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Abstract: Random interlacements have been originally defined by Sznitman for con-
tinuous time simple reversible transient random walks on graphs. Among their features,
they are necessary to write Dynkin type isomorphism theorems involving Gaussian free
fields. Recently we have extended Sznitman’s definition to continuous Markov processes
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1 Introduction

Random interlacements associated to a Markov process (Xt)t≥0 have been defined by
Sznitman [16], [17], in the case when X is a continuous (or discrete) time simple
random walk on a transient graph or X is a Brownian motion on IRd. This processes
are continuous and symmetric (continuity for a process living on the vertex set of a
graph meaning that it can jump from x to y only if [x, y] is an edge of the graph). First
studied for their own interest ([15], [18], [20],..), random interlacements have been then
used by Sznitman [16] to establish a Dynkin type isomorphism theorem in the case of
continuous random walk on connected graphs. This identities have been then extended
to Brownian motions on the graph Zd by Lupu [11]. This tools are useful to handle
questions on Gaussian free fields (see e.g. [2]).
In a previous work [4] we have extended Sznitman’s definition of random interlacements
definition to a general continuous transient Borel processX in weak duality with respect
to a σ-finite measure ν. This was done in order to explore the connection between its
extended Markov processes (whose definition is reminded in section 3), its Kuznetsov
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process and its quasi-process (definitions reminded in section 2). It appeared then that
for such a continuous X, random interlacements were linked to its quasi-process. This
link was already established by Dereich and Döring [1] in the case of Brownian motion
on Zd, d ≥ 3.
Our aim now is to enlarge even more the framework and set a definition of random
interlacements for X standard process admitting a weak dual. This is done in section
2 where the part played by the quasi-process is shown. In section 3 we clarify the
connections between the random interlacements and the extended Markov processes
associated to X. In section 4 one then extends Sznitman’s isomorphism Theorem to
symmetric transient standard processes.

2 Random interlacements for standard processes

We consider a transient standard process X in weak duality with another standard
process X̂ with respect to a measure ν. Both processes are taking values in (E, E)
Borel metric space. We denote by (Pt)t≥0 and (P̂t)t≥0 the respective semigroups of X

and X̂. The weak duality translates into:∫
E

Ptf(x)g(x)ν(dx) =

∫
E

f(x)P̂tg(x)ν(dx). (2.1)

for every E-measurable nonnegative functions f and g and every t > 0
From (2.1), one easily obtains that the measure ν must be excessive for (Pt)t≥0 and

(P̂t)t≥0 (i.e. νPt ≤ ν and νP̂t ≤ ν, ∀t > 0).
For a given compact subset B of E, define

LB = sup{t ≥ 0 : Xt ∈ B}.

When replacing X by X̂ one defines L̂B.
Let W be the space of paths ω from IR to E ∪ {∆} which are right continuous with
left limits and E valued on some interval (b(ω), d(ω)) and ω(t) = ∆ outside this
interval (b(ω) and d(ω) are called the birth and death times of the path ω). We
denote by (Zt)t∈IR the coordinate process on W : Zt(ω) = ω(t). We define the σ-
fields G = σ{Zt : t ∈ IR}, Gt = σ{Zs : s ≤ t}, and the shift operators σt on W :
σtω(s) = ω(t + s), s, t ∈ IR. The σ-algebra of (σt) shift invariant events in G will be
denoted by A.

We denote by Qν (resp. Pν) the Kuznetsov measure (resp. the quasi-process) on
W associated to {ν, (Pt)t≥0)}. The Kuznetsov measure associated to {ν, (P̂t)t≥0} is

denoted by Q̂ν . For an introduction to this measures, we recommend [6]. Here is a
brief reminder of their definitions.

The Kuznetsov measure Qν on W \ {∆} is defined by:

Qν(Zt1 ∈ A1, Zt2 ∈ A2, · · ·Ztn ∈ An) = (2.2)∫
A1

ν(dx1)

∫
A2

Pt2−t1(x1, dx2) ..

