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Random interlacements: the discontinuous case

Nathalie Eisenbaum

Abstract: Random interlacements have been originally defined by Sznitman to study
the torus disconnection problem of the simple random walk on Zd (d ≥ 3). Later,
Sznitman wrote Dynkin type isomorphism theorems connecting random interlacements
to Gaussian free fields. These theorems have been then used to handle questions related
to Gaussian free fields.
The notion of random interlacements has not been used to study Markov processes
other than simple random walks or Brownian motions. The first obstacle is the lack of
a general appropriate definition.
Recently with Kaspi, we have extended Sznitman’s definition to continuous Markov
processes in weak duality. We exploited this definition to extend Sznitman’s isomor-
phism Theorem and to relate random interlacements to quasi-processes. The aim of
this note is to relax the assumption of continuous paths and set a proper definition of
random interlacements for standard processes. Once this obstacle suppressed, one can
in particular enunciate Sznitman’s isomorphism theorem in this general framework.

Keywords: Markov process, standard process, local time, Gaussian free field, random
interlacements, quasi-process, bivariate Revuz measure.

MSC2020 subject classifications: 60G15; 60J25; 60J55.

1 Introduction

Random interlacements associated to a Markov process (Xt)t≥0 have been defined by
Sznitman [16], [17], in the case when X is a continuous time simple random walk on a
transient graph or X is a Brownian motion on IRd. These processes are continuous and
symmetric (continuity for a process living on the vertex set of a graph meaning that it
can jump from x to y only if [x, y] is an edge of the graph). First studied for their own
interest ([15], [18], [20],..), random interlacements have been then used by Sznitman
[16] to establish a Dynkin type isomorphism theorem in the case of continuous random
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walk on connected graphs. These identities have been then extended to Brownian
motions on the graph Zd by Lupu [11]. These tools are useful to handle questions on
Gaussian free fields (see e.g. [2]).

Before introducing the contribution of this note, we mention that a preliminary section,
section 2, reminds the definition of all the needed classical notions and notation which
are used here.
In a previous work ([4],[5]) we have extended Sznitman’s definition of random interlace-
ments to a general continuous transient strong Markov process X in weak duality. This
was done in order to explore the connection between its extended Markov processes,
its Kuznetsov process and its quasi-process. It appeared then that for such a continu-
ous X, random interlacements were linked to its quasi-process. This link was already
established by Dereich and Döring [1] in the case of Brownian motion on Zd, d ≥ 3.
Our aim now is to generalize even more the framework and set a definition of random
interlacements for X standard process admitting a weak dual. This is done in section
3 where the part played by the quasi-process is shown. In section 4 we clarify the
connections between the random interlacements and the extended Markov processes
associated to X. In section 5 one presents an extension of Sznitman’s isomorphism
Theorem to symmetric transient standard processes.

2 Preliminaries

We will make use of the following classical notions. In the sequel (E, E) will denote a
Borel metric space.

Borel right process A Borel right process X = (Ω,F ,Ft, Xt, θt, IPx;x ∈ E) is such
that (Xt)t≥0 is a stochastic process on a probability space (Ω,F , IP ) with right con-
tinuous paths; θt denotes the usual shift operator (Xs ◦ θt = Xt+s; ∀t, s ≥ 0) and for
every x in E, (Xt)t≥0 satisfies the strong Markov property with respect to the filtration
(Ft)t≥0 (which is augmented and right continuous) under the probability IPx such that
IPx(X0 = x) = 1.

Denote by (Pt)t≥0 the semigroup of X, Borel right process. We do not assume that
Pt1 = 1. For x in E, one has: Pt1(x) = Pt(x,E) = IPx(Xt ∈ E). Denote by ∆ a point
outside E and extend Pt to E ∪ {∆} by setting: Pt(x,∆) = 1− Pt(x,E),∀x ∈ E and
Pt(∆,∆) = 1. That way one obtains a Borel right process on E ∪ {∆} that one still
denotes by X.

