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Software architecture for controlling in real time
aerial prototypes

A. Offermann1, J. De Miras1 and P. Castillo1

Abstract—Nowadays, there exists several platforms or exper-
imental prototypes of aerial vehicles to control algorithm vali-
dation, most of them being specific for certain applications. The
implementation of the control laws in commercial platforms is
often restricted to certain criteria and pre-established conditions
defined by the commercial system (or the builder). In this paper,
a new generic software architecture operating under Linux,
MATLAB®, ROS and Ardupilot is introduced for analyzing,
evaluating and improving control algorithms for aerial robotics.
The tedious programming code is not necessary because the code
is generated by MATLAB Simulink®. The proposed architecture
is composed of a ground station (GS) and a robot with an
embedded system. This platform is validated with a new aerial
prototype with tilting four rotors. Experimental results illustrate
the good performance of the software architecture even when
different maneuvers are demanded to the aerial prototype.

I. INTRODUCTION

Multiple types of architectures for aerial vehicles have been
developed in the robotics or control community, some of them
are based on ROS - Robot Operating System - or Ardupilot.
Several researchers working on aerial vehicles use MATLAB,
especially Simulink, for simulating theirs control algorithms.
Nevertheless they encounter a problem when validating theirs
algorithms in real time, because an arduous programming
process is necessary mainly for non-specialized users.

Fl-AIR, for example, is a framework developed at the
Heudiasyc laboratory based on Linux [1]. This architecture
was conceived for validating control algorithms in robots and
contains a simulator that allows to safely test them in real
time. It was applied with success in numerous aerial drone
applications, nevertheless, the programming part to control
implementation is not so easy and needs to be performed
by experts in C++. Similarly, authors in [2] proposed a test-
bed to implement and validate in real time high-level control
strategies for aerial vehicles. The architecture is composed of
a mini-helicopter equipped with various sensors and a Ground
Station (GS) computer using Xtratum with Linux RT and
PaRTiKle. In the architecture a radio control can be used to
send signals from the PC to the aerial vehicle. Even if the
platform performance is adequate for control algorithms, its
good domain requires very good skills in programming.

ROS has been developed to obtain a versatile framework
allowing simplified communication within a system but also
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between systems. It becomes an interesting solution for creat-
ing software architectures. This principle has been used in [3]
where a quadcopter vehicle lands on an Unmanned Surface
Vehicle (USV). The embedded system of the quadcopter is
composed of an "Odroid" board and an ardupilot that controls
the attitude of the vehicle. In the architecture, the high level
control (navigation) is done using ROS nodes. Moreover, the
authors use Mavlink to retrieve data from Ardupilot, though,
the frequency is low. This fact does not allow the possibil-
ity to modify low level control laws through a ROS node.
Another example of ROS application was presented in [4]
where multiple UAVs (unmanned aerial vehicles) are flying in
cooperation. The UAVs are Bitcraze Crazyflie 2.0 quadcopters.
In this platform, a ROS package named crazyflie_ros is used
to perform several tasks such as controlling a UAV with a
joystick, perform hovering, etc. MATLAB’s Robotics System
Toolbox (MRST) provides solutions to easily generate ROS
nodes by creating models in Simulink. These solutions have
been applied, for example, on TurtleBots robots for path
planning [5]. Similarly, in [6], the authors have simulated
a hexacopter aerial vehicle using the V-REP software. In
this architecture, the MRST was used to implement a linear
controller (PID) and to communicate with the simulator, via
ROS.

UAV prototypes are used as test-bed during last decades.
Their versatility and dynamic are interesting for several
applications in the robotic and the automatic control
community, see [7]–[10]. Quadcopter aerial vehicles are
the most popular UAV prototypes. Nevertheless, they are
under-actuated and for some applications their use could be
complicated. Other configurations of aerial vehicles with four
rotors have been proposed in the literature, most of them
are over or full-actuated systems, adding in the prototype
actuators for increasing the control inputs, see for example
[11]–[14].

In this work, we propose an innovative software architecture
that has been conceived with MATLAB and ROS and is
composed of an aerial robot with its embedded system and
a ground station. In this software architecture, a simulator
based on Simulink is designed for previously, validating
in simulations the control algorithms. The platform exports
the Simulink model for testing in real-time free flights
avoiding all the tedious programming process (no extra code
programming is necessary). The prototype is a quadcopter
vehicle with tilting rotors conceived also for evaluating
control algorithms.