∫
An

Ptn−tn−1(xn−1, dxn)
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for −∞ < t1 < t2 < .. < tn < +∞ and A1, .., An ∈ E .
Under Qν the coordinate process (Zt)t∈IR is hence a stationary Markov process with
one dimensional distribution at time t equal to ν and transition semigroup (Pt)t≥0.
Since ν is excessive, the measure Qν is unique (see Kuznetsov [10]).

The quasi-process Pν associated with {ν, (Pt)t≥0}, is the measure on (W ,A) that is
determined by the conditions:

Pν

(∫
IR

f(Zt)dt

)
= ν(f), (2.3)

for any nonnegative measurable function f on E, and

for any intrinsic stopping time S, {ZS+t, t > 0} under (2.4)

Pν( · ; S ∈ IR) is Markovian with semigroup (Pt)t≥0,

where by intrinsic stopping time, one means a (Gt)-stopping time that satisfies

b ≤ S < d on {S < +∞}, and S = t+ S ◦ σt for all t ∈ IR.

In the time continuous setting, this measures have been introduced by Weil [19].

For a path ω in W , define HB for any compact subset B of E by

HB = inf{t ∈ (b(ω), d(ω)) : ω(t−) ∈ B}

with inf ∅ = +∞.
One immediately notes that on {HB <∞} : HB ∈ [b, d).
We will also use λB given by

λB = sup{t ∈ (b(ω), d(ω)) : ω(t) ∈ B}

with sup ∅ = −∞.

We first remind the definition of random interlacements set in [5] (the addendum of
section 5.3 of [4]) in the case when X and X̂ are continuous.

Definition 2.1 Let X and X̂ be two transient continuous Borel processes in weak
duality with respect to ν. For α > 0 the random interlacements at level α associated to
{ν, ((Pt)t≥0, (P̂t)t≥0)} is a Poisson point process with intensity measure αµν where µν
is the unique measure on (W ,A) such that µν(ω ≡ ∆) = 0, characterized by the two
following properties:

• for every compact subset B of E:

µν [ω(HB) ∈ dx,HB <∞] = êB(dx) (2.5)

where êB is the capacitary (equilibrium) measure of B associated to X̂ with respect
to ν;
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• for every couple of A measurable functionals (F1, F2)

µν [F1(ω(HB + t), t ≥ 0); F2(ω((HB − t), )t > 0); HB <∞] (2.6)

=

∫
E

êB(dx)IPx[F1(Xt, t ≥ 0)]ÎP
B

x [F2(Zt, t > 0))],

where for êB(dx) a.e. x, ÎP
B

x is the probability measure on the set of E-valued
paths indexed by IR+ such that

ÎP
B

x [F (Zt, t ≥ 0)] =

∫
E

ν(dy)ÎP y[F (X̂L̂B+t, t ≥ 0)|X̂L̂B
= x].

To extend the above definition to standard processes, we will use the following notion
of bivariate Revuz measure of an homogenous random measure.
Let κ be an homogenous random measure for X in the sense of Getoor and Sharpe [8].
This means that κ is a random measure on IR+ supported by (0, ζ) such that for every
T stopping time for the natural filtration of X: κ((T, t + T ]) = κ((0, t]) ◦ θT a.s. on
{T <∞}, for every t > 0.

There exists an unique measure ε on E × E such that for every nonnegative bounded
measurable function F on E × E:

ε(F ) = sup
t>0

1

t
IEν

∫
(0,t]

F (Xs−, Xs)κ(ds) = lim
t→0

1

t
IEν

∫
(0,t]

F (Xs−, Xs)κ(ds).

Indeed, using the fact that for every such F , F (Xs−, Xs)κ(ds) is still an homogenous
random measure, one can make use of the arguments developed in [8] section 8, and
obtain ε similarly as they set the definition (8.1) in [8] of the Revuz measure of κ.

