

Glucocorticoids negatively relate to body mass on the short-term in a free-ranging ungulate

Lucas D Lalande, Emmanuelle Gilot-Fromont, Jeffrey Carbillet, François Débias, Jeanne Duhayer, Jean-Michel Gaillard, Jean-françois Lemaître, Rupert Palme, Sylvia Pardonnet, Maryline Pellerin, et al.

▶ To cite this version:

Lucas D Lalande, Emmanuelle Gilot-Fromont, Jeffrey Carbillet, François Débias, Jeanne Duhayer, et al.. Glucocorticoids negatively relate to body mass on the short-term in a free-ranging ungulate. Oikos, 2023, 10.1111/oik.09769. hal-04154267

HAL Id: hal-04154267 https://cnrs.hal.science/hal-04154267v1

Submitted on 7 Jul 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Glucocorticoids negatively relate to body mass on the short-term in a freeranging ungulate

Lucas D. Lalande¹, Emmanuelle Gilot-Fromont^{1,2}, Jeffrey Carbillet^{1,3}, François Débias¹, Jeanne Duhayer^{1,4}, Jean-Michel Gaillard¹, Jean-François Lemaître¹, Rupert Palme⁵, Sylvia Pardonnet^{1,6}, Maryline Pellerin⁷, Benjamin Rey¹, Pauline Vuarin¹

¹ Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France

² Université de Lyon, VetAgro Sup, Marcy l'Etoile, France

³ Current institution: Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51014, Estonia

⁴ Current institution: Office Français de la Biodiversité, Direction de la Recherche et de l'Appui Scientifique, Service Départemental de la Haute-Garonne, Villeneuve-de-Rivière, 31800, France

⁵ Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria

⁶Current institution: Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France

⁷ Office Français de la Biodiversité, Direction de la Recherche et de l'Appui Scientifique, Service Conservation et Gestion Durable des Espèces Exploités, Châteauvillain, 52210, France

1 Abstract

2 Environmental fluctuations force animals to adjust glucocorticoids (GCs) secretion and release to current conditions. GCs are a widely used proxy of an individual stress level. While 3 4 short-term elevation in GCs is arguably beneficial for fitness components, previous studies have documented that the relationship between long-term baseline GCs elevation and fitness 5 6 components can vary according to ecological and individual factors and according to the life-7 history of the species studied. Using longitudinal data on roe deer (Capreolus capreolus) from two populations facing markedly different environmental contexts, we tested whether baseline 8 9 GC levels negatively correlate with body mass – a trait positively associated with 10 demographic individual performance – on the short- to long-term. In support, higher baseline 11 GC concentrations were associated to lighter body mass, both measured during the same 12 capture event, in adults of both populations. Overall, we showed that despite the marked 13 environmental and demographic differences between populations and despite the between-sex 14 differences in life history (*i.e.* reproductive tactics), the relationship between body mass and 15 GCs is consistent across environmental contexts, but might differ according to the life history stage of an individual. This work opens promising perspectives to further explore the 16 17 relationship between GC and fitness-related traits according to life history stages in free-18 ranging mammals across seasonal and environmental contexts. The timing and context-19 dependence of GC levels highlight the complexity of studying stress responses in the wild.

Keywords: stress response, body condition, Faecal Cortisol Metabolites, individual
 performance, ungulates

22 Introduction

23 Throughout their life, individuals have to adjust their morphology, physiology and/or 24 behaviour to cope with environmental variation. Part of this variation is predictable as 25 individuals can rely on environmental cues (e.g. photoperiod or temperature at the daily or 26 seasonal scales) to anticipate future conditions (Wingfield 2003, 2008). Whereas predictable 27 variation is not considered as stressful per se (i.e. eliciting a stress response), an unpredictable 28 perturbation can disrupt life cycles and trigger a stress response through the activation of the 29 hypothalamic-pituitary-adrenal (HPA) axis and the release of glucocorticoids (GCs), 30 departing them from the baseline level (Reeder and Kramer 2005). The primary role of these 31 hormones (namely cortisol and corticosterone) is to maintain an organism's energy balance 32 according to its requirements in its current environment (Wingfield 2013, Hau et al. 2016), 33 meaning that GCs promote allostasis (*i.e.* achieving stability through change) by ensuring 34 energy homeostasis despite predictable and unpredictable environmental and life history 35 variation (McEwen and Wingfield 2003, 2010, Romero et al. 2009). On the short-term, an 36 elevation of GC concentration in an individual facing a challenging situation is beneficial 37 because it promotes processes enhancing survival through reallocation of stored energy from 38 non-immediately essential functions (e.g. growth, reproduction) towards cardiovascular 39 functions or locomotion and foraging activities (Sapolsky et al. 2000). After a temporary 40 perturbation, the GC concentration often quickly returns to the baseline level (Reeder and 41 Kramer 2005). However, baseline GC concentration may remain elevated on the long-term 42 (*i.e.* days to weeks) as a result from exposure to repeated or long-lasting perturbations such as 43 prolonged inclement weather or food shortage (McEwen and Wingfield 2010, Hau et al. 44 2016). Such elevated GC concentration in the long-term can have adverse consequences on 45 individual performance through disruption of the immune function (Dhabhar 2014), inhibition 46 of growth, or decreased body condition (Reeder and Kramer 2005), with an intensity

depending on the species (Boonstra 2013). Indeed, long-term GC elevation can cause 'allostatic overload' (*i.e.* when the energy intake is lower that the energy required to support daily and seasonal activities and to cope with unpredictable perturbations, McEwen and Wingfield 2010). Although variations in GC concentration does not reflect only stress (MacDougall-Shackleton et al. 2019), GC levels are a widely used proxy for evaluating an individual physiological stress response (Palme 2019).

53 While many studies analysed the effect of an increase of GC beyond the baseline level (*i.e.* 54 acute stress-induced GC concentration) on individual performance, fewer have considered 55 how GCs at baseline concentration (*i.e.* homeostatic levels of hormones) affect the 56 performance of animals in the wild. Results from these rare studies remain equivocal 57 (Rogovin et al. 2003, 2008, Altmann et al. 2004, Ethan Pride 2005, Pauli and Buskirk 2007, 58 Cabezas et al. 2007, Pedersen and Greives 2008, Pinho et al. 2019), which could be explained 59 by the complex influence of environmental conditions (Henderson et al. 2017). When 60 resources are limited, increased energy demands can be detrimental by resulting in high levels 61 of GC and allostatic overload. Nevertheless, this detrimental effect may not be observed when 62 resources are abundant, as high energy input can contribute reducing allostatic load (McEwen 63 and Wingfield 2003, 2010, Romero et al. 2009). Food availability (*i.e.* energy availability) or 64 behavioural flexibility stimulating foraging activity can thus compensate for elevated GC 65 levels and associated higher energy requirements (Henderson et al. 2017). Animals inhabiting 66 suboptimal habitats (e.g. exposed to human disturbance, predation, intra- or interspecific 67 competition or pathogens) experience continuous stressful conditions and generally show a 68 higher GC concentration compared to conspecifics inhabiting optimal areas (Dantzer et al. 69 2013, 2014, Formenti et al. 2018, Boudreau et al. 2019, Dulude-de Broin et al. 2020, Carbillet 70 et al. 2020).

71 Additionally, there is evidence that the direction of the relationship between GCs and 72 performance can also depend on individual attributes, such as body condition, sex or 73 reproductive status and reproductive tactics (Tilbrook et al. 2000, Ricklefs and Wikelski 2002, 74 Wey et al. 2015, Blumstein et al. 2016, Vuarin et al. 2019). Under high energy demands triggered by elevated GC concentration, high quality individuals are more likely to prevent 75 76 themselves from reaching allostatic overload and may perform better than poor quality ones. 77 In African striped mice (*Rhabdomys pumilio*), elevated baseline GC concentration was related 78 to the selective disappearance of light individuals (Vuarin et al. 2019). Since the relationship 79 between GCs and performance is complex and involves individual attributes and 80 environmental context, both sources of variation have to be investigated to disentangle their 81 respective roles (Crespi et al. 2013, Dantzer et al. 2014).

82 Focusing on body mass provides a relevant approach to investigate the detrimental effects of 83 prolonged exposure to a high GC concentration. Indeed, body mass is often positively linked 84 to fitness components (e.g. Gaillard et al., 2000; Ronget et al., 2018) and is a trait easily 85 measured in the field that constitutes a reliable proxy of body condition in many species, 86 especially income breeders (Hewison et al. 1996, Andersen et al. 1998). High levels of GCs 87 are known to have a crucial role on body mass by increasing protein and amino-acid 88 catabolism and mobilising lipids (promoting gluconeogenesis), consequently decreasing body 89 mass (Boonstra et al. 1998, Dallman et al. 1999, Hodges et al. 2006, Rabasa and Dickson 90 2016).

However, the relationship between baseline GC concentration and body mass is complex.
Indeed, within seasonal baseline levels, GCs actually result in increased feeding behaviours
potentially promoting fat storing and body mass gain, as opposed to the previously-mentioned
GC actions on protein and amino-acid catabolism and lipid mobilisation (Landys et al. 2006).
Case studies have shown that the relationship between baseline GCs and body mass or

5

condition can be positive, negative or null (*e.g.* George et al. 2014, Wey et al. 2015, Hennin et
al. 2016, Boudreau et al. 2019). For instance, low body mass and poor body condition were
associated with higher baseline cortisol concentrations in Eurasian badgers (*Meles meles*,
George et al., 2014). On the other hand, experimental increase in GC concentration through
predation risk manipulation resulted in no changes in body condition in snowshoe hares
(*Lepus americanus*, Boudreau et al., 2019). Thus, more exploratory research are needed in
natural settings to better understand which factors can modulate this relationship.