The outline of the paper is the following; the proposed soft-
ware architecture and the simulator are presented in Section II.
The mathematical description and control of the aerial vehicle
is resumed in section III. The closed-loop system is then tested
in simulations and implemented in an embedded system for
flight tests. Main results illustrating the closed-loop behavior
are given in section IV. At the end, some final discussions of
this work are given in section V.

II. SOFTWARE ARCHITECTURE

Our software architecture is composed of an intuitive simu-
lator with an easy implementation and by a real-time platform
for tests.

A. Simulator

The dynamic representation of a system is presented com-
monly in mathematical equations, nevertheless, its graphical
representation is not obvious and its analysis is only done for
expert users. Our idea is to place, instead the mathematical
model (equations), a draw in 3D of the system where its
movements are governed by its nonlinear dynamics. This
3D model (that can be done using CAD - Computer-Aided
Design) is imported into MATLAB Simulink via SimscapeTM

toolbox compatible software1. Remark that the Simscape tool-
box allows to add forces, torques and joints between different
parts of the tested design. Therefore, it becomes possible
to implement and to apply any control algorithm since a
bridge between classic Simulink blocks and Simscape exists.
In addition, in this simulator, it is possible to emulate tests
into the system and include external perturbations and so on.
The workflow for the simulator is presented in Figure 1.

B. Real-time test-bed

The previous Simulink program is converted into C++ code
and exported into the embedded system of the robot. In
addition, this architecture provides several possibilities to use
Simulink toolboxes and eliminate the tedious programming

1Autodesk®- inventor in our case

Figure 1. Workflow for the simulator

part before uploading the code into the embedded system. This
last advantage allows to make changes quickly and even to test
different control algorithms much faster than with conventional
programming. Moreover, the debugging part is also being
reduced to zero.

The robot’s embedded system is composed in our case with
a Raspberry Pi microcontroller and a Navio-2 shield from
EmlidTM. The Navio-2 has been chosen because it allows
to have access to a several kind of sensors and actuators. A
ground station (GS) containing the simulink program is used
and has an interface for analyzing the states of the system
and changing references values or gains. The data exchange
between the GS and the robot is performed with ROS and is
asynchronous, nevertheless the robot’s performances is assured
because it posses internal nodes running in real time.

Two different GS have been conceived for robot applica-
tions, they can be programmed either on MATLAB directly,
or with a plugin named rqt plot from ROS. In our system two
graphic interfaces (rqt_plot and rqt) are combined for data
exchange and visualization allowing an useful and powerful
system when experiments objectives change. rqt_plot is a data
visualization tool for ROS that allows to analyze data evolution
in real time. Some visualizing options are also available to
increase visibility on data (auto scroll, scale change etc..).
Using this plugin, graphs have more fluidity than when using
Simulink. rqt is also an useful interface tool that allows us
to publish data in specific communication channels in ROS
called "topic". Moreover, gains parameters can be changed in
real time by publishing them in specific topics.

Other advantage of this architecture is the possibility to
record data from topics with rosbag. The sample rate of the
nodes can be set in the Simulink model directly. As previously
mentioned, the GS and the robot communicate via wlan totally
asynchronously at the speed of the network. Nevertheless, this
does not represent a control problem because the interface
is only used to analyze the states or to tune parameters that
will not command directly the vehicle. The manual control
of the robot is achieved with an external radio-controller and
a receiver connected on the Navio. The proposed software
architecture is presented in Figure 2.

The principle of our architecture is to convert the code
provided by the manufacturer of the shield to read and write
the Navio2 IO2 into ROS "nodes" (nodes being subsystems
of ROS including one or several topics). The messages types
will then be imported into MATLAB Simulink in order to be
used directly as IO.

For this platform the following nodes have been developed

• IMU node for reading two IMU - Inertial Measurement
Unit - sensors and include an observer for improving
attitude;

• GPS node for connecting and accessing to GPS sensor.
• Barometer node to measure the altitude of the vehicle

using a barometer sensor.
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Figure 2. Architecture of the system

• Radiocontroller node, conceived for control manually the
robot accessing completely classical radio-controllers.

• PWM node, this node is created for sending the computed
control inputs to the motors.

• LED node created for information purpose. It can be used
to display the status of the GPS for example.