For any compact subset B of E, define the homogenous random measure κB:
κB(ds) = 1{0<L̂B<ζ̂}δL̂B(ds). There exists then an unique measure ε̂B on E × E such
that for every measurable bounded nonnegative function F on E × E

ε̂B(F ) = sup
t>0

1

t
ÎEν

∫
(0,t]

F (X̂s−, X̂s)κB(ds) = lim
t→0

1

t
ÎEν

∫
(0,t]

F (X̂s−, X̂s)κB(ds)

= lim
t→0

1

t

∫
E

ν(dx)ÎP x[F (X̂L̂B−, X̂L̂B
), 0 < L̂B ≤ t].

The measure ε̂B is the bivariate Revuz measure associated to the homogenous random
measure κB with respect to ν.
Note that the first marginal of ε̂B is êB the capacitary measure of B for X̂ with respect
to ν. We denote the second marginal of ε̂B by ê+B.

The notion of bivariate Revuz measure has been first set by Sharpe in [14] for additive
functionals under the additional assumption that ν is a reference measure. Our frame-
work assumes that the two semigroups (Pt)t≥0 and (P̂t)t≥0 are in weak duality. Their
respective potentials are not required to have densities with respect to ν.
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Definition 2.2 Let X be a transient standard process in weak duality with X̂ with
respect to a σ-finite measure ν. Let (Pt)t≥0 and (P̂t)t≥0 be the respective semigroups of

X and X̂. For α > 0, the random interlacements at level α associated to
{ν, ((Pt)t≥0, (P̂t)t≥0)} is a Poisson point process with intensity measure αµν where µν
is the unique measure on (W ,A) characterized by the three following properties:

• for any compact subset B of E

µν [ω(HB) ∈ dx, ω(HB−) ∈ dy,HB <∞] = ε̂B(dxdy) (2.7)

where ε̂B is the bivariate Revuz measure of κB associated to X̂ with respect to ν;

• for every couple of A measurable functionals (F1, F2)

µν [F1(ω(HB + t), t ≥ 0); F2(ω((HB − t)−, )t > 0); HB <∞] (2.8)

=

∫
E×E

ε̂B(dxdy)IPx[F1(Xt, t ≥ 0)]ÎP
B

y [F2(Zt, t > 0)],

where for ê+B(dy) a.e. y, ÎP
B

y is the probability measure on the set of E-valued
paths indexed by IR+ such that

ÎP
B

x [F (Zt, t ≥ 0)] =

∫
E

ν(dy)ÎP y[F (X̂L̂B+t, t ≥ 0)|X̂L̂B
= x];

• and
µν(ω ≡ ∆) = 0. (2.9)

The measure ÎP
B

x does not depend on ν. This has been mentioned in the continuous
case [5], and we will emphasize this fact in the proof of (2.10) below.

As in the continuous case, unicity of µν can be obtained with simple arguments. Indeed
let µ1 and µ2 be two measures on A satisfying (2.7) and (2.8) for every compact subset
B of E. We compute µ1(A) for A in A. We use a sequence of compact subsets (Bn)n≥1
increasing to E. For i = 1, 2, one has:

µi(A) = µi(A;HB1 =∞) + µi(A;HB1 <∞)

By (2.8), and monotone class argument: µ1(A;HB1 < ∞) = µ2(A;HB1 < ∞). One
writes then:

µi(A;HB1 =∞) = µi(A;HB1 =∞, HB2 =∞) + µi(A;HB1 =∞, HB2 <∞),

and keep splitting the probabilities µi(A), i = 1, 2 by using the sequence (Bn)n≥1. By
(2.9): µi(HBn =∞,∀n) = 0, i = 1, 2. Hence we end up with two series with identical
general term, which leads to µ1(A) = µ2(A).
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Note that if the measure µν exists then, using both (2.9) and (2.8), it must satisfy for
every compact B

µν(HB = b,HB <∞) = 0.

The following theorem establishes the existence of µν .

Theorem 2.3 Let X and X̂ be two transient standard processes in weak duality with
respect to a σ-finite reference measure ν. Then we have

µν = Pν . (2.10)

In case X has continuous paths, (2.10) has been already established (Theorem 5.1 in
[4],[5]). In the special example when X is a Brownian motion on IRd, d ≥ 3, (2.10) has
been previously established by Dereich and Döring [1].

