FFT solvers.

However, the technique used by the latter relies on interpolation functions

in each subdomain and renders the methods rather difficult in practice. A

simpler technique is to use a boundary source term to enforce the Dirichlet or

Kapitza boundary conditions (To et al., 2021; To and Bonnet, 2023a) with a

penalty coefficient. In the case of composites, we can see that this technique

can be employed at the interface between two different phases.

In the present paper and in the context of conductive materials, we extend

our recent results on porous materials (To and Bonnet, 2020; To et al., 2021)

to the case of composites with arbitrary contrast, including both pore and

infinite conductive phase. With suitable treatment of discontinuities and sin-

gularities, we obtain a LS integral equation where the interior gradient field

is connected to the material mismatch quantities on the interface boundary

(i.e. boundary-volume based LS integral equation). As a result, the Kapitza

interface model can be included naturally and in a relatively simple way. Fur-

thermore, we find that the basic iteration scheme converges fast for classical

interface continuity condition (even for infinite contrast) and BICGSTAB

scheme associated to the integral equations in the case of Kapitza interface

has a fast convergent behavior. The paper is organized as follows. After the
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Introduction and the mathematical notions of Fourier Transform, Section 3

is devoted to the derivation of boundary based LS equations for composites

with perfect and imperfect interface. Section 4 presents numerical applica-

tions and convergence studies. Finally, the conclusions are presented in the

last section.

2. Mathematical foundation and notations

The bold characters A,u is used for tensorial quantities and normal char-

acters φ, θ for scalars. The notation u⊗ v stands for tensorial products and

uv for dot products between two tensor quantities u and v. The notation

A ∗ u represents convolution product and will be explained later.

2.1. Fourier transform and Green operators

We shall limit this work to periodic functions that admit Fourier series ex-

pansions. A V− periodic function u(x) of Cartesian coordinates x(x1, x2, x3)

can be expressed as Fourier series

u(x) =
∑
ξ

û(ξ)eiξx, (1)

where û(ξ) is the Fourier transform of u(x)

û(ξ) = F [u(x)] =
1

V

∫
V

u(x)e−iξxdx, i =
√
−1, (2)

and ξ(ξ1, ξ2, ξ3) the wave vector

ξk = 2πnk/Lk, nk = 0,±1,±2, ...,±∞, k = 1, 2, 3 (3)

and L1, L2, L3 being the dimensions of the period V along directions x1, x2, x3.
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The convolution product ∗ of operator A on u can be expressed as

A(x) ∗ u(x) =
∑
ξ

Â(ξ)û(ξ)eiξx (4)

and the normal product has the following form

A(x)u(x) =
∑
ξ

[Â(ξ) ∗ û(ξ)]eiξx (5)

with

Â(ξ) ∗ û(ξ) =
∑
ξ′

Â(ξ − ξ′)û(ξ′) (6)

In the paper, we use a set of Green tensors P , R and S whose expressions in

the Fourier space P̂ (ξ), R̂(ξ) and Ŝ(ξ) are explicit functions of wavevector

ξ

P̂ (ξ) =
ξ ⊗ ξ

ξ2
, R̂(ξ) =

iξ

ξ2
, Ŝ(ξ) =

1

ξ2
, ξ = ∥ξ∥ (7)

and null for ξ = 0

P̂ (0) = 0, R̂(0) = 0, Ŝ(0) = 0 (8)

Operator R has the following property

−R ∗ ∇φ = φ− ⟨φ⟩ (9)

for all function φ with average ⟨φ⟩

⟨φ⟩ = 1

V

∫
V

φdx (10)
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2.2. Characteristic functions, gradients and delta function of a surface

Let us imagine that a characteristic function χ associated to volume Ω is

defined by

χ(x) = 1 in Ω, χ(x) = 0 in V \Ω. (11)

The Fourier transforms of the characteristics functions χ, called the form

factor, is

χ̂(ξ) =
1

V

∫
Ω

e−iξxdx. (12)

Taking gradient of the characteristic function yields surface delta function

∇χ(x) = −(nδ)Γ(x) (13)

where n is the outward normal vector on the boundary Γ of Ω and δ the

delta distribution associated to Γ. The delta based distribution family δΓ(x),

(nδ)Γ(x) and (n ⊗ nδ)Γ(x) can be defined on any open or close surface

Γ. They belong to the class of distribution f(x)δΓ(x) with f(x) being the

continuous strength function defined on Γ, admitting the Fourier transforms

f̂ δΓ(ξ) =
1

V

∫
Γ

f(x)e−iξxdx (14)

The Fourier transforms of the distributions δΓ(x), (nδ)Γ(x) and (n⊗nδ)Γ(x)

for some 2D geometries like circles and lines are given in Appendix A. Since

any 2D curve Γ can be discretized into a set of polylines Li, the analytical

expressions for 2D subjects can be done by superposing expressions of each

Li

f̂ δΓ(ξ) =
∑
i

f̂ δLi
(ξ), Γ =

⋃
i

Li (15)
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The same rule can be applied to any 3D surfaces which can be approximated

as union of planar polygonal surfaces whose form factors are also known (To

and Bonnet, 2023b). Pixel and voxel based boundaries also belong to the

same category as they are collections of linear segments or plane quadrilat-

erals surfaces (To and Bonnet, 2020).