Life time One defines the life time ζ of X as the nonnegative random variable:

ζ = inf{t ≥ 0 : Xt = ∆}.

Its law is given by: IPx(ζ > t) = Pt1(x),∀t > 0, ∀x ∈ E.

Standard process A standard process X = (Ω,F ,Ft, Xt, θt, IPx;x ∈ E) is a Borel
right process such that for every stopping time T , every x in E, for every increasing
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sequence of stopping times (Tn)n≥0 converging IPx a.s. to T , then XTn tends to XT on
{T < ζ} IPx a.s.

We mention that as a consequence of the definition, the paths of the standard processes
are right continuous with left limits.
We also mention that Lévy processes are standard processes.

Weak duality A standard process X is in weak duality with another standard process
X̂ with respect to a σ-measure ν if both are taking values in (E, E) and for every E-
measurable nonnegative functions f and g and every t > 0:∫

E

Ptf(x)g(x)ν(dx) =

∫
E

f(x)P̂tg(x)ν(dx), (2.1)

where (Pt)t≥0 and (P̂t)t≥0 denote the respective semigroups of X and X̂.

Excessive measure A measure m on E is excessive with respect to a semi-group
(Pt)t≥0 if m is a σ-finite measure on E such that mPt ≤ m, ∀t > 0.

From (2.1), one easily obtains that the measure ν must be excessive for (Pt)t≥0 and

(P̂t)t≥0 (i.e. νPt ≤ ν and νP̂t ≤ ν, ∀t > 0).

Last visit For a given compact subset B of E, the last visit of X to B is

LB = sup{t ≥ 0 : Xt ∈ B}.

When replacing X by X̂ one writes L̂B.

Transient Markov process A Markov process is transient if for any compact subset
B of E, one has: IPx[LB <∞] = 1,∀x ∈ E.

Let W be the space of paths ω from IR to E ∪ {∆} (with ∆ /∈ E) which are right
continuous with left limits and E valued on some interval (b(ω), d(ω)) and ω(t) = ∆
outside this interval (b(ω) and d(ω) are called the birth and death times of the path
ω). We denote by (Zt)t∈IR the coordinate process on W : Zt(ω) = ω(t). We define the
σ-fields G = σ{Zt : t ∈ IR}, Gt = σ{Zs : s ≤ t}, and the shift operators σt on W :
σtω(s) = ω(t + s), s, t ∈ IR. The σ-algebra of (σt) shift invariant events in G will be
denoted by A.

For a path ω in W , define HB for any compact subset B of E by

HB = inf{t ∈ (b(ω), d(ω)) : ω(t−) ∈ B}

with inf ∅ = +∞.
One immediately notes that on {HB <∞} : HB ∈ [b, d).
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We will also use λB given by

λB = sup{t ∈ (b(ω), d(ω)) : ω(t) ∈ B}

with sup ∅ = −∞.

Given a Borel right process X and an excessive measure ν with respect to its semi-group
(Pt)t≥0, we denote by Qν (resp. Pν) the Kuznetsov measure (resp. the quasi-process)
onW associated to {ν, (Pt)t≥0}. For an introduction to these measures, we recommend
[6]. Here is a brief reminder of their definitions.

Kuznetsov measure The Kuznetsov measure Qν on W \ {∆} is defined by:

Qν(Zt1 ∈ A1, Zt2 ∈ A2, · · ·Ztn ∈ An) = (2.2)∫
A1

ν(dx1)

∫
A2

Pt2−t1(x1, dx2) ..

∫
An

Ptn−tn−1(xn−1, dxn)

for −∞ < t1 < t2 < .. < tn < +∞ and A1, .., An ∈ E .
Under Qν the coordinate process (Zt)t∈IR is hence a stationary Markov process with
one dimensional distribution at time t equal to ν and transition semigroup (Pt)t≥0.
Since ν is excessive, the measure Qν is unique (see Kuznetsov [10]).