103 In this exploratory study, we aimed to contribute to a better understanding of how high 104 baseline GC concentration relates to body mass in roe deer (*Capreolus capreolus*), an income 105 breeder for which body mass is a good proxy for body condition (Hewison et al. 1996, 106 Andersen et al. 2000, Pettorelli et al. 2006). We took advantage of the detailed and intensive 107 monitoring data collected through capture-mark-recapture for more than a decade at the 108 individual level in two populations subject to markedly different ecological contexts (*i.e.* one 109 inhabiting a good quality habitat and one population being strongly food-limited; Pettorelli et 110 al., 2006). To avoid measuring the capture-induced GC response (Romero & Reed, 2005), 111 longer-term, indirect measures of GC concentration can be obtained from biological matrices 112 other than blood (Sheriff et al. 2011). Indeed, blood GC concentration is a point in time 113 measure and circulating GCs concentration typically increases drastically within 3 minutes 114 following an individual's capture (Sapolsky et al. 2000, Romero and Reed 2005), which 115 makes it difficult to obtain reliable measures of the HPA baseline activity in free-ranging 116 animals (but see Sheriff et al. 2011, Lavergne et al. 2021). In this context, levels of faecal 117 glucocorticoid metabolites (FGMs) are particularly relevant as they represent an integrative 118 measure of GC concentration several hours before the capture event (*i.e.* baseline stress; Palme, 2019). Thus, we measured FGMs, as arguably representative of baseline 119

6

adrenocortical activity over a few hours, with a time delay of 12h on average in roe deer(ranging from 6 to 23 hours, Dehnhard et al. 2001).

122 As chronic stress can have both immediate and long-term consequences on fitness 123 components (Monaghan and Haussmann 2015), we tested the immediate relationship between 124 concomitant body mass and FGMs (*i.e.* short-term relationship), the relationship between 125 FGMs in a given year and the change of body mass between two consecutive years (*i.e.* 126 medium-term relationship) and the relationship between FGM measured on juveniles (i.e. 127 individuals in their first year of life) and body mass during the prime-age and senescent life 128 stages (*i.e.* long-term relationship). We first analysed the relationship between FGMs and 129 body mass measured at the same capture event. We expected individuals with higher FGM 130 concentration to be lighter than individuals with low FGM concentration. As roe deer are 131 income breeders that do not store fat (Hewison et al. 1996, Andersen et al. 1998), we expected 132 the catabolic actions of GCs to directly impact body mass and condition and to overcome the 133 effects of increased feeding behaviours promoted by GCs. Then, since chronically elevated 134 FGMs are expected to be deleterious on the medium to long-term, we tested whether FGMs 135 measured at a given capture influenced body mass changes across lifespan. Thus, we first 136 assessed the relationship between FGMs measured in a given year and a given body mass 137 change between two consecutive years, separately for growing individuals and prime-aged 138 adults having reached their full mass (*i.e.* between 4 and 10 years old; Douhard et al., 2017). 139 We expected that higher FGM concentration should result in a smaller mass gain for growing 140 individuals, and in a decrease in body mass for prime-aged adults, between two consecutive 141 years, as chronic stress can be linked to inhibited growth or decreased body condition (Reeder 142 and Kramer 2005). Finally, we tested for the effect of the stress experienced during the first 143 year of life on the individual body mass relative to the population and sex at a given age, from 144 the second year of life onwards. We predicted that individuals with higher FGMs during the

first year of life should be lighter later in life, as late-life performance in roe deer is affected by early-life environmental conditions (Gaillard et al., 2003). Lastly, in all analyses we expected the negative relationship between FGMs and body mass to be steeper in the foodlimited population due to higher allostatic load (McEwen and Wingfield 2003, Henderson et al. 2017), and we expected sexes to respond differently to higher FGMs levels due to the different reproductive tactics of males and females (Ricklefs and Wikelski 2002).

151 Materials and Method

152 **Study population and sample collection**

153 We studied roe deer in two populations inhabiting closed forests at Trois-Fontaines (TF – 154 1360 ha) in north-eastern France (48°43'N, 4°55'E) and at Chizé (CH – 2614 ha) in western 155 France (46°05'N, 0°25'W). Roe deer are medium-sized ungulates, weighing around 25 kg and 156 common in lowland woodlands throughout most of Europe. Roe deer display weak sexual 157 selection, with adult males only 10% heavier than females and party size less than three 158 females per buck. They are income breeders (Andersen et al. 2000), and to meet the markedly 159 increased energy needs during the late gestation and early lactation periods, adult females rely 160 on food resources rather than body reserves. Both sexes allocate high energy expenditure to 161 reproduction. Females produce twins every year from 2 to 12 years old (Andersen et al. 1998), and males allocate heavily in territory defence for 5-6 months during the rut period 162 163 (Johansson 1996). The TF population is characterised by a homogeneous habitat of good 164 quality on a broad spatial scale, with high forest productivity due to rich soils. On the other 165 hand, the CH population inhabits a less suitable heterogeneous habitat comprising three types 166 of varying quality (Pettorelli et al. 2001), with low forest productivity due to poor soils and 167 frequent summer droughts (Pettorelli et al. 2006). In both study sites, large carnivores are 168 absent, but hunting occurs occasionally to control population growth. Since 1975 in TF and

169 1977 in CH, a Capture-Mark-Recapture (CMR) program has taken place every winter, and 170 CMR analyses show that both populations were quite below carrying capacity during the 171 present study period (2010-2021 in TF, 2013-2021 in CH, unpublished data). Captures take 172 place during 10-12 days each year, which are spread across December (at TF) or January (at 173 CH) and March (Gaillard et al. 1993) and consists of drive-netting captures with 30-100 174 beaters pushing individuals towards nets surrounding specific areas of the forests. Given that 175 captures took place each year over 3 months, we might expect endocrine activity to vary 176 throughout the capture season according to environmental conditions (*i.e.* populations) and 177 sex (Dantzer et al. 2010, Sheriff et al. 2012). Therefore, we tested whether FGM levels varied 178 as a function of the Julian date, population and sex and found that FGMs increased throughout 179 the season in a population-specific manner (Supporting Information SI). Thus, all FGM measurements were standardised for the median Julian date of capture (9th of February) 180 181 specifically for each population. Successive capture events within a capture season may also 182 have consequences on FGM measurements during the following captures. However, most 183 capture days were more than 48 hours apart while in roe deer, FGMs peak from 6 to 23 hours 184 after an ATCH challenge and return to baseline levels between 28 and 31 hours after 185 treatment (Dehnhard et al. 2001). In some cases, captures took place during two consecutive 186 days, but were then conducted on opposite areas of the forest to minimise disturbances. 187 Likewise, morning and afternoon captures of a given day took place in different areas within 188 both forests. We thus considered that FGM levels were not influenced by previous captures. 189 Concerning the potential impact of the capture event itself, since roe deer were captured by 190 drive-netting and most animal manipulations occurred between 1 and 4 hours after capture, 191 we tested for a possible impact of this delay on FGM levels. We did not detect any increase or 192 decrease in FGMs (log-transformed) along with the time between capture and sampling (linear regression accounting for repeated measurements of a given individual: 0.006 hour⁻¹ \pm 193

194 0.01 SE, t = 0.44, p = 0.7), even when the delay was > 6h (mean FGMs 6h onwards after 195 capture compared to mean FGMs measured within 6h following capture, accounting for 196 repeated measurement of a given individual, -0.06 ± 0.06 SE, t = -1.05, p = 0.3) (Dehnhard et 197 al. 2001). Individuals of known age (*i.e.* captured within their first year of life) were weighed, 198 and faecal matter has been collected since 2010. During the capture period, diet is similar and 199 mostly composed of brambles (Rubus sp.) and ivy (Hedera helix) in the two deciduous forests 200 (Tixier and Duncan 1996), so FGM measurements between populations should not be biased 201 according to diet composition. During this period, females can be gestating, and differences in 202 female reproductive status could result in FGM variability (Brunton et al. 2008, Dantzer et al. 203 2010). Nevertheless, we did not account for females' reproductive status in our models, since 204 i) we have information about reproductive status (*i.e.* pregnant or not and number of foetuses) 205 only at CH where ultrasounds are performed on captured females, ii) most of them (*i.e.* 92 %) 206 were gestating at that time and iii) due to the delayed embryonic implantation (Aitken 1974), 207 gestation is at a very early stage during the capture season. Body mass measured on juveniles 208 (*i.e.* at about 8 months of age) depends on the date of capture. Juveniles gained on average 12 209 g/day and 24 g/day in CH and TF, respectively, during the capture period (Douhard et al. 210 2017). Therefore, we standardised juvenile body mass with a linear regression, using the 211 above-mentioned Julian date-body mass relationship. Thus, we computed the individual body mass expected on the 9th of February, the median date of captures at CH and TF. In these two 212 213 populations, cohort quality is reliably measured by the cohort-specific average juvenile mass 214 corrected for the Julian date of capture (Gaillard et al. 1996). This proxy of environmental 215 quality from the birth of an individual (typically in May) to its capture as juvenile in winter 216 was obtained for all years, and will be referred to as 'cohort quality' hereafter.