Let us consider a function φ defined on V that is continuous from both

sides of Γ but may be discontinuous on Γ. With φ admitting the Fourier

representation (1), we have the relation

φ =
1

2
(φ+ + φ−) on Γ (16)

where φ+ and φ− are the limits of the function φ from two sides of the

surface. This relation is an extension of the theorem of Dirichlet on Fourier

series which states that at a discontinuity, the Fourier series converges to such

a middle value (see also Taylor, 2001, for the case of multivariate functions

in L1(Rn)1). Consequently, the following results involving the product of

discontinuous function and a delta based distribution can be obtained

(fδΓ)φ =
1

2
(φ+ + φ−)(fδΓ) (17)

If the Fourier transform of the delta distribution fδ and a function φ are

known, the Fourier transform of their product can be evaluated by (6) as

[fδΓφ](ξ) = f̂ δΓ(ξ) ∗ φ̂(ξ) =
∑
ξ′

f̂ δΓ(ξ − ξ′)φ̂(ξ′) (18)

1In the case of N dimensions, the series Fourier point-wise converges to the volume
average of φ in an infinitesimal sphere centered at the point of interest.
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3. Boundary-volume Lippmann Schwinger formulation for compos-

ites

3.1. Integral equations for homogeneous phase and for periodic heterogeneous

materials

Figure 1: Sketch of composites material. Left: Phases in composites material and bound-
ary. Right: Problem involving phase i surrounded by void

Let us start with problems for a material whose conductivity k(x) depends

on coordinate x and is V periodic (see Fig. 1). The material is composed

of N phases and in each phase i of volume Ωi boundary Γi, the material is

homogeneous and isotropic, characterized by a characteristic function χi and

conductivity ki

χi(x) = 1 in Ωi, χi(x) = 0 in V \Ωi (19)

and

k(x) =
N∑
i=1

kiχi(x),
N∑
i=1

χi(x) = 1 ∀x (20)

To solve the local problem, let us define the (minus) temperature gradient
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terms e and (periodic) temperature fluctuation θ as follows

e = E +∇θ (21)

where E is the volume average of e. From now on, we shall refer θ shortly to

temperature for convenient reason. To ensure the energy conservation of the

heat flux j(x) = k(x)e and divj = 0, θ must satisfy the governing equation:

R ∗ k(∇θ +E) = 0 (22)

Due to the gradient ∇θ in Eqs. 21,22, θ is defined up to a constant. We can

set in advance its average Θ = ⟨θ⟩ as being any constant, for example Θ = 0,

without affecting the solution e of the cell problem.

Instead of considering the conservation equation for the whole heterogeneous

media, we establish the equation related to each phase i. To do that, we

consider that each phase i is surrounded by void and add the exchange with

the surrounding material via a source term si localized on Γi. The govern-

ing equation can be decomposed into N equations by introducing the source

Green’s tensor S as in (To et al., 2021) to account for the source effect :

R ∗ kiχi(∇θ +E) + S ∗ si = 0, ∀i = 1, 2, .., N (23)

We denote ei and θi the gradient and temperature solution in phase i and

vanishing outside that phase, so that:

θi = χiθ, ei = χie = χi(E +∇θ) (24)

with the relation (To and Bonnet, 2020)

ei = Eχi +∇(χiθ)− θ∇χi = Eχi +∇θi + 2(nδ)Γi
θi (25)
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We note that as θi is zero outside Γi, and thus (nδ)Γi
θ = 2(nδ)Γi

θi by (17)

and thus discontinuous on Γi. As we can see ∇θi is expected to have a delta

Dirac distribution associated to Γi. In this case, ei only keeps the regular

part of ∇θi as the Dirac term 2(nδ)Γi
θi cancels the singularity of ∇θi.

Additionally, we also exploit the fact that due to the heat flux at the bound-

ary equal to kie
i and vanishing in the void (outside Γi), applying (17), the

source term si is given by (see To et al., 2021, for more details)

si = 2ki(nδ)Γi
ei (26)

The temperature θi of phase i as a function of boundary values at Γi of

temperature and gradient can be obtained by replacing si and ei by their

expressions into (23) and using (9)

θi = Θi +R ∗ (Eχi + 2(nδ)Γi
θi) + 2S ∗ (nδ)Γi

ei (27)

As we can see, the interior temperature depends on the values of tempera-

ture (nδ)Γi
θi and normal gradient (nδ)Γi

ei on the boundary. It has the same

structure as the classical integral representation used in the context of the

Boundary Element Method (Bonnet, 1999) (i.e. computation of the temper-

ature at interior points from surface temperature and gradient) but in the

case of periodic problems (see discussion in To et al., 2021). Its expression

uses also a constant Θi, which is the average of θi, Θi = ⟨θi⟩. Furthermore

this relation is independent of the conductivity ki of the material within Γi.

It means that the interior temperature θi corresponding to those boundary

values is unique, even when phase i is a pore ki → 0 or a superconductive

material ki → ∞.

Different from Θ which can be set as any constant in advance, say Θ = 0 so

that θ is an average free quantity, Θi can not be set arbitrarily. Once Θ is
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set, the solution θ is expected to be unique (except for void interior points)

and as θ = θi in each phase i, θi and Θi is also unique. In other words, the

solution θi,Θi in each phases are connected, for example by continuity at the

interface and constitute the whole field θ,Θ.

Summing back on all phases i as
∑

i θ
i = θ,

∑
iΘ

i = Θ and
∑

i χi = 1,

we can derive the global temperature field θ of the composite material

θ = Θ+ 2R ∗
∑
i

(nδ)Γi
θi + 2S ∗

∑
i

(nδ)Γi
ei (28)

Next, taking gradient of θ by (21), e can be obtained

e = E − 2P ∗
∑
i

(nδ)Γi
θi + 2R ∗

∑
i

(nδ)Γi
ei (29)

3.2. Case of perfect interface

The boundary of each phase Γi is decomposed into the interface Γij be-

tween two phases i and j which is

Γi =
⋃
j

Γij. (30)

We assume that the interface Γij is perfect, i.e the temperature and normal

flux are continuous across this interface.