For X in weak duality with X̂ with respect to ν, the Kuznetsov measure associated to
{ν, (P̂t)t≥0} will be denoted by Q̂ν .

Quasi-process The quasi-process Pν associated with {ν, (Pt)t≥0}, is the measure on
(W ,A) that is determined by the conditions:

Pν

(∫
IR

f(Zt)dt

)
= ν(f), (2.3)

for any nonnegative measurable function f on E, and

for any intrinsic stopping time S, {ZS+t, t > 0} under (2.4)

Pν( · ; S ∈ IR) is Markovian with semigroup (Pt)t≥0,

where by intrinsic stopping time, one means a (Gt)-stopping time that satisfies

b ≤ S < d on {S < +∞}, and S = t+ S ◦ σt for all t ∈ IR.

In the time continuous setting, these measures have been introduced by Weil [19].

The notion of extended process associated to a Markov process is not a classical
notion and requires a full introduction which will be done in section 4. This notion
will be then used in section 4 and section 5.
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3 Random interlacements for standard processes

We consider now a transient standard process X in weak duality with another standard
process X̂ with respect to a σ-measure ν, both taking values in (E, E). We denote by
(Pt)t≥0 and (P̂t)t≥0 the respective semigroups of X and X̂.
The aim of this section is to set a definition of random interlacements for transient stan-
dard processes in weak duality. This definition should be compatible with the existing
one for continuous strong Markov processes in weak duality, have a clear meaning and
of course be not empty. We first remind the definition of random interlacements set in
[5] (the addendum of section 5.3 of [4]) in the case when X and X̂ are continuous.

Definition 3.1 Let X and X̂ be two transient continuous Borel processes in weak
duality with respect to ν. For α > 0 the random interlacements at level α associated to
{ν, ((Pt)t≥0, (P̂t)t≥0)} is a Poisson point process with intensity measure αµν where µν
is the unique measure on (W ,A) such that µν(ω ≡ ∆) = 0, characterized by the two
following properties:

• for every compact subset B of E:

µν [ω(HB) ∈ dx,HB <∞] = êB(dx) (3.1)

where êB is the capacitary (equilibrium) measure of B associated to X̂ with respect
to ν;

• for every couple of A measurable functionals (F1, F2)

µν [F1(ω(HB + t), t ≥ 0); F2(ω((HB − t), )t > 0); HB <∞] (3.2)

=

∫
E

êB(dx)IPx[F1(Xt, t ≥ 0)]ÎP
B

x [F2(Zt, t > 0))],

where for êB(dx) a.e. x, ÎP
B

x is the probability measure on the set of E-valued
paths indexed by IR+ such that

ÎP
B

x [F (Zt, t ≥ 0)] =

∫
E

ν(dy)ÎP y[F (X̂L̂B+t, t ≥ 0)|X̂L̂B
= x].

To extend the above definition to standard processes, we will use the following notion
of bivariate Revuz measure of a homogenous random measure.
Let κ be a homogenous random measure for X in the sense of Getoor and Sharpe [8].
This means that κ is a random measure on IR+ supported by (0, ζ) such that for every
T stopping time for the natural filtration of X: κ((T, t + T ]) = κ((0, t]) ◦ θT a.s. on
{T <∞}, for every t > 0.
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There exists a unique measure ε on E × E such that for every nonnegative bounded
measurable function F on E × E:

ε(F ) = sup
t>0

1

t
IEν

∫
(0,t]

F (Xs−, Xs)κ(ds) = lim
t→0

1

t
IEν

∫
(0,t]

F (Xs−, Xs)κ(ds).

Indeed, using the fact that for every such F , F (Xs−, Xs)κ(ds) is still an homogenous
random measure, one can make use of the arguments developed in [8] section 8, and
obtain ε similarly as they set the definition (8.1) in [8] of the Revuz measure of κ has
been set.
One calls ε the bivariate Revuz measure of κ with respect to ν.