217 Faecal glucocorticoid metabolites (FGMs)

218 Baseline adrenocortical activity was estimated through FGMs (Palme 2019). We collected 219 faecal matter rectally at capture from 2010 to 2021. Faeces were frozen at -20 °C within 24 220 hours prior to 2013 in CH and 2017 in TF, and immediately frozen at -80 °C after collection 221 since then. The time between faecal sampling and freezing, as well as freezing temperature, 222 may impact FGM values, with longer delays and higher temperature likely to result in lower 223 FGM levels due to bacterial activity (Lexen et al. 2008, Hadinger et al. 2015, Carbillet et al. 224 2023b). In CH, the first FGM values available in our dataset are post-2013, so all samples 225 were immediately frozen at -80 °C. However, in TF, FGM values are effectively higher when 226 samples were immediately frozen (0.43 ± 0.06 SE, t = 7.62, p < 0.0001). This is accounted for 227 in our models by adding the year of capture as a random effect. Extraction of FGM followed a 228 methanol-based procedure and the analysis was performed using a group-specific 11-229 oxoaetiocholanolone enzyme immunoassay (EIA), a method previously described in details 230 (Möstl et al. 2002) and validated for roe deer (Zbyryt et al. 2018). In brief, 0.5 g (\pm 0.005) of 231 faeces were vortexed in 5 mL of 80% methanol before being centrifuged for 15 minutes at 232 2500 g (Palme et al. 2013). The amount of FGM was determined in an aliquot of the 233 supernatant diluted 10 times in assay buffer. Measurements were done in duplicate with intra-234 and inter-assay coefficients lower than 10% and 15%, respectively. FGMs are expressed as 235 nanograms per grams of wet faeces (ng/g). The data were then log-transformed for the 236 statistical analyses (henceforth called FGMs).

237 Statistical analyses

All analyses were performed using R version 4.2.2 (R Core Team 2022). Two raw FGM measures were unusually high: 5192 and 6194 ng/g, for a female in CH aged 10, and a female in TF aged 1, respectively (see SI). Results exclude these extreme values (analyses including

11

them are reported in SI), but we specify whether adding them yielded different conclusions ornot.

243 FGM repeatability

Individual FGM repeatability was calculated for all individuals, and separately for each population, using the 'rptR' package (Stoffel et al. 2017). Repeatability analysis included individuals sampled only once to improve estimates of the within-individual variance (Martin et al. 2011). Within-individual FGM repeatability was detectable but weak in both CH (r =0.14, 95% CI = [0.03, 0.26]) and TF (r = 0.15 [0.01, 0.29]).

249 *Model structure*

We tested the hypothesis that body mass is related to FGM levels, and that this relationship may depend on individual (*i.e.* sex) and environmental (*i.e.* population and condition at birth) characteristics, using linear mixed effect models (LMMs) with a normal error distribution. All continuous covariates were mean-centred so that the intercept is the relative individual body mass for the mean cohort quality and/or mean FGMs. Visual inspection of model residuals confirmed that they fulfilled the assumptions of Gaussian distribution and homoscedasticity.

256 Short-term relationships between FGMs and body mass measured at the same capture event

257 We first assessed the relationship between FGMs and body mass measured the same year (*i.e.* 258 at the same capture) to test the hypothesis that higher baseline FGMs result in short-term 259 adverse consequences on body mass. Individuals in their first year of life (*i.e* juveniles) were 260 analysed separately from individuals in their second year of life onwards, because juveniles 261 have to allocate to growth and are much more susceptible to any environmental harshness 262 than adults, making the first year of life is the critical period of roe deer population dynamics 263 (Hamel et al. 2009, Gaillard et al. 2013). In addition, metabolic rate is generally higher in 264 juveniles than in adults due to the costs of growth (Glazier 2005) and metabolic rates can alter

265 hormones metabolization and excretion, making it difficult to compare juvenile and adult 266 FGM concentrations (Goymann 2012). Since juveniles are not yet reproductively active, they 267 also likely display different endocrine profiles than adults (Dantzer et al. 2010). Finally, adult 268 roe deer habituate faster than juveniles to stress, which can in turn affect the relationship 269 between FGM and fitness-related trait (Bonnot et al. 2018). Body mass varies with age, and at 270 a given age, varies between sexes and according to environmental conditions at birth (i.e. 271 cohort effects, Hamel et al. 2016). We thus tested the relationship between FGMs measured in 272 a given year and individual body mass relative to the average body mass of all individuals of 273 the same age, population and sex, considering only ages for which we had data from at least 3 274 individuals. Therefore, the average body mass was calculated up to 10 and 15 years old in 275 males and females at CH, respectively, and up to 12 and 13 years old in males and females at 276 TF, respectively. For juveniles, we analysed the relationship between FGMs and body mass 277 measured the same year on 368 juveniles (78 females and 96 males in CH, 91 females and 278 103 males in TF). The response variable was the mass corrected for the date of capture (see 279 above) and fixed explanatory variables included FGMs (corrected for the date of capture and 280 the population), cohort quality, population, sex and the two-way interactions between FGMs 281 and the other covariables. Cohort quality was expressed as a relative cohort quality (*i.e.* the 282 difference between mean cohort quality in each population and an individual cohort quality), 283 so there is no redundancy with the population variable. The year of birth of the individuals 284 (*i.e.* cohort) was included as a random effect. For individuals aged 2 years or older, the dataset 285 included 655 observations on 377 individuals: 104 females (218 observations) and 83 males 286 (136 obs.) in CH, and 106 females (164 obs.) and 84 males (137 obs.) in TF. The response 287 variable used to test for the FGMs-mass relationship was the individual body mass minus the 288 average mass of roe deer of the same population, same sex and same age, regardless of their 289 year of capture (hereafter 'relative body mass). Fixed effects included continuous variation in

FGMs, relative cohort quality, population, sex and the two-way interactions between FGMs and other covariables. Random effects of the cohort and of the year of capture were also included. Random effect of the individual identity (ID) was also included to account for repeated measurements on the same individuals.

294 Medium-term relationships between FGMs and body mass change between two consecutive 295 years

296 Baseline FGMs can reflect medium-term consequences of GCs on body mass. The 297 relationship between FGMs and the change of body mass between two consecutive years was 298 analysed separately for early-growing individuals (i.e. between age 1 and 2), late-growing 299 individuals (*i.e.* between the second year of life and adulthood at 4 years old, Hewison et al. 300 2011) and for prime-aged adults which had reached their full body mass (*i.e.* from 4 to 10 301 years old, Hewison et al., 2011). The response variable was the change in relative body mass. 302 Briefly, the change in relative mass expresses the change in body mass of a given individual 303 between two ages in relation to the change in body mass of all individuals of the same sex and 304 population between the same ages. The relative mass was calculated as the difference between 305 the mass of an individual at age x, and the mean mass of all individuals of age t of the same 306 sex and the same population. The change in relative body mass was calculated as the 307 difference between the relative mass at age t + 1 and the relative mass at age t. Fixed effects 308 included relative cohort quality, population, sex, FGMs (either measured at age t or 309 considered as the average of the FGM values measured at age t and age t + 1), body mass at 310 age t (i.e. initial body mass) and all two-way interactions between FGMs and the other 311 covariables. Random effect of the cohort was included, and for late-growing and prime-aged 312 individuals, random effects of the year of capture and individual ID were also included. For 313 growing individuals, the dataset included 99 individuals with FGMs measured as juveniles, 314 and 67 individuals when including FGMs measured during the first and second years of life to

315 calculate the mean value. For both late-growing individuals and adults, we kept a single 316 observation per individual since the inclusion of individual ID as a random effect created 317 singularities. For individuals with several observations, we kept the one for which the 318 individual's age was the closest to the mean age of all individuals with a unique observation 319 according to sex and population, among observations with complete data. The final dataset 320 comprised 85 individuals in their late-growth period and 90 prime-aged adults with FGMs 321 measured at age t, and 63 late-growing individuals and 71 prime-aged adults for which we 322 had measurements at age *t* and t+1.

323 Long-term relationships between FGMs during early life and body mass later in life

324 As elevated baseline FGMs are expected to have negative effects on body mass on the long-325 term, and as environmental conditions during the first year of life have carry-over effects on 326 performance later in life in roe deer (Gaillard et al. 2003), we tested whether FGMs during 327 development are associated with adult body mass. Only individuals for which we measured 328 FGMs as juvenile and body mass beyond the second year of life were analysed. We used 345 329 observations on 159 individuals for which we measured FGMs as juvenile and body mass as 330 adult: 34 females (78 obs.) and 44 males (87 obs.) in CH, and 42 females (99 obs.) and 39 331 males (81 obs.) in TF. The response variable was the relative individual body mass as defined 332 above. Fixed effects included FGMs measured when juvenile, relative cohort quality, 333 population, sex and the two-way interactions between FGMs and the other covariables. 334 Random effects of the cohort and the year of capture were included, as well as individual ID 335 to account for repeated measurements on the same individuals.

336 *Model selection*

Final models were selected based on the second order Akaike Information Criterion (AICc, *i.e.* Akaike Information Criterion corrected for small sample sizes). We compared all sub-

15

339	models included in the full model described above and for each model AICc scores were
340	computed with the "MuMIn" package (v. 1.47.5, Bartoń 2023). We retained the best-fitting
341	model as the one with the lowest AICc score (Burnham and Anderson 2002), or the simplest
342	model (<i>i.e.</i> with the lowest number of parameters) within the set of models within 7 Δ AICc.
343	Indeed, models within 7 Δ AICc are plausible models, become increasingly equivocal up to 14
344	Δ AICc, and implausible afterwards (Burnham et al. 2011). For each variable we estimated its
345	effect size (β) with 95% confidence intervals (95% CI) and calculated marginal and
346	conditional R ² . We provide full model selection tables in SI.

347 **Results**

FGM concentrations ranged from 8 to 3428 ng/g with a median value of 689 ng/g. The median FGMs was 674 ng/g (range: 34-3275 ng/g) in CH, and 715 ng/g (range: 8-3428 ng/g) in TF.

351

352 Short-term relationships between FGMs and body mass measured at the same capture 353 event

```
354 Juveniles
```

The retained model highlighted the expected positive relationship between cohort quality and body mass ($\beta_{Cohort quality} = 1.08$ [0.84, 1.32], Table 1, SI), but no relationship between FGMs and body mass could be evidenced (Figure 1(a), Table 1, SI). Results were similar when including female of TF with a high FGM value (SI). Note that since the random effect of the cohort created singularities, it was removed and models therefore consisted of linear models.