Applying the decomposition (30) to
∑

i(nδ)Γi
θi yields∑

i

(nδ)Γi
θi =

∑
(i,j)

[(nδ)Γij
θi + (nδ)Γji

θj] =

=
∑
(i,j)

(nδ)Γij
(θi − θj) = 0. (31)
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This identity is due to the fact that the normal vector of Γij has the opposite

direction of Γji, i.e (nδ)Γij
= −(nδ)Γji

and the temperature at the interface

Γij is continuous θ
i = θj on Γij. As a notation,

∑
i represents the sum over

all phases i and
∑

(i,j) the sum over all phase combination (i, j) which share

the common interface Γij.

Applying also the decomposition (30) to
∑

i(nδ)Γi
ei yields

e = E + 2R ∗
∑
(i,j)

(nδ)Γij
(ei − ej). (32)

In the next step, we shall derive the relation between
∑

(i,j)(nδ)Γij
(ei − ej)

and e so that we can obtain a governing integral equation on e only.

Since e =
∑

i e
i is equal to ei and ej at each side of Γij, the relation

(nδ)Γij
e = (nδ)Γij

(ei + ej) (33)

must hold. Due to the continuity of flux at Γij, we also have

ki(nδ)Γij
ei = kj(nδ)Γij

ej. (34)

Combining (33) and (34), it is possible to show that

(nδ)Γij
(ei − ej) = −ki − kj

ki + kj
(nδ)Γij

e (35)

As we can see
ki−kj
ki+kj

is a material mismatch coefficient, playing a role similar

to the Dundurs coefficients in elasticity. Substituting (35) into (32) yields

e = E − 2R ∗
∑
(i,j)

ki − kj
ki + kj

(nδ)Γij
e (36)
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or in a more tractable form

e(x) = E − 2
∑
(i,j)

ki − kj
ki + kj

∫
Γij

R(x− y)[e(y)n(y)]dy ∀x ∈ V (37)

This is the Fredholm integral equation for e which shows the relation between

the interior value of e and the boundary value e via the term (nδ)Γij
e. The

equation has some similarities with the Boundary Integral Equation obtained

in Greengard and Moura (1994) using the Green function for infinite medium,

where the same mismatch coefficients do appear.

If the problem is well posed so that the boundary value exists uniquely, then

the whole solution exists uniquely. Even in the case of simply connected

voids, e exists uniquely as it is the unique harmonic continuation in the void

phase that matches the boundary value via eq. (27).

3.3. Implementation of Kapitza interface model

Figure 2: Kapitza interface model between phase i and j

Now let us assume that the interface is not perfect, the temperature

field being discontinuous at the boundary of each phase Γi, the normal flux

being continuous. In this case, e exhibits a Dirac singularity at Γi and is no

longer equal to the sum of ei. Indeed, summing all the phases i in (25) and
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combining (21) yields

ẽ = e+ 2
∑
i

(nδ)Γi
θi, ẽ =

∑
i

ei (38)

where ẽ is the regular part of e, which is the sum of all regular phase gradients

ei. Contrarily to the case of perfect interface, the sum
∑

i(nδ)Γi
θi is no more

null, due to the step of temperature at the Kapitza type boundary.

Next, we shall establish an integral equation for ẽ instead of e. Substi-

tuting (38) into (29) yields

ẽ = E + 2
∑
i

(nδ)Γi
θi − 2P ∗

∑
i

(nδ)Γi
θi + 2R ∗

∑
i

(nδ)Γi
ei (39)

Now assuming that the Kapitza relation holds at the interface (see Fig. 2),

the temperature jump at the interface is proportional to the normal flux by

the relation

ks
ij(θ

j − θi) = kie
inΓij

= kje
jnΓij

on Γij (40)

where ks
ij is the interface Kapitza constant. Using the projector n ⊗ n, we

obtain

ks
ij(θ

j − θi)nΓij
= ki(n⊗ n)Γij

ei = kj(n⊗ n)Γij
ej on Γij (41)

Due to the fact that ẽ =
∑

i e
i equal to ei and ej on each side of Γij, the

relation

(n⊗ nδ)Γij
ẽ = (n⊗ nδ)Γij

(ei + ej) (42)

must be verified. As a result the interface term
∑

(nδ)Γi
θi does not vanish
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but can be written as∑
i

(nδ)Γi
θi =

∑
(i,j)

(nδ)Γij
(θi − θj) = −

∑
(i,j)

1
ksij
ki

+
ksij
kj

(n⊗ nδ)Γij
ẽ

(43)

Finally, combining with the previous expression (39), we can derive the equa-

tion for ẽ as follows

ẽ = E − 2
∑
(i,j)

1
ksij
ki

+
ksij
kj

(n⊗ nδ)Γij
ẽ+ 2P ∗

∑
(i,j)

1
ksij
ki

+
ksij
kj

(n⊗ nδ)Γij
ẽ

−2R ∗
∑
(i,j)

ki − kj
ki + kj

(nδ)Γij
ẽ (44)

As a particular case, we can show that when ks
ij → ∞ and none of the joining

materials has an infinite conductivity, the term 1
ks
ij
ki

+
ks
ij
kj

→ 0, and we recover

the case of ideal interface.

In more explicit form, Eq. (44) reads

ẽ(x) = E − 2
∑
(i,j)

ki − kj
ki + kj

∫
Γij

R(x− y)[ẽ(y)n(y)]dy −

−2
∑
(i,j)

1
ksij
ki

+
ksij
kj

∫
Γij

P (x− y)[n(y)⊗ n(y)ẽ(y)]dy (45)

3.4. Iteration schemes

As an iteration method for perfect interface case (36), we can adopt the

Neumann series based, or shortly basic iteration scheme.