For any compact subset B of E, define the homogenous random measure κB:

κB(ds) = 1{0<L̂B<ζ̂}δL̂B(ds),

where ζ̂ denotes the life time of X̂.
There exists then a unique measure ε̂B on E × E such that for every measurable
bounded nonnegative function F on E × E

ε̂B(F ) = sup
t>0

1

t
ÎEν

∫
(0,t]

F (X̂s−, X̂s)κB(ds) = lim
t→0

1

t
ÎEν

∫
(0,t]

F (X̂s−, X̂s)κB(ds)

= lim
t→0

1

t

∫
E

ν(dx)ÎP x[F (X̂L̂B−, X̂L̂B
), 0 < L̂B ≤ t].

The measure ε̂B is the bivariate Revuz measure of the homogenous random measure
κB with respect to ν.
Note that the first marginal of ε̂B is êB the capacitary measure of B for X̂ with respect
to ν. We denote the second marginal of ε̂B by ê+B.

The notion of bivariate Revuz measure has been first set by Sharpe in [14] for additive
functionals under the additional assumption that ν is a reference measure. Our frame-
work assumes that the two semigroups (Pt)t≥0 and (P̂t)t≥0 are in weak duality. Their
respective potentials are not required to have densities with respect to ν.

Definition 3.2 Let X be a transient standard process in weak duality with X̂ with
respect to a σ-finite measure ν. Let (Pt)t≥0 and (P̂t)t≥0 be the respective semigroups of

X and X̂. For α > 0, the random interlacements at level α associated to
{ν, ((Pt)t≥0, (P̂t)t≥0)} is a Poisson point process with intensity measure αµν where µν
is the unique measure on (W ,A) characterized by the three following properties:

• for any compact subset B of E

µν [ω(HB) ∈ dx, ω(HB−) ∈ dy,HB <∞] = ε̂B(dxdy) (3.3)

where ε̂B is the bivariate Revuz measure of κB associated to X̂ with respect to ν;
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• for every couple of A measurable functionals (F1, F2)

µν [F1(ω(HB + t), t ≥ 0); F2(ω((HB − t)−, )t > 0); HB <∞] (3.4)

=

∫
E×E

ε̂B(dxdy)IPx[F1(Xt, t ≥ 0)]ÎP
B

y [F2(Zt, t > 0)],

where for ê+B(dy) a.e. y, ÎP
B

y is the probability measure on the set of E-valued
paths indexed by IR+ such that

ÎP
B

y [F (Zt, t ≥ 0)] =

∫
E

ν(dz)ÎP z[F (X̂L̂B+t, t ≥ 0)|X̂L̂B
= y];

• and
µν(ω ≡ ∆) = 0. (3.5)

The measure ÎP
B

y does not depend on ν. This has been mentioned in the continuous
case [5], and we will emphasize this fact in the proof of (3.6) below.

As in the continuous case, uniqueness of µν can be obtained with simple arguments.
Indeed let µ1 and µ2 be two measures on A satisfying (3.3) and (3.4) for every compact
subset B of E. We compute µ1(A) for A in A. We use a sequence of compact subsets
(Bn)n≥1 increasing to E. For i = 1, 2, one has:

µi(A) = µi(A;HB1 =∞) + µi(A;HB1 <∞)

By (3.4), and monotone class argument: µ1(A;HB1 < ∞) = µ2(A;HB1 < ∞). One
writes then:

µi(A;HB1 =∞) = µi(A;HB1 =∞, HB2 =∞) + µi(A;HB1 =∞, HB2 <∞),

and keep splitting the probabilities µi(A), i = 1, 2 by using the sequence (Bn)n≥1. By
(3.5): µi(HBn =∞,∀n) = 0, i = 1, 2. Hence we end up with two series with identical
general term, which leads to µ1(A) = µ2(A).

Note that if the measure µν exists then, using both (3.5) and (3.4), it must satisfy for
every compact B

µν(HB = b,HB <∞) = 0.

The following theorem establishes the existence of µν .