Proof: It suffices to show that Pν satisfies (2.7), (2.8) and (2.9).

First note that since X is transient, the excessive measure ν is dissipative for (Pt)t≥0
(see e.g. Remark 4.9 c in [7]). This means that for any nonnegative function f such
that

∫
E
f(x)ν(dx) <∞, one has:

∫∞
0
Ptfdt <∞ ν a.e.

Then since ν is dissipative, Qν must be dissipative (see [6] section 3) and hence there
exists a stationary time S∗ such that Qν(S

∗ /∈ IR) = 0 (Proposition 2.7 in [6]).
We remind that a G-measurable random time S∗ : W → [−∞,∞] is said to be
stationary if it satisfies S∗ = t+ S∗ ◦ σt for all t ∈ IR.
Following Fitzsimmons [6], the measure Pν can hence be defined by

Pν(A) = Qν [A; 0 < S∗ ≤ 1]

for every A in A the σ-field of invariants elements of G.
More generally, using (2.1) and (2.3) in [6], one obtains for every t > 0

Pν(A) =
1

t
Qν [A; 0 < S∗ ≤ t] =

1

t
Qν [A;−t ≤ S∗ < 0]. (2.11)

Since by definition: Qν(ω ≡ ∆) = 0, (2.11) leads to Pν(ω ≡ ∆) = 0. Hence Pν satisfies
(2.9).

Fix a compact set B. We first remind that since X̂ is transient: Qν(HB = b) = 0 (see
[8] (13.12)). Thanks to (2.11) one obtains: Pν(HB 6∈ (b, d), HB <∞) = 0.
For any F real-valued mesurable bounded function on E ×E, one has for every t > 0:

Pν [F (ZHB , ZHB−), HB <∞] =
1

t
Qν [F (ZHB , ZHB−), HB <∞,−t ≤ S∗ < 0]

=
1

t
Qν [F (ZHB , ZHB−), −t ≤ HB < 0]
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thanks to the switching property of Proposition 2.4 in [6]. Using then the duality
properties of Qν (see [12]):

Q̂ν [F (Zt, t ∈ IR)] = Qν [F (Ẑt, t ∈ IR)], (2.12)

where Ẑt = Z(−t)−, t ∈ IR, one obtains for every t > 0:

Pν [F (ZHB , ZHB−), HB <∞] =
1

t
Q̂ν [F (ZλB−, ZλB), 0 < λB ≤ t]. (2.13)

On one hand for every nonnegative function f , one has:

êB(f) = lim
t→0

1

t

∫
E

ν(dx)ÎP x[f(X̂L̂B−), 0 < L̂B ≤ t]

= lim
t→0

1

t
Q̂ν [f(ZλB−), b < 0 < λB ≤ t]. (2.14)

One the other hand, making use of (13.7) in [8], one knows that:

êB(f) =
1

t
Q̂ν [f(ZλB−), 0 < λB ≤ t, λB > b]. (2.15)

Moreover on {λB ∈ (0, t]}: λB ∈ (b, d], and X̂ being transient one has: Q̂ν [λB = d] = 0
(Proposition 13.6 in [8]). Using this last remarks together with (2.14), (2.15) one finally
obtains:

lim
t→0

1

t
Q̂ν [ 0 ≤ b < λB ≤ t] = 0. (2.16)

Starting from (2.13), one writes for every t > 0:

Pν [F (ZHB , ZHB−), HB <∞] =
1

t
Q̂ν [F (ZλB−, ZλB), b < 0 < λB ≤ t]

+
1

t
Q̂ν [F (ZλB−, ZλB), 0 ≤ b < λB ≤ t],

and let then t tend to 0 to obtain thanks to (2.16):

Pν [F (ZHB , ZHB−), HB <∞] = lim
t→0

1

t
Q̂ν [F (ZλB−, ZλB), b < 0 < λB ≤ t]

= lim
t→0

1

t

∫
E

ν(dx)ÎP x[f(X̂L̂B−), 0 < L̂B ≤ t]

= ε̂B(F )

which establishes (2.7) for Pν .
We check now that Pν satisfies (2.8).