15



Algorithm 1 Iteration scheme of problem with perfect interface

Initialization e(0) = E
for m=0,1,2,... do
e(m+1) = E − 2R ∗

∑
i,j

ki−kj
ki+kj

(nδ)Γij
e(m),

if ∥e(m+1)−e(m)∥
∥e(m+1)∥ < ε then

BREAK
end if

end for

Let us examine the property of the iteration scheme. First, due to the

property of operators P and R, ê(m+1)(ξ) is colinear with ξ and thus e(m+1)

is integrable

iξ × ê(m+1)(ξ) = 0 or rot e(m+1) = 0 (46)

Now taking the divergence of both side

div e(m+1) = −2
∑
i,j

ki − kj
ki + kj

(nδ)Γij
e(m) (47)

Because (nδ)Γij
e(m) are terms localized on the interface Γij, they and their

gradients vanish outside this interface. As a result

div e(m+1) = 0 outside Γij (48)

meaning that the flux j(n+1) = ke(n+1)

div j(m+1) = 0 in each phase i (49)

where the conductivity is a constant ki.

Finally, these results show that the conservation of energy and compati-

bility of the gradient of temperature are verified at each iteration inside each
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phase domain. The iterative process allows us to check that the conditions

of energy and compatibility are also verified at the interfaces when the con-

vergence is reached.

Regarding the stopping criteria, we have

Error =
∥e(m+1) − e(m)∥

∥e(m+1)∥
< ε (50)

We note that r(m) = e(m+1) − e(m) is the residual at step m. Near conver-

gence, the behavior of Error is expected to be the same as the one of the

residual r(m).

To solve the problem involving interface (44), numerical evidences show that

the above iteration scheme does not converge. To solve the equations, we

use conjugated gradient methods. The governing equation (44) can be recast

into the linear form

A⊙ ẽ = E (51)

with

A⊙ ẽ = ẽ+ 2
∑
(i,j)

1
ksij
ki

+
ksij
kj

(n⊗ nδ)Γij
ẽ− 2P ∗

∑
(i,j)

1
ksij
ki

+
ksij
kj

(n⊗ nδ)Γij
ẽ

+2R ∗
∑
(i,j)

ki − kj
ki + kj

(nδ)Γij
ẽ (52)

The linear equation (51) will be solved by the conjugate gradient stabilized

algorithm.

17



Algorithm 2 Biconjugate gradient stabilized (BICGSTAB) iteration scheme
for imperfect interface problem with linear equation A⊙ ẽ = E

Initialization ẽ(0) = 0
r(0) = E and choose r′ = r(0)

Set p(0) = r(0)

for m=0,1,2,... do
1. α(m) = (r(m)r′)/((A⊙ p(m))r′),
2. s(m) = r(m) − α(m)(A⊙ p(m))
if ∥s(m)∥/∥E∥ < ε then
ẽ(m+1) = ẽ(m) + α(m)p(m)

BREAK
end if
3. γ(m) = ((A⊙ s(m))s(m))/((A⊙ s(m))(A⊙ s(m)))
4. ẽ(m+1) = ẽ(m) + α(m)p(m) + γ(m)s(m)

5. r(m+1) = s(m) − γ(m)(A⊙ s(m))
if ∥r(m+1)∥/∥E∥ < ε then
BREAK

end if
6. β(m) = α(m)/γ(m)(r(m+1)r′)/(r(m)r′)
7. p(m+1) = r(m+1) + β(m)(p(m) − γ(m)A⊙ p(m))
if ∥r(m+1)r′∥/∥E∥2 < ε′ then
r′ = r(m+1)

p(m+1) = r(m+1)

end if
end for

Introducing a tolerance ε, the scheme is based on the residual r(j+1) and

stopped when

Error =
∥r(m+1)∥
∥E∥

< ε (53)

In most usual cases, the parameter ε′ to restart in case of breakdown is set

at ε′ = 10−6. In the cases of Kapitza interfaces, to ensure the convergence at

low value ks, we adopt a higher value ε′ = 10−3.
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The use of BICGSTAB algorithm merits some discussion at this step. In

literature, Zeman et al. (2010) applied the standard conjugate gradient (CG)

scheme to the basic integral equation of (Michel et al., 2000) which has a non

symmetric operator. They found that the scheme converges with a moderate

contrast ratio but diverges at infinite contrast limit. Schneider (2020) recon-

sidered the case of porous material with different discretization techniques

and iterative schemes and found that the Fourier discretization results in bad

convergence behavior. Adopting finite difference or finite element discretiza-

tion results in a better behavior. Lucarini et al. (2022) also confirm this

remark and additionally proposed a displacement based scheme for the solid

phase which works for Fourier discretization. Their displacement scheme is

derived directly from the Navier equation without using the Green tensors.

The present formulation is based on the Green tensors and the problem aims

at solving the composite problems at two extreme limits where pore, super-

conductive phase and imperfect interface can be all present. The operator is

non symmetric and the Fourier discretization is used. As it will be shown,

the simple iterative scheme is sufficient to overcome the issues of previous

schemes in the case of perfect interfaces. In addition, the BICGSTAB algo-

rithm is expected to overcome the difficulties in the above discussion even in

the case of imperfect interfaces.