• A/D node, this node converts from analog to digital
voltage.

In addition, for this architecture, it is possible to add a wide
panel of external components working directly with ROS. For
example, our platform is equipped with DynamixelsTM servo-
motors that are high efficiency actuators and allow to access
several inner data as position, torque, current, temperature, etc,
through a ROS node.

For this architecture, an Optitrack node - motion capture
system - is also created. This node allows us to access to the
Optitrack System for measuring the position and orientation
of an object in 3D.

III. SYSTEM AND CONTROL

Our practical goal for the architecture is to control a
complex aerial system composed of four motors with tilting
arms in X configuration. This configuration has the property
that the frame of the first arm (noted M1 in Figure 3) is located
with an angle of 45◦ with respect to the body frame while the
others arms are placed with an angle of 90◦ with respect to
the previous ones.

A. Dynamic model

From Figure 3, notice that four frames are used in the
dynamic analysis, they are denoted as inertial, body, arm

and propeller frames. The dynamic model of this system is
obtained using the Newton-Euler formalism as follows∑

FFI = m ξ̈ + Ω×m ξ̇∑
M = J Ω̇ + Ω× J Ω

(1)

where FI denotes the inertial frame, m is the mass of the
vehicle, ξ represents its vector position, Ω the angular velocity
vector and J the moment of inertia of the vehicle.

Each motor produces a force in the propeller frame. For
expressing the forces produced by the motors in the inertial
frame, it is necessary to express them firstly into the arm
frame using aiR(αi)pi . This rotation is due to the tilt of the
propeller with an angle of αi. Later, the force is expressed
into the body frame using BR(β)ai . β corresponds to the
rotation between the body (where the Navio micro-controller
is placed) and the ith arm frame. And finally, the force is
expressed into the inertial frame using IRB . ∗

1

R∗2 denotes
the rotation matrix between two frames. In our configuration,
βi is constant and related on the number of the arm. These
angles are summarized in the B× vector as follows

B× =
[
π
4 ,

3π
4 , −3π4 , −π4

]
(2)

The real control inputs in our system are the thrust, Ti,
and the tilt angle, αi, for each motor, with i : 1 : 4, making
it an over actuated system. After analysis of the system, a
virtual input vector, noted by u1×6, is proposed. This vector
is the multiplication result of the two rotations (aiR(αi)pi
and BR(β)ai , including the 8 actuators of the system) and
is defined as follows

u =


p 0 p 0 −p 0 −p 0
−p 0 p 0 p 0 −p 0
0 1 0 1 0 1 0 1
pH −p −pH p −pH −p pH p
−pH p −pH −p pH p pH −p

1 H 1 −H 1 −H 1 H

︸ ︷︷ ︸
G



T1 sin(α1)
T1 cos(α1)
T2 sin(α2)
T2 cos(α2)
T3 sin(α3)
T3 cos(α3)
T4 sin(α4)
T4 cos(α4)


(3)
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Figure 3. Frame definition on the tilting quadcopter. From figure FB

represents the body frame, Fai the frame of the ith arm, Fpi the frame
of the ith propeller, Mi the ith motor, αi the tilt angle of the ith arm and
βi the angle between the x-body axis and the x axis of the ith propeller.



with p =
√

2/2 and H = kτ/kf , where kτ and kf denote the
drag and force constants of the propellers.

Using (3) system (1) can be written as[
m ξ̈

J Ω̇

]
=

[
IRB
I[3×3]

]
u−

[
mg−→zI
0[3×1]

]
+

[
−Ω×mξ̇
Cg−all

]
[6×1]

(4)

where g denotes the gravity, −→zI defines a unitary vector in
the z-axis, and Cg−all represents the torques due to Coriolis
effects, containing the Ω×JΩ term. IRB defines the classical
rotation matrix between the body and the inertial frame.

B. Control algorithm

The control law is based on a feedback linearization, and is
proposed as

u = −
[
IR−1

B
I[3×3]

] [[
m (k1ξ̇ + k2ξ̃)
J (k3Ω + k4η̃)

]
−

[
mg−→zI
0[3×1]

]
+

[
−Ω×mξ̇
Cg−all

]]
(5)

where ki > 0, for i = 1 : 4, represents a constant gain chosen
such that the dynamic of the system becomes stable. ξ̃ defines
the position error ξ̃ = ξ − ξd and ξd denotes the desired
position. Similarly, η̃ = η−ηd represents the orientation error.
In our case, it is been computed with the error between the
rotation matrix of the system and a desired rotation matrix,
see [15], [16].