360

Adults

We found support for a short-term negative relationship between individual relative body mass and FGMs in adults ($\beta_{FGM} = -0.32$ [-0.46, -0.18], Figure 1(b), Table 1, SI). Results were

363	similar when including the high FGM value measured on a female of CH (SI). Since the
364	random effect of the cohort created singularities, the models only included individual ID and
365	year of capture as random effects.

366 Medium-term relationships between FGMs and change in body mass between two

367 consecutive years

368 *Early-growing individuals*

We did not find any evidence for a relationship between FGMs, either measured in juveniles or considered as the mean FGM value between the first and second years of life, and the change in relative body mass for growing individuals (Figure 2(a), Table 1, SI). Results were similar when including the female of CH with the highest FGM value (SI). All models included cohort as random effect.

374 *Late-growing individuals*

375 We found a negative relationship between body mass gain and initial mass ($\beta_{mass} = -0.15$ [-376 0.25, -0.05], Table 1, SI) for the dataset accounting for FGMs measured in juveniles. With the 377 dataset including the mean FGM value between FGMs measured at age t and age t+1, we also 378 found a negative relationship between late growth and body mass measured at age t ($\beta_{mass} = -$ 379 0.17 [-0.27, -0.07], Table 1, SI). However, in both cases, we found no support for a 380 relationship between FGMs and change in relative body mass (Figure 2(b), Table 1, SI). 381 Models resulted in singularities when the random effect of the cohort was included so that 382 only the year of capture was included as a random effect in the models.

383

Prime-aged adults

In no cases (*i.e.* neither when accounting for FGM measured at age t or for the mean FGM value between age t and age t+1) was a relationship found between FGMs and change in

386	relative body mass (Figure 2(c), Table 1, SI). Similarly, we found no evidence that mass
387	measured at age t , cohort quality, population or sex were related to changes in relative body
388	mass (Table 1, SI). Models resulted in singularities when the random effect of the cohort was
389	included, thus, only the random effect of the year of capture was included in the models.
390	Long-term relationships between FGMs during early-life and body mass later in life
550	Long term relationships between r Givis during carry me and body mass later in me
391	We found no evidence for a relationship between FGM measured in juveniles, cohort quality,
391 392	We found no evidence for a relationship between FGM measured in juveniles, cohort quality, population or sex, and adult relative body mass (Figure 3, Table 1, SI). Results were similar
391 392 393	We found no evidence for a relationship between FGM measured in juveniles, cohort quality, population or sex, and adult relative body mass (Figure 3, Table 1, SI). Results were similar when including the three observations of the adult female of CH with the highest FGM value

395 effects, because including the cohort created singularities.

Table 1. Linear and linear mixed effect models selected for the short-, medium- and long-term relationships between relative body mass and faecal glucocorticoid metabolites (FGMs). Models accounted for sex, population and for relative cohort quality (Qcohort, the difference between the mean cohort quality in each population and an individual cohort quality). Models were selected through model selection based on AICc. 95%CI: 95% confidence intervals, V: variance, SD: standarddeviation.

			SH	ORT-TERM	1			
	,	Juveniles					Adults	
Random effe	ects	V	SD	Ra	andom effects	V		SD
					Individual ID	3.45		1.86
				Y	ear of capture	0.29	0.54	
Fixed effect	ts E	stimate	95%CI	F	Fixed effects	Estimate	9	5%CI
Intercept		-0.06	[-0.28, 0.16]		Intercept	-0.02	[-0.3	89, 0.35]
Qcohort		1.08	[0.84, 1.32]		FGM	-0.32	[-0.4	6, -0.18]
Marginal R	₹ 2	0.18			Marginal R ²	0.02		
Conditional	R²			C	Conditional R ²	0.81		
			ME	DIUM-TERM	N			
			FGM m	easured at	age t			
E	Early-grow	th		Late-growtl	h	P	rime-aged	
Random effects	v	SD	Random effects	v	SD	Random effects	v	SD
Cohort	0.65	0.81	Year of capture	0.41	0.64	Year of capture	0.24	0.49
Fixed effects	Estimat e	95%CI	Fixed effects	Estimat e	95%CI	Fixed effects	Estimat e	95%CI
Intercept	-0.35	[-0.92, 0.22]	Intercept	-0.55	[-1.02, - 0.08] [-0.25, -	Intercept	-0.19	[-0.60, 0.22]
			Initial mass	-0.15	0.05]			
Marginal R ²	-		Marginal R ²	0.09		Marginal R ²	-	
Conditional R ²	0.21		Conditional R ²	0.32		Conditional R ²	0.15	
			Mean FGM	(FGMt and	FGMt+1)			
E	Early-grow	th		_ate-growtl	h	P	rime-aged	
Random effects	v	SD	Random effects	v	SD	Random effects	v	SD
Cohort	0.90	0.95	Year of capture	0.32	0.56	Year of capture	0.18	0.42
Fixed effects	Estimat e	95%CI	Fixed effects	Estimat e	95%Cl	Fixed effects	Estimat e	95%CI
Intercept	-0.37	[-1.11, 0.37]	Intercept	-0.47	[-0.94, - 0.00]	Intercept	-0.28	[-0.71, 0.15]
			Initial mass	-0.17	[-0.27, - 0.07]			
Marginal R ²	-		Marginal R ²	0.13		Marginal R ²	-	
Conditional R ²	0.26		Conditional R ²	0.32		Conditional R ²	0.10	
LONG-TERM								
Ran	ndom effec	ts		V			SD	
In	ndividual ID			3.65			1.91	
Yea	ar of capture	Ð		0.63			0.79	

FGM levels (corrected for the date of capture, log-transformed) 404 Figure 1. Relationship between faecal glucocorticoid metabolites (log-transformed 405 FGMs, corrected for the date of capture and population) and individual relative body 406 407 mass (individual body mass (corrected for the date of capture for juveniles) minus the average body mass of all individuals of the same age, population and sex) for (a) 408 juveniles (N = 368 individuals) and for (b) adults aged 2 years old onwards (N = 655409 observations on 377 individuals). Points are raw data and line is the prediction from 410 the retained model with 95% confidence intervals. 411

FGM levels (corrected for the date of capture, log-transformed)

Figure 2. Relationship between faecal glucocorticoid metabolites (logtransformed FGMs, corrected for the date of capture and population) and change in relative body mass between two consecutive years for (a) early-growing individuals (between the first and second years of life), with FGMs either measured the first year of life (N = 99, orange points)or considered as the mean FGMs between the first and second years (N = 67, blue points); for (b) late-growing individuals (between 2 and 4 years old) with FGMs either measured at age t (N = 85, orange points) or considered as the mean FGMs between years t and t+1 (N = 63, blue points) and for (c) prime-aged adults which had reached their full body mass (from 4 years old to 10 years old), with FGMs either measured at a given age t (N = 90, orange points) or considered as the mean FGM between age t and age t+1 (N = 71, blue points). Points are raw data

Juvenile FGM levels (corrected for the date of capture, log-transformed)

Figure 3. Relationship between faecal glucocorticoid metabolites (log-transformed FGMs, corrected for the date of capture and population) measured in juveniles and individual relative body mass (*i.e.* individual body mass minus the average body mass of all individuals of the same age, sex and population) (N = 345 observations on 159 individuals). Points are raw data.

441

435

442 **Discussion**

443 The relationship between GCs and fitness-related traits such as body mass is yet to be fully 444 deciphered. Recent reviews indicate that studies in the wild have led to contrasting results by 445 showing either negative, positive or no relationships between measures of stress and studied 446 traits (Bonier et al. 2009, Crespi et al. 2013, Dantzer et al. 2014). A salient conclusion from 447 these studies is that the relationship depends on an individual's ecological context and internal 448 state. In the present study, the longitudinal monitoring of individual roe deer in two populations exposed to markedly different environmental contexts - one facing limiting 449 resources and the other benefiting from a higher availability and quality of resources – 450 451 allowed us to analyse the relationship between FGMs and body mass, while accounting for ecological factors and individual attributes such as sex and age. On the short-term, we found 452

453 clear evidence for a negative relationship between baseline adult FGMs and adult body mass,

454 an important driver of fitness in this species (Gaillard et al. 2000).

455 We could not detect any relationship between FGMs and the change in relative body mass 456 between two consecutive years, neither in growing or prime-aged individuals. In late-growing 457 individuals only, a negative relationship between initial body mass and relative body mass 458 gain appeared, so that lighter individuals of age t tended to gain more weight from one year to 459 the other, suggesting the existence of compensatory growth mechanisms in these populations 460 (Metcalfe and Monaghan 2001). Likewise, we found no support for a relationship between 461 early-life FGM levels and adult body mass. Indeed, we found that FGMs and body mass were 462 negatively associated only on the short-term and in adult individuals only. This suggest that 463 FGMs relate to body mass, but without any carry-over effects, and that FGMs are related to 464 body mass differently according to life-history stages. High viability selection at the juvenile 465 stage in the two populations (Toïgo et al. 2006, Douhard et al. 2014) could explain that we 466 could not observe any carry-over effects of FGMs on body mass, and an absence of evidence 467 for a short-term relationship between FGMs and body mass in juveniles.