All the calculations are done in Fourier space, as we compute ̂̃e(ξ) and ê(ξ)

at base resolution N . This parameter is used to limit the number of wave

vectors in directions 1, 2, 3 in (3) via the inequality

−N < nk ≤ N k = 1, 2, 3. (54)

To achieve the accuracy, the delta terms ̂(n⊗ nδ)Γij
(ξ) and (̂nδ)Γij

(ξ) have

a double resolution 2N . The Fourier transform of the real space product

between those delta terms and the gradient e (or ẽ) is done via (5) and (6).

After the resolution of e in Fourier space, the temperature field θ is recovered
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via the relation

θ = −R ∗ e, or θ̂(ξ) = −R̂(ξ)ê(ξ) (55)

in Fourier space. Finally, the physical fields can be obtained by inverse

Fourier transform. Numerically, we employ Discrete Fourier Transform (DFT)

and obtain the discrete values of the field at grid points x̄. For function φ̂(ξ),

we have

φ(x̄) ≃ DFT−1[φ̂(ξ)] (56)

It is known that the use of Fourier series is associated to ring artifacts when

discontinuities are present. To smooth out the function φ(x), we will use a

sinc filter f̂(ξ) in frequency domain (To and Bonnet, 2023b) as follows

φ(x̄) ≃ DFT−1[f̂(ξ)φ̂(ξ)] (57)

with f̂(ξ) being

f̂(ξ) = sinc(ξ1a)sinc(ξ2a)sinc(ξ3a) (58)

The typical value of a is a = L/2N which is the size of the pixel.

4. Numerical applications

The following results are valid for any unit systems. For the ease of

reading, the SI system is adopted as follows:

- Length, distance, coordinate: [m]

- Fourier classical conductivity: [W/m·K]

- Kapitza interface conductivity: [W/m2·K]

- Temperature: [K]

- Temperature gradient: [K/m]
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4.1. Perfect interface

We consider the 2D case of single circular inclusion embedded in a matrix

of different material. The unit cell is defined by the inequalities |x| ≤ L1/2

and |y| ≤ L2/2. The center of the inclusion is located at the origin of the

unit cell. The radius of the inclusion is R = 0.3 [m] and the unit cell di-

mension L1 = L2 = L = 1 [m]. The conductivity of the matrix is set at

km = 1 [W/m·K] and the inclusion ki is varied from 0 to ∞. We study the

accuracy of the FFT method in comparison with a Finite Element Method

code (COMSOL). Since the FEM code does not allow us using these extreme

values 0 and ∞ (infinite contrast), we shall use the value ki = 10−6 [W/m·K]

and ki = 106 [W/m·K] (very high contrast) correspondingly (see Appendix

C for the FEM model). Separate simulations where the inclusion domain is

removed and Neumann or Dirichlet boundary conditions are used to repro-

duce the effect of infinite contrast have shown that the obtained solutions in

the matrix phase are almost identical to the case of very high contrast. Since

we are interested in the FEM and FFT solutions in the inclusion domain to

examine the solution uniqueness in the extreme cases, the solution at high

contrast ratio instead of infinite contrast ratio will be presented. As discussed

earlier, unlike the usual setting of the problem where e is not unique in the

pore, the solution e of the present FFT formulation must be a harmonic con-

tinuation into the pore and thus is unique if the pore is a simply connected

domain. The macroscopic gradient E1 = 1, E2 = 0 [K/m] is applied to the

unit cell. The basic iteration scheme (Algorithm 1) is used to obtain the

solution.

The simple iterative algorithm is very fast; it only needs 10 iterations to

satisfy the accuracy ε = 10−5 for both cases ki = 0 [W/m·K] and ki = ∞
[W/m·K]. These results show a clear improvement compared to previous for-

mulations using FFT method where the classical iterative scheme does not

converge in numerous cases.
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Figure 3: The case of circular void ki = 0 [W/m·K]. Top: Temperature field θ [K] (left) and
gradient field e1 [K/m] (right). Bottom: Comparison between FFT and FEM solutions for
temperature θ [K] (left) and gradient e1 [K/m] (right) profile at y = 0. The FFT solution
is obtained at resolution N = 128.
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In Figs. 3 and 4, we can find that the periodic perturbation temperature

field θ is continuous and increasing in the same direction as E1 when ki = 0

[W/m·K] and in the opposite direction when ki = ∞ [W/m·K]. The gradient

e1 = 0 [K/m] in the inclusion when ki = ∞ [W/m·K] corresponds to linear

temperature θ and agrees with the FEM results. When ki = 0 [W/m·K],

the agreement between FEM and FFT is also excellent. This confirms that

the solution of the LS formulation exists uniquely and is the limit of the

solution at finite ki and ki → 0 [W/m·K]. In all figures, the FFT solution

is smooth for the temperature field which is theoretically continuous and

the gradient e exhibits some local fluctuations near the interface due to the

Gibbs phenomenon and the discontinuity. We note that the fluctuation can

be smoothed out using a low pass filter, as shown thereafter.

From Fig. 5, we find that the basic iteration scheme for perfect interface

converges very fast. The error decreases at a linear rate up to 30-40 itera-

tions to reach the accuracy 10−15. The ratios related to inverse contrasts, i.e

ki/km = 10 vs ki/km = 0.1 (or km/ki = 10) and ki/km = 0 vs ki/km = ∞
(or km/ki = 0) have the same convergence rate. The two infinite contrast

cases converge slower than the finite contrast cases, Error ∝ 10−Niter/2.5 and

∝ 10−Niter/2 respectively. Next we study the resolution effect at infinite con-

trast case ki/km = ∞ and we find that a fine resolution N leads to a faster

convergence than a coarse resolution. In all cases, the relative error is stabi-

lized at 10−15 after 40 iterations.