For computing the real control inputs (Ti and αi) of the
actuators in the prototype, the Moore-Penrose pseudo-inverse
is used on matrix G. Therefore, from (3), it follows that

G† =



1
4 p − 1

4 p 0 0 0 l2

4 l (L2+k2)
k

4 l p − k
4 l p

1
4 − 1

4 l p
1

4 l p
k2

4 k (L2+k2)
1
4 p

1
4 p 0 0 0 l2

4 l (L2+k2)

− k
4 l p − k

4 l p
1
4 − 1

4 l p − 1
4 l p − k2

4 k (L2+k2)

− 1
4 p

1
4 p 0 0 0 l2

4 l (L2+k2)

− k
4 l p

k
4 l p

1
4

1
4 l p − 1

4 l p
k2

4 k (L2+k2)

− 1
4 p − 1

4 p 0 0 0 l2

4 l (L2+k2)
k

4 l p
k

4 l p
1
4

1
4 l p

1
4 l p − k2

4 k (L2+k2)


(6)

where l is the distance between motor and the gravity center
of the system, k = kτ/kf , and L is the length of an arm.
Therefore 

T1 sin(α1)
T1 cos(α1)
T2 sin(α2)
T2 cos(α2)
T3 sin(α3)
T3 cos(α3)
T4 sin(α4)
T4 cos(α4)


= G†


u1
u2
u3
u4
u5
u6

 (7)

Finally, we obtain

Ti =
√

(Ti sin(αi))2 + (Ti cos(αi))2 (8)

αi = tan−1
(
Ti sin(αi)

Ti cos(αi)

)
(9)

IV. SOFTWARE ARCHITECTURE VALIDATION

As explained in previous section, the prototype is a quad-
copter configuration with four tilting rotors as depicted in
Figure 4. The tilting of the arms is produced by DynamixelsTM

Figure 4. Drone with tilting propellers

servomotors that are attached to carbon tubes and the struc-
ture of the vehicle. All linking pieces have been done in
3D printing. The hardware components of our prototype are
summarized in Table I.

Hardware component Reference
Servomotors Dynamixels ®AX-12A
Bottom, top plate
and landing gear F450 ®frame
Motors T-Motors MT2212-13
Microcontroller Navio + Raspberry pi®3

Table I
DRONE’S COMPONENTS.

The nonlinear system (4) and the controller (5) have been
validated with the proposed software architecture, firstly using
the simulator and later in flight tests. The scenario to validate
is to keep at hover the aerial vehicle in a desired position while
its body reaches a roll angle bigger than 10◦. Notice that this
scenario is not possible for classical quadcopters because when
the vehicle reaches this angle, it moves in a lateral direction.

A. Simulation results

In Figure 5 the performance of the quadcopter dynamics
is illustrated. These pictures are obtained from the simulator
where the control algorithm was applied to stabilize the drone
at hover with roll angle bigger than 10◦ and ẋ, ẏ = 0m/s.

Figure 5. Drone simulation performance when applying the control algorithm
into the system. The goal is to reach φ > 10◦.

B. Free flight experiments

For evaluating the proposed software architecture and the
closed-loop system in real time, free flight tests were carried
out. The experiments were carried out in three phases.

The first phase, named Q1, is when the vehicle take-off
and landing in semi-autonomous mode, i.e., the attitude



and altitude of the drone are managed with the feedback
algorithm. The virtual inputs controlling the x and y axes are
disabled. In this configuration, the yaw angle is controlled
using the tilting arms and motor torques. The second phase,
called Q2, is related with the translational dynamics in the
plane x, y. This phase is activated after the aerial robot
reaches a desired altitude. For moving the vehicle in the
plane, the virtual controllers in x and y are activated for
controlling theirs tilt arms to keep the desired position in
the plane. When the desired position in the plane x, y is
reached, the last phase Q3 starts. In this phase, the α angles
reach a roll angle > 10◦ with ẋ, ẏ = 0, as showing in Figure 6.