468 Roe deer body mass correlated negatively with FGM levels on the short-term, in adults, with 469 no detectable population or sex differences. This result suggests that the relationship between 470 FGM and body mass is consistent across individuals and between environmental contexts in 471 this species. Roe deer are income breeders, relying mostly on acquired resources rather than 472 on stored energy (Andersen et al. 2000). As GCs stimulate activity through the mobilisation 473 of energy stored (Sapolsky et al. 2000, Reeder and Kramer 2005), the physiological costs of 474 elevated GC levels are expected to directly impair body condition as individuals do not have 475 body reserves to buffer elevated energy requirements (Henderson et al. 2017). However, 476 given marked between-population differences in environmental context we would have 477 expected individuals at TF to be able to mitigate the physiological costs of high GC levels by

478 reducing their allostatic load (McEwen and Wingfield 2010, Henderson et al. 2017), 479 compared to individuals at CH which were expected to enter allostatic overload, thus 480 expecting different allostatic load in the two populations (McEwen and Wingfield 2010). Both 481 populations differ in terms of overall habitat quality, with CH being characterised by a low 482 forest productivity due to poor soils, mild winters, but frequent droughts during summer, and 483 TF by a high forest productivity due to rich soils and relatively wet summers (Pettorelli et al. 484 2006). Accordingly, life history parameters differ between populations. This is especially the 485 case for juvenile survival (Gaillard et al. 1993), body condition (Gilot-Fromont et al. 2012), 486 senescence patterns (haematological parameters: Jégo et al. 2014, body mass: Douhard et al. 487 2017, immune system: Cheynel et al. 2017), and the relation between FGMs and immune 488 traits (Carbillet et al. 2023a). Thus, differences in the relationship between FGMs and body 489 mass was expected to occur between populations, with the strongest negative association in 490 CH, the poorer habitat in which individuals would be more at risk of allostatic overload (McEwen and Wingfield 2010, Henderson et al. 2017). Red deer (Cervus elaphus) showed 491 492 different allostatic loads across populations with different densities and environmental 493 conditions, with individuals facing high density or poor-quality habitat having higher FGM 494 levels and lower body mass (Caslini et al. 2016). Our results rather suggest that both roe deer 495 populations are in a state of allostatic overload. During the winter season, roe deer face more 496 severe winters at TF than at CH, which can in turn mitigate, during this period, the overall 497 better resource quality in TF. This could partly explain why no population differences were 498 detected. It also suggests that allostatic load can change across seasons, as shown in wild grey 499 mouse lemurs (Microcebus murinus, Hämäläinen et al. 2015), and that this variation could 500 operate in a population-specific way. It is therefore of great interest to assess the GC-fitness 501 relationship across different environmental contexts, including different years or climatic 502 conditions, and through various life history stages. Finally, the absence of large predators and

the weak hunting pressure in both population might at least partly account for the absence of support for a steeper relationship at CH. Studies of roe deer populations facing varying conditions in terms of presence/absence of large predators and hunting pressure, in Poland, showed that hunted populations without large predators had highest FGM levels with largest variation (Zbyryt et al. 2018). In support, observed variation in FGM levels was high in both populations (CV = 59.7 % and 55.3 % in CH and TF, respectively), which could mitigate the relationship between body mass and FGMs and differences between populations.

510 Similarly, we could not detect any sex difference, despite the marked differences in the stress 511 response in males and females reported in mammals, due in part to the interaction between the 512 HPA and reproductive axes (Viau 2002, Wilson et al. 2005, and see Toufexis et al. 2014, 513 Novais et al. 2016 for reviews). This absence of sex-differences also suggests that during this 514 period of the year, female reproductive status does not influence the relationship between 515 FGMs and body mass. In reindeer (*Rangifer tarandus*), cortisol levels did not differ between 516 males, non-pregnant or pregnant females, but showed seasonal variation (Bubenik et al. 517 1998). Accordingly, red deer showed no sex-differences in their levels of FGMs but also 518 showed seasonal variation (Huber et al. 2003). Thus, it would be interesting to collect FGM 519 data of roe deer during different seasons as the stress response can vary accordingly (Bubenik 520 et al. 1998, Vera et al. 2011). It would also provide an opportunity to investigate whether the 521 different reproductive tactics of males and females can affect the relationship between GC and 522 fitness-related traits. Females of an iteroparous, long-lived species such as roe deer are 523 expected to trade reproduction for survival when environmental conditions are poor (Hirshfield and Tinkle 1975). Thus, females are expected to be stress-responsive during their 524 525 reproductive period to be able to switch between alternative physiological states according to 526 whether they reproduce or not, due to their future opportunities of reproducing (Ricklefs and 527 Wikelski 2002). On the other hand, males allocate heavily to reproduction by defending

528 territories for half of the year (Johansson 1996). Territory defence results in elevated 529 physiological damages, whatever their reproductive success. Therefore, females could show a 530 larger variability in the way they respond to GC than males which are more constrained. This 531 provides promising perspectives to better understand the relationship between GC levels and 532 fitness-related traits according to sex-specific life history stages. It would also be interesting 533 to investigate whether offspring have different life-history trajectories according to their 534 mothers' baseline FGMs during gestation, as shown in North American red squirrels 535 (Tamiasciurus hudsonicus, Dantzer et al. 2013), or according to whether mother were 536 captured or not during gestation to further investigate the impact of capture on individuals.

537 FGMs have been previously used as proxies to evaluate the homeostatic level or allostatic 538 load in wild populations, but the results should be interpreted with caution. FGMs do not fully 539 reflect an individual's stress response because GCs only represent one part of the complex 540 endocrine pathway involved in this response (MacDougall-Shackleton et al. 2019). Moreover, 541 although GCs are often referred to as "stress hormones", at baseline levels, their primary role 542 is to acquire, deposit and mobilise energy (Busch and Hayward 2009). Thus, unlike acute GC 543 concentrations, baseline GCs do not only provide information on how an individual responds to stressors, but also on its physiology and activity (Reeder and Kramer 2005). It has been 544 545 reported that the acute GC response tends to be attenuated in individuals repeatedly exposed 546 to stressors (e.g. Ader et al. 1968, Kant et al. 1983, Vera et al. 2011). However, baseline GC 547 levels can also, but not always, be lower in individuals chronically exposed to environmental 548 stressors, making it difficult to interpret FGM levels in the wild. Indeed, whether low baseline 549 GCs actually represent a non-stressed individual rather than an individual chronically exposed 550 to stressors is difficult to tell (Davis and Maney 2018).

In conclusion, we found that high baseline FGMs may have immediate adverse consequenceson body mass and that the relationship between body mass and FGM levels seems to depend

553 on an individual life-stage, rather than on the environmental context or sex. Through this 554 work, we therefore emphasise the need to account for both environmental and individual 555 factors, including life history traits, to better capture the relationship between the stress 556 response and fitness-related traits. We also put emphasis on the idea to collect FGM across 557 different temporal and environmental contexts to evaluate how the GC-fitness relationship can 558 be modulated according to the seasonal and environmental conditions. To do so, it appears 559 critical to have access to longitudinal data. Measuring proxies of stress together with fitness-560 related traits throughout the life of individuals is likely to be the only way to properly refine 561 our understanding of the implications of stress for fitness.

562 **Conflict of interest**

563 The authors declare having no conflict of interest.

564 Ethics

The research presented in this manuscript was done according to all institutional and/or national guidelines. For both populations (Trois-Fontaines and Chizé), the protocol of capture of roe deer, under the authority of the Office Français de la Biodiversité (OFB), was approved by the Director of Food, Agriculture and Forest (Prefectoral order 2009-14 from Paris). All procedures were approved by the Ethical Committee of Lyon 1 University (project DR2014-09, June 5, 2014).

571 **Funding**

This project was funded by the Université de Lyon, VetAgro Sup and the Office Français de
la Biodiversité (OFB, project CNV-REC-2019-08).

574 Acknowledgements

27

- 575 This work was conducted as part of a Ph.D. funded by the Université de Lyon and the Office
- 576 Français de la Biodiversité (OFB). We are grateful to all technicians, researchers and
- volunteers participating in the collect of data on both sites (Trois-Fontaines and Chizé). We
- 578 particularly thank the editor and two anonymous reviewers for their insights and valuable
- 579 comments, and Philippe Veber and Marie-Laure Delignette-Muller for their precious help
- 580 considering the statistical analyses.

581 **References**

- Ader, R., Friedman, S. B., Grota, L. J. and Schaefer, A. 1968. Attenuation of the plasma corticosterone response to handling and electric shock stimulation in the infant rat. *Physiol. Behav.* 3(2): 327–331. 10.1016/0031-9384(68)90109-1
- Aitken, R. J. 1974. Delayed implantation in roe deer (*Capreolus capreolus*). *Reproduction* 39(1): 225–233. 10.1530/jrf.0.0390225
- Altmann, J., Lynch, J. W., Nguyen, N., Alberts, S. C. and Gesquiere, L. R. 2004. Life-history
 correlates of steroid concentrations in wild peripartum baboons. *Am. J. Primatol.* 64(1): 95–106. 10.1002/ajp.20064
- Andersen, R., Duncan, P. and Linnell, J. D. C. 1998. *The European roe deer: The biology of success*. Scandinavian University Press, Oslo.
- Andersen, R., Gaillard, J.-M., Linnell, J. D. C. and Duncan, P. 2000. Factors affecting
 maternal care in an income breeder, the European roe deer. *J. Anim. Ecol.* 69(4): 672–
 682. 10.1046/j.1365-2656.2000.00425.x
- Bartoń, K. 2023. MuMIn: Multi-Model Inference.https://CRAN.R project.org/package=MuMIn
- Blumstein, D. T., Keeley, K. N. and Smith, J. E. 2016. Fitness and hormonal correlates of
 social and ecological stressors of female yellow-bellied marmots. *Anim. Behav.* 112:
 1–11. 10.1016/j.anbehav.2015.11.002
- Bonier, F., Martin, P., Moore, I. and Wingfield, J. 2009. Do baseline glucocorticoids predict
 fitness? *Trends Ecol. Evol.* 24(11): 634–42. 10.1016/j.tree.2009.04.013
- Bonnot, N. C., Bergvall, U. A., Jarnemo, A. and Kjellander, P. 2018. Who's afraid of the big
 bad wolf? Variation in the stress response among personalities and populations in a
 large wild herbivore. *Oecologia* 188(1): 85–95. 10.1007/s00442-018-4174-7
- Boonstra, R., Hik, D., Singleton, G. R. and Tinnikov, A. 1998. The impact of predatorinduced stress on the snowshoe hare cycle. *Ecol. Monogr.* 68(3): 371–394.
 10.1890/0012-9615(1998)068[0371:TIOPIS]2.0.CO;2