The nearly linear decrease of the error in the semi-log plot can be explained

by the fact that the convergence is driven by the highest eigenvalue of the

iterative operator. With these results, this highest eigenvalue is obtained as

λmax ≈ 0.40 for the infinite contrast and λmax ≈ 0.32 for the finite contrast.

The comparison with the basic iteration scheme for the classical FFT solution

where the highest eigenvalue tends to 1 for an infinite contrast (Michel et al.,
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Figure 4: The case of circular superconductive inclusion ki = ∞ [W/m·K]. Top: Temper-
ature field θ [K] (left) and gradient field e1 [K/m](right). Bottom: Comparison between
FFT and FEM for temperature θ [K] (left) and gradient e1 [K/m] (right) profile at y = 0.
The FFT solution is obtained at resolution N = 128.
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2001) displays clearly the improvement coming from the present boundary-

volume formulation.
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Figure 5: Convergence of basic iteration scheme for circular inclusion with perfect interface
problem. Left: Cases of different constrast ratios ki/km at N = 128. Right: Cases of
different resolution parameters N at ratio ki/km = ∞

Next, we investigate the effect of smoothing filter and the mesh conver-

gence of the two extreme problems. The gradient field e1 will be considered

when discontinuities are present at the interface. First from Fig. 6, we notice

that at all resolutions, the FFT solutions are quite good far from the inter-

face as they all match the FEM results. The main visible difference is seen

near the interface. The sinc filter does eliminate the ring artifact but it also

reduces the jump at the interface and produces a gradual ’interphase like’

change. As expected, when the resolution increases, the interphase becomes

thinner and converges to a sharp interface with correct jump value. For both

extreme cases, the resolution N = 128 produces sufficiently accurate results.

4.2. Kapitza interface model

In this subsection, we shall study two examples in the unit cell of di-

mensions L1 = L2 = L = 1 [m] as before. In the first example, a stratified
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Figure 6: Mesh convergence and smoothing filter effect for circular inclusion with perfect
interface problem. Left: the gradient e1 [K/m] as function of x/L at y = 0 [m] for the
case of void inclusion ki = 0 [W/m·K]. Right: the gradient e1 [K/m] as function of x/L
at y = 0 [m] for the case of superconductive inclusion ki = ∞ [W/m·K]

material is composed of inclusion and matrix layers. The inclusion is located

at the center and has a thickness 2h = 0.6 [m], i.e |y| ≤ h = 0.3 [m]. In

the second example, an inclusion circle of radius R = 0.3 [m] is located at

the center and bounded by the matrix, i.e the same geometries as subsec-

tion 1. In both cases, the conductivity of each material is inclusion ki = 10

[W/m·K], matrix km = 1 [W/m·K] and the imperfect interface between the

matrix and inclusion is modelled by Kapitza model with ks = 1 [W/m2K].

The macroscopic gradient E1 = 1 [K/m], E2 = 0 [K/m] is applied to the unit

cell. While the first example has analytical solutions (see Appendix B) and

can be used to compare with the FFT solution, only numerical FEM solution

is available in the other case. The BICGSTAB algorithm (Algorithm 2) is

used to obtain the solution.

For the stratified problem (see Fig. 7), we only need 4 iterations to reach

the accuracy ε = 10−5. As we can see from the temperature field which is

piece-wise linear, discontinuities are present near the interface and temper-

ature on the left is higher than on the right. The gradient field is regular,
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exhibiting no singularities at the interface and being uniform in each layer.

The slice in the middle also confirms those properties and agrees very well

with the analytical results (see Appendix B).
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Figure 8: Circular inclusion problem with Kapitza interface model. Top: Temperature
field θ (left) and regular gradient field ẽ1 (right). Bottom: Comparison between FEM and
FFT for temperature θ [K] (left) and regular gradient ẽ1 [K/m] (right) profile at y = 0.
The interface coefficient ks = 1 [W/m2K]

In the circular inclusion problem (see Fig. 8), only 13 iterations are needed

to reach the accuracy level ε = 10−5. The same remarks apply to this prob-

lem: interface discontinuities are found on the temperature field θ while the
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gradient field ẽ1 does not display any singularity. The gradient level in the

inclusion is relatively smaller than within the matrix. More importantly, the

temperature and the gradient profiles on the axis y = 0 are in a very good

agreement with the FEM models containing an interphase.
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Figure 9: Convergence of BICGSTAB scheme for circular inclusion with Kapitza interface
problem. Left: Cases of different interface coefficient ks at N = 128. Right: Cases of
different resolution parameters N at ks = 1 [W/m2K]. The unit of ks is [W/m2K] in all
the figures.

From Fig. 9, we find that the convergence rate of BICGSTAB scheme is

also very good but is sensitive to the interface coefficient ks. With large ks,

i.e when the interface is closer to the ideal interface, the convergence is very

fast, for example the residual error scales as Error ∝ 10−Niter/2 for ks = 100

[W/m2K], 10−Niter/6 for ks = 10 [W/m2K] etc. With small ks, the interface

is approaching a closed circular crack where the problem has no unique solu-

tion on the boundary and within the inclusion phase. As a consequence, the

convergence becomes significantly delayed. For example to reach 10−3 error

level, 10,15 and 40 iterations are required for ks = 1, 0.1 and 0.01 [W/m2K]

respectively. Regarding the resolution number N , the convergence is slightly

sensitive to this parameter. The difference between the results coming from

different resolution numbers is seen in the initial steps where the low reso-
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lution shows a steeper descent. However, after 40 iterations, they tend to

decrease with the same rate, especially for the two high resolutions 512×512

and 1024× 1024 that nearly coincide after 40 iterations.