Pν [F1(Z(HB + t), t ≥ 0); F2(Z((HB − t)−), t > 0); HB <∞] (2.17)

= Qν [F1(Z(HB + t), t ≥ 0); F2(Z((HB − t)−, t > 0); HB <∞; −1 ≤ S∗ < 0]

= Qν [F1(Z(HB + t), t ≥ 0); F2(Z((HB − t)−, t > 0); −1 ≤ HB < 0].
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The random time HB is a stopping time for Qν (i.e. for every t ∈ IR , {HB ≤ t} ∈ Gt).
It is a an intrinsic stopping time ine the sense that on {HB < ∞} : b ≤ HB < d
and HB = t + HB ◦ σt, ∀t ∈ IR. This implies in particular that for every t: ZHB+t is
A-measurable, and hence so is (Z(HB−t)−, t ≥ 0).

Using Proposition 2.4 (2.5) in [6], one has for every t > 0

1

t
Qν [F1(Z(HB + t), t ≥ 0); F2(Z((HB − t)−), t > 0); −t ≤ HB < 0] (2.18)

= Qν [F1(Z(HB + t), t ≥ 0); F2(Z((HB − t)−), t > 0); −1 ≤ HB < 0]

Under Qν , one has Markov property at time HB, under the following form (see e.g.
(10.12) in [8])

Qν [F1(Z(HB + t), t ≥ 0); F2(Z((HB − t)−), t > 0); −1 ≤ HB < 0]

= Qν [−1 ≤ HB < 0, IPZ(HB)[F1(Xs, s ≥ 0)]F2(Z(((HB − t)−), t > 0)],

which leads to

Qν [F1(Z(HB + t), t ≥ 0); F2(Z((HB − t)−), t > 0); −1 ≤ HB < 0]

=

∫
E

êB(dx)IPx[F1(Xs, s ≥ 0)]

Qν [−1 ≤ HB < 0, F2(Z(((HB − t)−), t > 0)|Z(HB) = x]

=

∫
E

êB(dx)IPx[F1(Xs, s ≥ 0)]

Q̂ν [0 < λB ≤ 1, F2(Z((λB + t), t > 0)|Z(λB−) = x]

(thanks to (2.12))

=

∫
E

êB(dx)IPx[F1(Xs, s ≥ 0)]

∫
E

Q̂ν [0 < λB ≤ 1, Z(λB) ∈ dy|Z(λB−) = x]

Q̂ν [0 < λB ≤ 1, F2(Z(((λB + t)), t > 0)|Z(λB−) = x, Z(λB) = y]

=

∫
E×E

ε̂(dxdy)IPx[F1(Xs, s ≥ 0)]

Q̂ν [0 < λB ≤ 1, F2(Z(((λB + t)), t > 0)|Z(λB−) = x, Z(λB) = y], (2.19)

using (2.7) for Pν .
Now, using both (2.18) and (2.12), we have for every t > 0

Q̂ν [0 < λB ≤ 1, F2(Z(((λB + s)), s > 0)f1(Z(λB−)f2(Z(λB))]

=
1

t
Q̂ν [0 < λB ≤ t, F2(Z(((λB + s)), s > 0)f1(Z(λB−)f2(Z(λB))]

=
1

t
Q̂ν [b < 0 < λB ≤ t, F2(Z(((λB + s)), s > 0)f1(Z(λB−)f2(Z(λB))]

+
1

t
Q̂ν [0 ≤ b < λB ≤ t, F2(Z(((λB + s)), s > 0)f1(Z(λB−)f2(Z(λB))]
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Letting then t tend to 0 and using (2.16) one obtains:

Q̂ν [0 < λB ≤ 1, F2(Z(((λB + s)), s > 0)f1(Z(λB−)f2(Z(λB))] (2.20)

= lim
t→0

1

t
Q̂ν [b < 0 < λB ≤ t, F2(Z(((λB + s)), s > 0)f1(Z(λB−))f2(Z(λB))]