Figure 6. Picture of the drone while tilting

Control gains ki used in the experiments are the following

k1 =

k1a 0 0
0 k1b 0
0 0 k1c

 ; k2 =

k2a 0 0
0 k2b 0
0 0 k2c

 ;

k3 =

k3a 0 0
0 k3b 0
0 0 k3c

 ; k4 =

k4a 0 0
0 k4b 0
0 0 k4c

 ;

Tables II and III summarizes the constant parameters used
in real-time experiments. Same inertial moment for the three
axis are considered.

Gain Value Gain Value
k1a 0.561 k2a 0.867
k1b 0.561 k2b 1.02
k1c 0.85 k2c 0.7
k3a 90 k4a 26
k3b 50 k4b 22
k3c 80 k4c 55

Table II
GAINS VALUES USED IN THE CONTROLLER.

Param. Description Value Unit
m Mass of the vehicle 1960 g
l Distance between motor 0.25 m

and C.o.M.
J Inertial moment of the system 0.006 Kg.m2

kf Force constant for a given PWM 0.00305 N.µs−1

kτ Torque constant for 4.9715e-05 N.m.µs−1

a given PWM

Table III
SYSTEM PARAMETERS

In Figure 7 the drone performance is depicted in 3D when
applying the three phases.

Figure 7. Aerial robot behavior during the free flight tests. The desired way-
point is in red colour. Phase Q1 is represented in blue line, phase Q2 is
shown in black line and phase Q3 is depicted in gray colour.

In Figure 8 the states response of the system obtained during
experiments are illustrated. Notice that in phase Q3 the states
responses in x, y remain smaller and close to zero. Some errors
can be observed due to the performance of the linear controller.
Remember also that the idea in this paper is to evaluate the
software architecture and not the control performance. Simi-
larly, note in this figure that the roll angle reaches values bigger
than 10◦. Note that the closed-loop system performance is
acceptable. Some errors can be perceived due to the limitations
of the linear controller. Observe also in Figure 8 a bias in the
pitch and roll angles due to small asymmetry on the platform
that is compensated with this bias in the angles (static error).

Remark from Figure 9 that the tilt angles performances, αi,
reach important values to achieve the control goal. Notice also
here that the motor thrust, Ti, does not vary a lot, therefore,
as expected for the drone configuration, the tilt arms vary to
converge to the desired position.
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Figure 8. States performances of the drone in flight tests. Dotted red line is the
desired reference for the vehicle. Blue line represents the states of the vehicle
while being stopped. Hard blue line designs the states during flight mode Q1.
Q2 flight performances are represented in black solid line. Eventually, Q3

mode is depicted in gray.
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Figure 9. Actuators states of the drone during the experimental validation.
Dotted blue line is used for the states while the drone is stopped. Hard blue
line for the first flight mode Q1 while black line illustrates the real-input
responses in Q2 mode flight. Q3 flight mode is represented in gray line.

In Figure 10 the virtual control inputs performances, ui, of
the system are depicted. Notice that u1 and u2 are zero in
mode Q1 as stated before. Observe also in this figure, that u3
remains quasi-constant during all the experiment signifying
that the aerial vehicle is at hover. Similarly, notice that u2
reaches higher values to compensate the tilt angles and avoid
that the vehicles moves in the y axis. Eventually, spikes are
due to the landing perturbation. A video of the flight tests can
be seen at: https://youtu.be/kGbH6eN7poE
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Figure 10. Virtual control inputs computed during the experimental tests.
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Q1 mode flight (take-off and landing) while black line represents the input in
Q2 mode flight for tracking the desired positions. Q3 flight mode is depicted
in gray line.

V. CONCLUSIONS

An innovative software architecture was presented in this
paper. This architecture is based on MATLAB-ROS config-
uration allowing quick changes in the control algorithm and
access to MATLAB features. In addition, with this architec-
ture, the arduous programming tasks are not necessary. In the
architecture, a simulator based on Matlab Simulink was intro-
duced. This simulator allows to import CAD system designs

that can be used for emulating the performance of different
kind of controllers. The software architecture was validated in
simulator and in real-time modes, where a quadcopter aerial
vehicle with tilting rotors has been controlled. Other kinds of
robots can be used with this architecture.

During free flight tests, a well performance of the architec-
ture was observed allowing to change control gains or desired
positions during the experiment. The behavior of the proposed
scenario for validating the whole system was depicted in some
graphs showing a well performance of the architecture and the
closed-loop system.
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