4.3. Multiple phase composites with infinite contrast ratios and imperfect in-

terface

We are interested in the performance of the method when there are mul-

tiple phases present in the unit cell, comprising simultaneously voids and

superconducting inclusions. In the first example, we consider a matrix in-

clusion structure, specifically a composite constituted of an array of 9 cir-

cular inclusions of dimension R = 0.1 [m] of different properties: 1 circular

void (k = 0 [W/m·K]) at the center, 4 superconductive inclusions (k = ∞
[W/m·K]) and 4 conductive inclusions (k = 5 [W/m·K]) embedded in the

matrix material (k = 1 [W/m·K]). The material is subject to macroscopic

gradient E1 = E2 = 1 [K/m]. As expected (see Fig. 10), the gradients in the

inclusions are more or less uniform with small value in superconductive phase

and higher value in the void. Although the basic scheme is relatively good,

it is outperformed by the BICGSTAB algorithm. After a steep descent at

10−4, the basic scheme changes its slope and converges much slower, reaching

10−6 only after 1000 iterations. The BICGSTAB algorithm keeps the steep

descent and the error level 10−15 can be reached after 330 iterations. These

results show that the convergence is degraded with the simultaneous presence

of voids and superconductive inclusions, compared to the case of an unique

type of inclusion.

Next, we consider a checker board structure constituted of 9 squares of di-

mensions 1/3 × 1/3 [m]. The square at the center is a void k = 0 [W/m·K]

and the 8 surrounded squares have a conductivity k = 1 [W/m·K] or k = 2

[W/m·K]. Both the perfect and imperfect interface are used to model the

interfaces between the phases of different conductivity, i.e k = 1 [W/m·K]

and k = 2 [W/m·K]. From Figs. 11, we can clearly see the effect of interface.
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Figure 10: Composites subject to a macroscopic gradient E1 = E2 = 1 [K/m]. Left:
Gradient field e1 [K/m]. Right: Comparison between basic and BICGSTAB scheme.

Figure 11: Temperature field θ of composites subject to a macroscopic gradient E1 =
E2 = 1 [K/m]. Left: Perfect interface. Right: Imperfect interface with ks = 2 [W/m2K]
between the squares k = 1 [W/m·K] and k = 2 [W/m·K].
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For perfect interfaces, the temperature field varies continuously between the

phases. For imperfect interface, a sharp contrast can be observed at the in-

terface.
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Figure 12: Composites with imperfect interface subject to a macroscopic gradient E1 =
E2 = 1 [K/m]. Top left: Comparison between basic and BICGSTAB scheme. Top right:
Comparison BICGSTAB scheme with ks = 1, 2 [W/m2K] and different value ε′. Bottom:
Comparison BICGSTAB scheme with ks = 0.5 [W/m2K] and different value ε′. The unit
of ks is W/m2K in all examples.

Figure 12 shows that for the case of perfect interface, the basic scheme con-

verges very fast but the accuracy level is reached at 10−15 after 77 iterations.

Again, the BICGSTAB algorithm converges much faster as 10−15 accuracy

level is reached with less than 15 iterations. For the case of imperfect in-
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terface, BICGSTAB is still robust as it reaches 10−15 accuracy level after

500-700 iterations. However, for low ks value, the scheme is slower. This is

due to the fact that the interfaces behave as cracks when ks → 0. The central

squared phase become separated and the problem is ill posed in this extreme

case. We tried to modify the restart parameters ε′ and ks and found that

the convergence behavior can be sensitive to this change. For example, at

ks = 1−2 [W/m2K], the choice ε′ = 10−3 results in a better convergence than

ε′ = 10−6 in the first 1000 iterations. At ks = 0.5 [W/m2K], the convergence

is even more sensitive to ε′. Within 1000 iterations, using ε′ = 10−6 does not

yield convergence and ε′ = 10−3 performs better. The intermediate values

ε′ = 10−4, 10−5 give the best performance. This experience shows that it is

possible to adjust ε′ to achieve convergence.

5. Concluding remarks

In this paper, we have presented a boundary-volume FFT based method

to solve homogenization problems related to heterogeneous conductive ma-

terials with arbitrary contrast and Kapitza interface model. Starting from

the integral equation for a single homogeneous phase, a boundary-volume LS

integral equation for the composite material is established. In the latter, the

temperature gradient is the unknown and depends on the material mismatch

quantities at the interface between two different phases. Both perfect inter-

face and Kapitza imperfect interface models can be implemented using this

formulation in a relatively simple way. More interestingly, the convergence of

the iteration scheme is very fast even for the case of infinite contrast. In the

case of materials containing only one type of inclusion (void or superconduc-

tive inclusion), the basic scheme of the FFT method leads fast to accurate

results, this being a significant improvement compared to many formulations

proposed in the literature that do not converge or converge only when using

sophisticated numerical procedures. For the case of simultaneous voids and

superconductive inclusions or the case of imperfect Kapitza interfaces, the

33



conjugate gradient method must be preferred.

Although the present work focuses on the linear behavior of conductive ma-

terial, the derivation procedure suggests that the formulation can be gener-

alized to include anisotropic effects and non-linear bulk and interface behav-

iors. Starting from equation for each phase Eq. (23), those effects can be

treated as polarization in each phase as done in classical FFT approaches

and then assembled to make up the final equation. In this case, a mixed

boundary-domain formulation is obtained where the expression of e includes

both surface and volume integrals. In addition, the phase conductivity can

be viewed as reference conductivity which can be chosen different in different

zones, allowing us to use Green tensors for both isotropic and anisotropic

materials, these last ones being available. It will be interesting to know if

the good convergence property is still maintained in such formulations.