608 609	Boonstra, R. 2013. Reality as the leading cause of stress: Rethinking the impact of chronic stress in nature. <i>Funct. Ecol.</i> 27: 11–23. 10.1111/1365-2435.12008
610	Boudreau, M. R., Seguin, J. L., Boonstra, R., Palme, R., Boutin, S., Krebs, C. J. and Murray,
611	D. L. 2019. Experimental increase in predation risk causes a cascading stress response
612	in free-ranging snowshoe hares. <i>Oecologia</i> 191 (2): 311–323. 10.1007/s00442-019-
613	04500-2
614	Brunton, P. J., Russell, J. A. and Douglas, A. J. 2008. Adaptive responses of the maternal
615	hypothalamic-pituitary-adrenal axis during pregnancy and lactation. J.
616	<i>Neuroendocrinol.</i> 20(6): 764–776. 10.1111/j.1365-2826.2008.01735.x
617	Bubenik, G. A., Schams, D., White, R. G., Rowell, J., Blake, J. and Bartos, L. 1998. Seasonal
618	levels of metabolic hormones and substrates in male and female reindeer (<i>Rangifer</i>
619	<i>tarandus</i>). Comp. Biochem. Phys. C 120(2): 307–315. 10.1016/S0742-8413(98)10010-
620	5
621	Burnham, K. P., Anderson, D. R. and Huyvaert, K. P. 2011. AIC model selection and
622	multimodel inference in behavioral ecology: Some background, observations, and
623	comparisons. <i>Behav. Ecol. Sociobiol.</i> 65(1): 23–35. 10.1007/s00265-010-1029-6
624 625	Burnham, K. P. and Anderson, D. R. 2002. <i>Model selection and multimodel inference: A practical information-theoretic approach</i> . Springer, New York.
626	Busch, D. S. and Hayward, L. S. 2009. Stress in a conservation context: A discussion of
627	glucocorticoid actions and how levels change with conservation-relevant variables.
628	<i>Biol. Conserv.</i> 142(12): 2844–2853. 10.1016/j.biocon.2009.08.013
629 630 631	Cabezas, S., Blas, J., Marchant, T. A. and Moreno, S. 2007. Physiological stress levels predict survival probabilities in wild rabbits. <i>Horm. Behav.</i> 51 (3): 313–320. 10.1016/j.yhbeh.2006.11.004
632	Carbillet, J., Rey, B., Palme, R., Morellet, N., Bonnot, N., Chaval, Y., Cargnelutti, B.,
633	Hewison, A. J. M., Gilot-Fromont, E. and Verheyden, H. 2020. Under cover of the
634	night: Context-dependency of anthropogenic disturbance on stress levels of wild roe
635	deer <i>Capreolus capreolus</i> . <i>Conserv. Physiol.</i> 8 (1): coaa086. 10.1093/conphys/coaa086
636 637 638 639 640	 Carbillet, J., Hollain, M., Rey, B., Palme, R., Pellerin, M., Regis, C., Geffré, A., Duhayer, J., Pardonnet, S., Debias, F., Merlet, J., Lemaître, JF., Verheyden, H. and Gilot-Fromont, E. 2023a. Age and spatio-temporal variations in food resources modulate stress-immunity relationships in three populations of wild roe deer. <i>Gen. Comp. Endocrinol.</i> 330: 114141. 10.1016/j.ygcen.2022.114141
641	Carbillet, J., Palme, R., Maublanc, ML., Cebe, N., Gilot-Fromont, E., Verheyden, H. and
642	Rey, B. 2023b. Instability of fecal glucocorticoid metabolites at 4°C: Time to freeze
643	matters. J. Exp. Zool. Part A. Ecol. Integr. Physiol. in press. 10.1002/jez.2704
644 645 646 647	Caslini, C., Comin, A., Peric, T., Prandi, A., Pedrotti, L. and Mattiello, S. 2016. Use of hair cortisol analysis for comparing population status in wild red deer (<i>Cervus elaphus</i>) living in areas with different characteristics. <i>Eur. J. Wildlife Res.</i> 62(6): 713–723. 10.1007/s10344-016-1049-2

648	Cheynel, L., Lemaître, JF., Gaillard, JM., Rey, B., Bourgoin, G., Ferté, H., Jégo, M.,
649	Débias, F., Pellerin, M., Jacob, L. and Gilot-Fromont, E. 2017. Immunosenescence
650	patterns differ between populations but not between sexes in a long-lived mammal.
651	<i>Sci. Rep.</i> 7(1): 1–11. 10.1038/s41598-017-13686-5
652	Crespi, E. J., Williams, T. D., Jessop, T. S. and Delehanty, B. 2013. Life history and the
653	ecology of stress: how do glucocorticoid hormones influence life-history variation in
654	animals? <i>Funct. Ecol.</i> 27(1): 93–106. 10.1111/1365-2435.12009
655	Dallman, M. F., Akana, S. F., Bhatnagar, S., Bell, M. E., Choi, S., Chu, A., Horsley, C.,
656	Levin, N., Meijer, O., Soriano, L. R., Strack, A. M. and Viau, V. 1999. Starvation:
657	early signals, sensors, and sequelae. <i>Endocrinology</i> 140(9): 4015–4023.
658	10.1210/endo.140.9.7001
659	Dantzer, B., McAdam, A. G., Palme, R., Fletcher, Q. E., Boutin, S., Humphries, M. M. and
660	Boonstra, R. 2010. Fecal cortisol metabolite levels in free-ranging North American red
661	squirrels: Assay validation and the effects of reproductive condition. <i>Gen. Comp.</i>
662	<i>Endocrinol.</i> 167(2): 279–286. 10.1016/j.ygcen.2010.03.024
663	Dantzer, B., Newman, A. E. M., Boonstra, R., Palme, R., Boutin, S., Humphries, M. M. and
664	McAdam, A. G. 2013. Density triggers maternal hormones that increase adaptive
665	offspring growth in a wild mammal. <i>Science</i> 340 (6137): 1215–1217.
666	10.1126/science.1235765
667	Dantzer, B., Fletcher, Q. E., Boonstra, R. and Sheriff, M. J. 2014. Measures of physiological
668	stress: A transparent or opaque window into the status, management and conservation
669	of species? <i>Conserv. Physiol.</i> 2(1): cou023. 10.1093/conphys/cou023
670	Davis, A. K. and Maney, D. L. 2018. The use of glucocorticoid hormones or leucocyte
671	profiles to measure stress in vertebrates: What's the difference? <i>Methods Ecol. Evol.</i>
672	9(6): 1556–1568. 10.1111/2041-210X.13020
673	Dehnhard, M., Clauss, M., Lechner-Doll, M., Meyer, H. H. D. and Palme, R. 2001.
674	Noninvasive monitoring of adrenocortical activity in roe deer (<i>Capreolus capreolus</i>)
675	by measurement of fecal cortisol metabolites. <i>Gen. Comp. Endocrinol.</i> 123 (1): 111–
676	120. 10.1006/gcen.2001.7656
677 678	Dhabhar, F. S. 2014. Effects of stress on immune function: The good, the bad, and the beautiful. <i>Immunol. Res.</i> 58 (2): 193–210. 10.1007/s12026-014-8517-0
679 680 681 682	 Douhard, M., Plard, F., Gaillard, JM., Capron, G., Delorme, D., Klein, F., Duncan, P., Loe, L. E. and Bonenfant, C. 2014. Fitness consequences of environmental conditions at different life stages in a long-lived vertebrate. <i>Proceedings of the Royal Society B: Biological Sciences</i> 281(1785): 20140276. 10.1098/rspb.2014.0276
683	Douhard, F., Gaillard, JM., Pellerin, M., Jacob, L. and Lemaître, JF. 2017. The cost of
684	growing large: Costs of post-weaning growth on body mass senescence in a wild
685	mammal. <i>Oikos</i> 126(9): 1329–1338. 10.1111/oik.04421
686	Dulude-de Broin, F., Hamel, S., Mastromonaco, G. F. and Côté, S. D. 2020. Predation risk
687	and mountain goat reproduction: Evidence for stress-induced breeding suppression in
688	a wild ungulate. <i>Funct. Ecol.</i> 34 (5): 1003–1014. 10.1111/1365-2435.13514