= lim
t→0

1

t

∫
E

ÎP ν [0 < L̂B ≤ t, F2(X̂(((L̂B + s)), s > 0)f1(X̂(L̂B−))f2(X̂(L̂B))]

We use now the splitting property of the random time L̂B to claim that

ÎP ν [ 0 < L̂B ≤ t, F2(X̂(L̂B + s)), s > 0)f1(X̂(L̂B−))f2(X̂(L̂B))]

= ÎP ν [0 < L̂B ≤ t,Γ(X̂L̂B
, F2)f1(X̂(L̂B−))f2(X̂(L̂B))],

where (Γ(x,A), x ∈ E,A ∈ F) is a Markov kernel (see Theorem 2.12 in [9] for a
complete description of Γ) independent of ν.
From (2.20), one hence obtains:

Q̂ν [0 < λB ≤ 1, F2(Z(((λB + s)), s > 0)f1(Z(λB−)f2(Z(λB))]

= εB(g)

where g denotes the function on E × E defined by g(x, y) = f1(x)f2(y)Γ(y, F2).
This implies that ê+B(dy) a.e. y:

Q̂ν [0 < λB ≤ 1, F2(Z(((λB + s)), s > 0)|Z(λB−) = x, Z(λB) = y] (2.21)

= Γ(y, F2)

=

∫
E

ν(dz)ÎP z[F2(X̂L̂B+s, s > 0)|X̂L̂B
= y],

which is hence independent of ν.
Coming back to (2.19) and using (2.17) one finally obtains:

Pν [F1(Z(HB + t), t ≥ 0); F2(Z((HB − t)−), t > 0); HB <∞]

=

∫
E×E

ε̂(dxdy)IPx[F1(Xt, t ≥ 0)]ÎP
B

y [F2(Zt, t > 0)].

One concludes that Pν satisfies (2.8). �

Suppose now that the excessive measure ν is purely excessive, which means that∫
E

ν(dx)Pt1(x)→t→∞ 0.

In this case µν can be connected with another measure on A the σ-field generated by
the shift invariant sets of W . More precisely when ν is purely excessive there exists an
entrance law (mt)t>0 such that

ν(f) =

∫ ∞
0

mt(f)dt and msPt−s = mt, 0 < s < t
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(see [3]). Define P∗ by

P∗(Zt1 ∈ A1, · · ·Ztn ∈ An) =

∫
A1

mt1(dx1) · · ·
∫
An

Ptn−tn−1(xn−1, dxn) (2.22)

for 0 < t1 ≤ .. ≤ tn and extend the definition to negative ti’s by setting ms = 0 for
s < 0.
We have shown in [4] ((5.10) in [4]) that for every A ∈ A: P∗(A) = Pν(A). This leads
to the following corollary.

Corollary 2.4 Let X and X̂ be two transient standard processes in weak duality with
respect to a purely excessive measure ν. Then we have

µν = Pν = P∗|A .

3 Interpretation of random interlacements

We have noticed in [4] (Remark 2.2) that a sufficient condition for ν to be purely
excessive is ν finite excessive and the life time ζ of X is finite IPx a.s. for every x in E.
The interest of Corollary 2.4 relies on a peculiar interpretation of the measure P∗ under
some additional assumptions. Indeed, assume that the three following properties are
satisfied

(i) ν is finite excessive;

(ii) the life time ζ of X is finite IPx a.s. ∀x ∈ E;

(iii) ζ has no atom IPx a.s ∀x ∈ E

and let δ be a point outside E. We have shown in [4] that then there exists a Markov
process (Yt)t≥0 on E ∪ {δ} admitting δ as a recurrent point such that for every a in E:

((Xt, t < ζ)|X0 = a)
(law)
= ((Yt, t < Tδ)|Y0 = a),

where Tδ = inf{s ≥ 0 : Ys = δ}. Moreover the excursion process of Y with respect to
δ is a Poisson point process with intensity dt× P∗. One says that the process Y is an
“extended Markov process” of X, in short an extended X. Thanks to Corollary 2.4
one can hence interpret the random interlacements at level α as the excursion process
of Y from δ modulo time-shift up to the first time the local time at δ exceeds α.