The crucial points that lead to good convergence behavior are the govern-

ing equations (36), (44). The illustrative examples in this work concern the

discretization in Fourier space of the equations and the use of form factors

which are the Fourier transform of the geometry of the interfaces. Given any

complex geometry including pixel/voxel based images, we can approximate

with poly lines and poly surfaces and the same strategies can be applied (see

e.g To and Bonnet, 2020, 2023b). The main drawback of the form factor

approaches is the memory usage as a higher resolution must be adopted for

the form factors. To overcome this difficulty, i.e to avoid evaluating the dis-

crete convolution (nδ)Γij
and e in Fourier space, it is possible to construct a

grid based approximation of the Fourier transform of (nδ)Γij
e for both curve

and pixel/voxel boundaries. Additionally, due to the similarity between the

linear conduction and elasticity problem, the extension of this method to the

case of mechanical behavior is also in progress.
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Appendix A. Form factors of 2D geometries

Appendix A.1. Circles

Let us consider a circle Ω of radius R centered at origin of the square unit

cell of dimension L× L. The form factor of the circle is given by

χ̂(ξ) =
1

V

∫
Ω

e−iξxdx =
2πR2

L2

J1(ξR)

ξR
. (A.1)

Using the Gauss theorem, the form factor of (nδ)Γ associated to the boundary

Γ admits the form

(̂nδ)Γ(ξ) =
1

V

∫
Γ

ne−iξxdx =
1

V

∫
Ω

∇(e−iξx)dx = −iξχ(ξ). (A.2)

The form factor of (n⊗ nδ)Γ can be evaluated as follows:

̂(n⊗ nδ)Γ(ξ) =
1

V

∫
Γ

n⊗ ne−iξxdx =
1

V R

∫
Γ

n⊗ xe−iξxdx

=
1

V R

∫
Ω

∇(xe−iξx)dx =
χ(ξ)

R
I − iξ

V R
⊗
∫
Ω

xe−iξxdx

=
χ(ξ)

R
I +

ξ

R
⊗∇ξχ(ξ) =

χ(ξ)

R
I +

ξ ⊗ ξ

ξR

dχ(ξ)

dξ
(A.3)

with

dχ(ξ)

dξ
=

2πR2

L2

[
J0(Rξ)

ξ
− 2J1(Rξ)

Rξ2

]
. (A.4)

In the above derivation we use the fact that n = x/R on the circle boundary

and the Gauss theorem to convert surface to domain integral. Finally we

obtain the form factor

̂(n⊗ nδ)Γ(ξ) =
2πR2

L2

[
J1(Rξ)

R2ξ
I +

(
J0(Rξ)

ξ
− 2J1(Rξ)

Rξ2

)
ξ ⊗ ξ

ξR

]
.

(A.5)
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Using the same technique to evaluate δΓ associated to the boundary Γ of the

circle, we obtain

δ̂Γ(ξ) =
1

V

∫
Γ

e−iξxdx = tr[ ̂(n⊗ nδ)Γ(ξ)] =
2πR2

L2

J0(Rξ)

R
. (A.6)

In the case where the circle center is located at the coordinate c, the form

factors given by the previous expressions should be multiplied by the factor

e−iξc.

Appendix A.2. Lines

For a line connecting two points c1 and c2, the form factor admits the

following expression

δ̂Γ(ξ) =
1

V

∫
Γ

e−iξxdx =
2l

V
e−iξcsinc(ξl), (A.7)

and

c =
1

2
(c1 + c2), l =

1

2
(c2 − c1). (A.8)

Since the normal vector is constant on the line, we have

n̂δΓ(ξ) = nδ̂Γ(ξ), ̂n⊗ nδΓ(ξ) = n⊗ nδ̂Γ(ξ). (A.9)

Appendix B. Analytical solutions for a stratified material with

Kapitza interface

We consider a composite material with an inclusion of dimension 2h×L,

conductivity ki at the center of unit cell L×L. The matrix material has the

conductivity km and the Kapitza interface coefficient is ks. The material is

subject to a macroscopic gradient E1 = 1, E2 = 0 along direction x. The
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gradient in each phase is constant and equal to

e1(x) = ei1 =
L
ki
E1

2h
ki

+ L−2h
km

+ 2
ks

, 0 < x < h.

e1(x) = em1 =
L
km

E1

2h
ki

+ L−2h
km

+ 2
ks

, h < x < L/2. (B.1)

The temperature jump at the interface has the form

θm(h)− θi(h) =
L
ks
E1

2h
ki

+ L−2h
km

+ 2
ks

. (B.2)

and the temperature in each phase is

θ = θi =

[
L
ki

2h
ki

+ L−2h
km

+ 2
ks

− 1

]
E1x, 0 < x < h

θ = θm =

[
L
km

2h
ki

+ L−2h
km

+ 2
ks

− 1

]
E1(x− L/2), h < x < L/2

(B.3)

Appendix C. Finite Element Models for circular inclusion prob-

lem

The circular inclusion of radius R = 0.3 [m] is located at the center of

the unit cell of size 1 [m]. Due to the symmetry of the problem, only 1/4

of the model limited by the inequality 0 ≤ x, y ≤ 0.5 [m] is considered. For

boundary conditions, zero normal flux jn = 0 [W/m2] on the axis of symmetry

y = 0 [K] and the upper boundary. Zero physical temperature T = 0 [K] (or

θ = 0 [K]) is prescribed on the axis of symmetry y and T = −0.5 [K] (or

θ = 0 [K]) on the right boundary. The conductivities of inclusion and matrix

are ki and km and the Kapitza interface coefficient is ks. The mesh of the

model is given in Fig. C.13 composed of 2074 linear triangular elements.
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Figure C.13: Finite Element Model for the circular inclusion problem.
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