689 690	Ethan Pride, R. 2005. High faecal glucocorticoid levels predict mortality in ring-tailed lemurs (<i>Lemur catta</i>). <i>Biol. Lett.</i> 1 (1): 60–63. 10.1098/rsbl.2004.0245
691 692 693 694	Formenti, N., Viganó, R., Fraquelli, C., Trogu, T., Bonfanti, M., Lanfranchi, P., Palme, R. and Ferrari, N. 2018. Increased hormonal stress response of Apennine chamois induced by interspecific interactions and anthropogenic disturbance. <i>Eur. J. Wildlife Res.</i> 64(6): 68. 10.1007/s10344-018-1228-4
695 696 697	 Gaillard, JM., Delorme, D., Boutin, JM., Van Laere, G., Boisaubert, B. and Pradel, R. 1993. Roe deer survival patterns: A comparative analysis of contrasting populations. J. Anim. Ecol. 62(4): 778–791. 10.2307/5396
698 699 700	 Gaillard, JM., Delorme, D., Boutin, JM., Van Laere, G. and Boisaubert, B. 1996. Body mass of roe deer fawns during winter in 2 contrasting populations. <i>J. Wildlife Manage</i>. 60(1): 29–36. 10.2307/3802036
701 702 703	Gaillard, JM., Festa-Bianchet, M., Delorme, D. and Jorgenson, J. 2000. Body mass and individual fitness in female ungulates: Bigger is not always better. <i>P. Roy. Soc. Lond.</i> <i>B Biol.</i> 267(1442): 471–477. 10.1098/rspb.2000.1024
704 705 706	Gaillard, JM., Loison, A., ToÏgo, C., Delorme, D. and Van Laere, G. 2003. Cohort effects and deer population dynamics. <i>Écoscience</i> 10 (4): 412–420. 10.1080/11956860.2003.11682789
707 708 709 710	Gaillard, JM., Mark Hewison, A. J., Klein, F., Plard, F., Douhard, M., Davison, R. and Bonenfant, C. 2013. How does climate change influence demographic processes of widespread species? Lessons from the comparative analysis of contrasted populations of roe deer. <i>Ecol. Lett.</i> 16 (s1): 48–57. 10.1111/ele.12059
711 712 713	 George, S. C., Smith, T. E., Mac Cana, P. S. S., Coleman, R. and Montgomery, W. I. 2014. Physiological stress in the Eurasian badger (<i>Meles meles</i>): Effects of host, disease and environment. <i>Gen. Comp. Endocrinol.</i> 200: 54–60. 10.1016/j.ygcen.2014.02.017
714 715 716 717	 Gilot-Fromont, E., Jégo, M., Bonenfant, C., Gibert, P., Rannou, B., Klein, F. and Gaillard, JM. 2012. Immune phenotype and body condition in roe deer: Individuals with high body condition have different, not stronger immunity. <i>PLoS ONE</i> 7(9): e45576. 10.1371/journal.pone.0045576
718 719 720	Glazier, D. S. 2005. Beyond the '3/4-power law': Variation in the intra- and interspecific scaling of metabolic rate in animals. <i>Biol. Rev.</i> 80(4): 611–662. 10.1017/S1464793105006834
721 722 723	Goymann, W. 2012. On the use of non-invasive hormone research in uncontrolled, natural environments: the problem with sex, diet, metabolic rate and the individual. <i>Methods in Ecology and Evolution</i> 3 (4): 757–765. 10.1111/j.2041-210X.2012.00203.x
724 725 726 727	Hadinger, U., Haymerle, A., Knauer, F., Schwarzenberger, F. and Walzer, C. 2015. Faecal cortisol metabolites to assess stress in wildlife: evaluation of a field method in free-ranging chamois. <i>Methods in Ecology and Evolution</i> 6(11): 1349–1357. 10.1111/2041-210X.12422

728 729 730	 Hämäläinen, A., Heistermann, M. and Kraus, C. 2015. The stress of growing old: Sex- and season-specific effects of age on allostatic load in wild grey mouse lemurs. <i>Oecologia</i> 178(4): 1063–1075. 10.1007/s00442-015-3297-3
731	Hamel, S., Gaillard, JM., Festa-Bianchet, M. and Côté, S. D. 2009. Individual quality, early-
732	life conditions, and reproductive success in contrasted populations of large herbivores.
733	<i>Ecology</i> 90 (7): 1981–1995. 10.1890/08-0596.1
734 735 736 737	 Hamel, S., Gaillard, JM., Yoccoz, N. G., Albon, S., Côté, S. D., Craine, J. M., Festa-Bianchet, M., Garel, M., Lee, P., Moss, C., Nussey, D. H., Pelletier, F., Stien, A. and Tveraa, T. 2016. Cohort variation in individual body mass dissipates with age in large herbivores. <i>Ecol. Monogr.</i> 86(4): 517–543. 10.1002/ecm.1232
738 739 740	 Hau, M., Casagrande, S., Ouyang, J. and Baugh, A. 2016. Glucocorticoid-mediated phenotypes in vertebrates: Multilevel variation and evolution. <i>Adv. Stud. Behav.</i> 48: 41–115. 10.1016/bs.asb.2016.01.002
741	Henderson, L. J., Evans, N. P., Heidinger, B. J., Herborn, K. A. and Arnold, K. E. 2017. Do
742	glucocorticoids predict fitness? Linking environmental conditions, corticosterone and
743	reproductive success in the blue tit, <i>Cyanistes caeruleus. Roy. Soc. Open Sci.</i> 4(10):
744	170875. 10.1098/rsos.170875
745 746	Hennin, H., Wells-Berlin, A. and Love, O. 2016. Baseline glucocorticoids are drivers of body mass gain in a diving seabird. <i>Ecol. Evol.</i> 6 (6): 1702–1711. 10.1002/ece3.1999
747	Hewison, A. J. M., Angibault, J. M., Bideau, E., Vincent, J. P., Boutin, J. and Sempéré, A.
748	1996. Annual variation in body composition of roe deer (<i>Capreolus capreolus</i>) in
749	moderate environmental conditions. <i>Can. J. Zool.</i> 74 (2): 245–253. 10.1139/z96-031
750	Hewison, A. J. M., Gaillard, JM., Delorme, D., Van Laere, G., Amblard, T. and Klein, F.
751	2011. Reproductive constraints, not environmental conditions, shape the ontogeny of
752	sex-specific mass-size allometry in roe deer. <i>Oikos</i> 120(8): 1217–1226.
753	10.1111/j.1600-0706.2011.19316.x
754 755	Hirshfield, M. F. and Tinkle, D. W. 1975. Natural selection and the evolution of reproductive effort. <i>P. Natl. Acad. Sci. U.S.A.</i> 72 (6): 2227–2231. 10.1073/pnas.72.6.2227
756	Hodges, K. E., Boonstra, R. and Krebs, C. J. 2006. Overwinter mass loss of snowshoe hares
757	in the Yukon: Starvation, stress, adaptation or artefact? <i>J. Anim. Ecol.</i> 75 (1): 1–13.
758	10.1111/j.1365-2656.2005.01018.x
759	Huber, S., Palme, R. and Arnold, W. 2003. Effects of season, sex, and sample collection on
760	concentrations of fecal cortisol metabolites in red deer (<i>Cervus elaphus</i>). <i>Gen. Comp.</i>
761	<i>Endocrinol.</i> 130 (1): 48–54. 10.1016/s0016-6480(02)00535-x
762	Jégo, M., Lemaître, JF., Bourgoin, G., Capron, G., Warnant, C., Klein, F., Gilot □ Fromont,
763	E. and Gaillard, JM. 2014. Haematological parameters do senesce in the wild:
764	Evidence from different populations of a long-lived mammal. J. Evolution. Biol.
765	27(12): 2745–2752. 10.1111/jeb.12535
766 767	Johansson, A. 1996. Territory establishment and antler cycle in male roe deer. <i>Ethology</i> 102 (4): 549–559. 10.1111/j.1439-0310.1996.tb01147.x

768 769 770 771	 Kant, G. J., Bunnell, B. N., Mougey, E. H., Pennington, L. L. and Meyerhoff, J. L. 1983. Effects of repeated stress on pituitary cyclic AMP, and plasma prolactin, corticosterone and growth hormone in male rats. <i>Pharmacol. Biochem. Behav.</i> 18(6): 967–971. 10.1016/s0091-3057(83)80022-7
772 773 774	Landys, M. M., Ramenofsky, M. and Wingfield, J. C. 2006. Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. <i>Gen. Comp. Endocrinol.</i> 148 (2): 132–149. 10.1016/j.ygcen.2006.02.013
775 776 777 778	Lavergne, S. G., Krebs, C. J., Kenney, A. J., Boutin, S., Murray, D., Palme, R. and Boonstra, R. 2021. The impact of variable predation risk on stress in snowshoe hares over the cycle in North America's boreal forest: Adjusting to change. <i>Oecologia</i> 197(1): 71– 88. 10.1007/s00442-021-05019-1
779 780 781	Lexen, E., El-Bahr, S., Sommerfeld-Stur, I., Palme, R. and Möstl, E. 2008. Monitoring the adrenocortical response to disturbances in sheep by measuring glucocorticoid metabolites in the faeces. <i>Wiener tierärztliche Monatsschrift</i> 95 : 64–71.
782 783 784	MacDougall-Shackleton, S. A., Bonier, F., Romero, L. M. and Moore, I. T. 2019. Glucocorticoids and "stress" are not synonymous. <i>Integr. Org. Biol.</i> 1(1): obz017. 10.1093/iob/obz017
785 786 787 788	Martin, J. G. A., Nussey, D. H., Wilson, A. J. and Réale, D. 2011. Measuring individual differences in reaction norms in field and experimental studies: A power analysis of random regression models. <i>Methods Ecol. Evol.</i> 2 (4): 362–374. 10.1111/j.2041-210X.2010.00084.x
789 790	McEwen, B. S. and Wingfield, J. C. 2003. The concept of allostasis in biology and biomedicine. <i>Horm. Behav.</i> 43 (1): 2–15. 10.1016/S0018-506X(02)00024-7
791 792	McEwen, B. S. and Wingfield, J. C. 2010. What is in a name? Integrating homeostasis, allostasis and stress. <i>Horm. Behav.</i> 57 (2): 105–111. 10.1016/j.yhbeh.2009.09.011
793 794	Metcalfe, N. B. and Monaghan, P. 2001. Compensation for a bad start: Grow now, pay later? <i>Trends Ecol. Evol.</i> 16 (5): 254–260. 10.1016/s0169-5347(01)02124-3
795 796 797	Monaghan, P. and Haussmann, M. F. 2015. The positive and negative consequences of stressors during early life. <i>Early Hum. Dev.</i> 91(11): 643–647. 10.1016/j.earlhumdev.2015.08.008
798 799 800	Möstl, E., Maggs, J. L., Schrötter, G., Besenfelder, U. and Palme, R. 2002. Measurement of cortisol metabolites in faeces of ruminants. <i>Vet. Res. Commun.</i> 26(2): 127–139. 10.1023/A:1014095618125
801 802 803	Novais, A., Monteiro, S., Roque, S., Correia-Neves, M. and Sousa, N. 2016. How age, sex and genotype shape the stress response. <i>Neurobiol. Stress</i> 6 : 44–56. 10.1016/j.ynstr.2016.11.004
804 805	Palme, R., Touma, C., Arias, N., Dominchin, M. F. and Lepschy, M. 2013. Steroid extraction: Get the best out of faecal samples. <i>Wien. Tierarztl. Monat.</i> 100 (9/10): 238–246.