In case the set of the three above properties (i)-(iii) is not satisfied, one can still make a
connection between the random interlacements of X and the excursion process of some
Markov process on E ∪ {δ} by assuming that X has finite 0-potential densities with
respect to ν. Indeed we have shown ([4], Corollary 2.4) that under this assumption
there exists a positive function q on E such that the measure ν · q is finite (where
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ν · q (dx) = q(x)ν(dx)) and that there exists a Markov process (Yt)t≥0 with state space
E ∪ {δ} admitting a local time process (Lxt (Y ), x ∈ E, t ≥ 0) with respect to ν · q and
δ as recurrent point, satisfying for every a in E:

((Lx∞(X), x ∈ E)|X0 = a)
(law)
= ((LxTδ(Y ), x ∈ E)|Y0 = a),

where (Lx∞(X), x ∈ E) denotes the total accumulated local time process of X with
respect to ν.
We still say that the process Y is an extended Markov process of X, or an extended
X. Note that Y depends on the choice of q but that this choice does not affect the law
of (LxTδ(Y ), x ∈ E).
Following exactly the same sequence of arguments as for the proof of Proposition 5.3 in
[4], one obtains the following proposition. Note that as soon as X has finite 0-potential
densities with respect to ν then necesseraly ν is a reference measure for (Pt)t≥0.

Proposition 3.1 Let X be a transient standard process with semigroup (Pt)t≥0 in weak

duality with respect to a σ-measure ν with a standard process with semigroup (P̂t)t≥0.
Assume that X has finite 0-potential densities with respect to ν. Then the field of occu-
pation time of the random interlacement at level α associated to {ν, ((Pt)t≥0, (P̂t)t≥0)}
equals in law the local time process of an extended X at the first time its local time at
δ exceeds α.

4 Illustrations

Lévy processes are standard processes. Besides a Lévy process X on IRd is in weak
duality with (−X) with respect to the Lebesgue measure on IRd. Obviously the
Lebesgue measure on IRd is not finite.
In case the Lévy process X is transient, according to Definition 2.2 and Theorem 2.3,
the random interlacements at level α associated to X is the Poisson point process with
intensity measure αPν (ν here is the Lebesgue measure on IRd).
If moreover X has finite 0-potential densities then X admits an extended Markov
process Y on IRd ∪ {δ} such that for every α > 0, the occupation field of the random
interlacements of X at level α equals in law the local time process of Y at the first
time the local time at δ exceeds α.

In [13], Rosen defines directly the random interlacements at level α as the Poisson point
process with intensity measure αPν . He considers then exclusively the case when X
is a symmetric transient IRd-valued Lévy process which does not admit local times.
Theorem 2.3 ensures that this Poisson point process coincides with the one given by
Definition 2.2 but the interpretation provided by Proposition 3.1 is not available in his
framework.

For symmetric transient Lévy processes admitting local times and more generally for
any transient standard process X with finite symmetric 0-potential densities
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(u(x, y), (x, y) ∈ E×E) with respect to a σ-measure ν, one has obtained (Theorem 3.1
in [4]) the following isomorphism theorem for Y , an extended X. Under IP [ . |Y0 = δ],
one has:

(
1

2
η2x + Lxτα(Y ), x ∈ E)

(law)
= (

1

2
(ηx +

√
2α)2, x ∈ E), (4.1)

where (Lxτα(Y ), x ∈ E) is the local time process (with respect to ν · q) of Y , at the
first time the local time of Y at δ exceeds the value α, and (ηx, x ∈ E) is a centered
Gaussian process with covariance (u(x, y), (x, y) ∈ E × E), independent of Y .
According to Proposition 3.1, one can rewrite (4.1) under the following form:

(
1

2
η2x + Lx,α , x ∈ E)

(law)
= (

1

2
(ηx +

√
2α)2, x ∈ E), (4.2)

where (Lx,α, x ∈ E) is the occupation time of the random interlacements at level α of
X.
The identity (4.2) represents an extension to the discontinuous case of Sznitman’s
isomorphism Theorem for random interlacements.
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