- Palme, R. 2019. Non-invasive measurement of glucocorticoids: Advances and problems.
 Physiol. Behav. 199: 229–243. 10.1016/j.physbeh.2018.11.021
- Pauli, J. N. and Buskirk, S. W. 2007. Risk-disturbance overrides density dependence in a
 hunted colonial rodent, the black-tailed prairie dog *Cynomys ludovicianus*. J. Appl.
 Ecol. 44(6): 1219–1230. 10.1111/j.1365-2664.2007.01337.x
- Pedersen, A. B. and Greives, T. J. 2008. The interaction of parasites and resources cause
 crashes in a wild mouse population. *J. Anim. Ecol.* 77(2): 370–377. 10.1111/j.13652656.2007.01321.x
- Pettorelli, N., Gaillard, J.-M., Duncan, P., Ouellet, J.-P. and Van Laere, G. 2001. Population
 density and small-scale variation in habitat quality affect phenotypic quality in roe
 deer. *Oecologia* 128(3): 400–405. 10.1007/s004420100682
- Pettorelli, N., Gaillard, J.-M., Mysterud, A., Duncan, P., Stenseth, N. C., Delorme, D., Laere,
 G. V., Toïgo, C. and Klein, F. 2006. Using a proxy of plant productivity (NDVI) to
 find key periods for animal performance: The case of roe deer. *Oikos* 112(3): 565–
 572. https://doi.org/10.1111/j.0030-1299.2006.14447.x
- Pinho, G. M., Ortiz-Ross, X., Reese, A. N. and Blumstein, D. T. 2019. Correlates of maternal
 glucocorticoid levels in a socially flexible rodent. *Horm. Behav.* 116: 104577.
 10.1016/j.yhbeh.2019.104577
- R Core Team 2022. R: A language and environment for statistical computing.https://www.R project.org
- Rabasa, C. and Dickson, S. L. 2016. Impact of stress on metabolism and energy balance.
 Curr. Opin. Behav. Sci. 9: 71–77. 10.1016/j.cobeha.2016.01.011
- Reeder, D. M. and Kramer, K. M. 2005. Stress in free-ranging mammals: Integrating
 physiology, ecology, and natural history. *J. Mammal.* 86(2): 225–235. 10.1644/BHE003.1
- Ricklefs, R. E. and Wikelski, M. 2002. The physiology/life-history nexus. *Trends Ecol. Evol.* 17(10): 462–468. 10.1016/S0169-5347(02)02578-8
- Rogovin, K. A., Randall, J. A., Kolosova, I. E. and Moshkin, M. P. 2003. Social correlates of
 stress in adult males of the great gerbil, *Rhombomys opimus*, in years of high and low
 population densities. *Horm. Behav.* 43(1): 132–139. 10.1016/s0018-506x(02)00028-4
- Rogovin, K. A., Randall, J. A., Kolosova, I. E. and Moshkin, M. P. 2008. Long-term
 dynamics of fecal corticosterone in male great gerbils (*Rhombomys opimus Licht.*):
 Effects of environment and social demography. *Physiol. Biochem. Zool.* 81(5): 612–626. 10.1086/588757
- Romero, L. M., Dickens, M. J. and Cyr, N. E. 2009. The Reactive Scope Model A new
 model integrating homeostasis, allostasis, and stress. *Horm. Behav.* 55(3): 375–389.
 10.1016/j.yhbeh.2008.12.009

843	Romero, L. M. and Reed, J. M. 2005. Collecting baseline corticosterone samples in the field:
844	Is under 3 min good enough? <i>Comp. Biochem. Phys. A</i> 140(1): 73–79.
845	10.1016/j.cbpb.2004.11.004
846	Ronget, V., Gaillard, JM., Coulson, T., Garratt, M., Gueyffier, F., Lega, JC. and Lemaître,
847	JF. 2018. Causes and consequences of variation in offspring body mass: Meta-
848	analyses in birds and mammals. <i>Biol. Rev.</i> 93(1): 1–27. 10.1111/brv.12329
849	Sapolsky, R. M., Romero, L. M. and Munck, A. U. 2000. How do glucocorticoids influence
850	stress responses? Integrating permissive, suppressive, stimulatory, and preparative
851	actions. <i>Endocr. Rev.</i> 21(1): 55–89. 10.1210/edrv.21.1.0389
852	Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. and Boonstra, R. 2011. Measuring stress
853	in wildlife: Techniques for quantifying glucocorticoids. <i>Oecologia</i> 166(4): 869–887.
854	10.1007/s00442-011-1943-y
855	Sheriff, M. J., Wheeler, H., Donker, S. A., Krebs, C. J., Palme, R., Hik, D. S. and Boonstra,
856	R. 2012. Mountain-top and valley-bottom experiences: the stress axis as an integrator
857	of environmental variability in arctic ground squirrel populations. J. Zool. 287(1): 65–
858	75. 10.1111/j.1469-7998.2011.00888.x
859	Stoffel, M. A., Nakagawa, S. and Schielzeth, H. 2017. rptR: repeatability estimation and
860	variance decomposition by generalized linear mixed-effects models. <i>Methods Ecol.</i>
861	<i>Evol.</i> 8(11): 1639–1644. 10.1111/2041-210X.12797
862	Tilbrook, A. J., Turner, A. I. and Clarke, I. J. 2000. Effects of stress on reproduction in non-
863	rodent mammals: The role of glucocorticoids and sex differences. <i>Rev. Reprod.</i> 5(2):
864	105–113. 10.1530/ror.0.0050105
865	Tixier, H. and Duncan, P. 1996. Are European roe deer browsers? A review of variations in
866	the composition of their diets. <i>Rev. Ecol Terre Vie</i> 51(1): 3–17.
867	10.3406/revec.1996.2189
868	Toïgo, C., Gaillard, JM., Laere, G. V., Hewison, M. and Morellet, N. 2006. How does
869	environmental variation influence body mass, body size, and body condition? Roe
870	deer as a case study. <i>Ecography</i> 29(3): 301–308. https://doi.org/10.1111/j.2006.0906-
871	7590.04394.x
872 873	Toufexis, D., Rivarola, M. A., Lara, H. and Viau, V. 2014. Stress and the reproductive axis. <i>J. Neuroendocrinol.</i> 26 (9): 573–586. 10.1111/jne.12179
874	Vera, F., Antenucci, C. D. and Zenuto, R. R. 2011. Cortisol and corticosterone exhibit
875	different seasonal variation and responses to acute stress and captivity in tuco-tucos
876	(<i>Ctenomys talarum</i>). <i>Gen. Comp. Endocrinol.</i> 170 (3): 550–557.
877	10.1016/j.ygcen.2010.11.012
878 879	Viau, V. 2002. Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes. <i>J. Neuroendocrinol.</i> 14 (6): 506–513. 10.1046/j.1365-2826.2002.00798.x
880	Vuarin, P., Pillay, N. and Schradin, C. 2019. Elevated basal corticosterone levels increase
881	disappearance risk of light but not heavy individuals in a long-term monitored rodent
882	population. <i>Horm. Behav.</i> 113 : 95–102. 10.1016/j.yhbeh.2019.05.001

883 884	Wey, T. W., Lin, L., Patton, M. L. and Blumstein, D. T. 2015. Stress hormone metabolites predict overwinter survival in yellow-bellied marmots. <i>Acta Ethol.</i> 18 (2): 181–185.
885	10.1007/s10211-014-0204-6
886	Wilson, M. E., Legendre, A., Pazol, K., Fisher, J. and Chikazawa, K. 2005. Gonadal steroid
887	modulation of the limbic-hypothalamic- pituitary-adrenal (LHPA) axis is influenced
888	by social status in female rhesus monkeys. Endocrine 26(2): 89–97.
889	10.1385/ENDO:26:2:089
890	Wingfield, J. C. 2003. Control of behavioural strategies for capricious environments. Anim.
891	Behav. 66(5): 807–816. 10.1006/anbe.2003.2298
892	Wingfield, J. C. 2008. Comparative endocrinology, environment and global change. Gen.
893	Comp. Endocrinol. 157(3): 207–216. 10.1016/j.ygcen.2008.04.017
894	Wingfield, J. C. 2013. Ecological processes and the ecology of stress: The impacts of abiotic
895	environmental factors. Funct. Ecol. 27(1): 37-44. 10.1111/1365-2435.12039
896	Zbyryt, A., Bubnicki, J. W., Kuijper, D. P. J., Dehnhard, M., Churski, M., Schmidt, K. and
897	Editor, B. W. 2018. Do wild ungulates experience higher stress with humans than with
898	large carnivores? <i>Behav. Ecol.</i> 29 (1): 19–30. 10.1093/beheco/arx142
899	