Theorem 3.3 Let X and X̂ be two transient standard processes in weak duality with
respect to a σ-finite reference measure ν. Then we have

µν = Pν , (3.6)

where Pν is the quasi-process associated with {ν, (Pt)t≥0}.
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In case X has continuous paths, (3.6) has been already established (Theorem 5.1 in
[4],[5]). In the special example when X is a Brownian motion on IRd, d ≥ 3, (3.6) has
been previously established by Dereich and Döring [1].

Proof: It suffices to show that Pν satisfies (3.3), (3.4) and (3.5).

First note that since X is transient, the excessive measure ν is dissipative for (Pt)t≥0
(see e.g. Remark 4.9 c in [7]). This means that for any nonnegative function f such
that

∫
E
f(x)ν(dx) <∞, one has:

∫∞
0
Ptfdt <∞ ν a.e.

As noticed in [6] section 3, since ν is dissipative then Qν , the Kuznetsov measure
associated to {ν, (Pt)t≥0}, must be dissipative. This means that for any nonnegative
G-measurable F such that Qν(F ) < ∞, one has: Qν(

∫
IR
F ◦ σtdt = ∞) = 0. Using

(Proposition 2.7 in [6]), one hence obtains that there exists a stationary time S∗ such
that Qν(S

∗ /∈ IR) = 0 .
We remind that a G-measurable random time S∗ : W → [−∞,∞] is said to be
stationary if it satisfies S∗ = t+ S∗ ◦ σt for all t ∈ IR.
Following Fitzsimmons [6], the measure Pν can hence be defined by

Pν(A) = Qν [A; 0 < S∗ ≤ 1]

for every A in A the σ-field of invariants elements of G.
More generally, using (2.1) and (2.3) in [6], one obtains for every t > 0

Pν(A) =
1

t
Qν [A; 0 < S∗ ≤ t] =

1

t
Qν [A;−t ≤ S∗ < 0]. (3.7)

Since by definition: Qν(ω ≡ ∆) = 0, (3.7) leads to Pν(ω ≡ ∆) = 0. Hence Pν satisfies
(3.5).

Fix a compact set B. We first remind that since X̂ is transient: Qν(HB = b) = 0 (see
[8] (13.12)). Thanks to (3.7) one obtains: Pν(HB 6∈ (b, d), HB <∞) = 0.
For any F real-valued mesurable bounded function on E ×E, one has for every t > 0:

Pν [F (ZHB , ZHB−), HB <∞] =
1

t
Qν [F (ZHB , ZHB−), HB <∞,−t ≤ S∗ < 0]

=
1

t
Qν [F (ZHB , ZHB−), −t ≤ HB < 0]

thanks to the switching property of Proposition 2.4 in [6]. Using then the duality
properties of Qν (see [12]):

Q̂ν [F (Zt, t ∈ IR)] = Qν [F (Ẑt, t ∈ IR)], (3.8)

where Ẑt = Z(−t)−, t ∈ IR, one obtains for every t > 0:

Pν [F (ZHB , ZHB−), HB <∞] =
1

t
Q̂ν [F (ZλB−, ZλB), 0 < λB ≤ t]. (3.9)
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On one hand for every nonnegative function f , one has:

êB(f) = lim
t→0

1

t

∫
E

ν(dx)ÎP x[f(X̂L̂B−), 0 < L̂B ≤ t]

= lim
t→0

1

t
Q̂ν [f(ZλB−), b < 0 < λB ≤ t]. (3.10)

One the other hand, making use of (13.7) in [8], one knows that:

êB(f) =
1

t
Q̂ν [f(ZλB−), 0 < λB ≤ t, λB > b]. (3.11)

Moreover on {λB ∈ (0, t]}: λB ∈ (b, d], and X̂ being transient one has: Q̂ν [λB = d] = 0
(Proposition 13.6 in [8]). Using these last remarks together with (3.10), (3.11) one
finally obtains:

lim
t→0

1

t
Q̂ν [ 0 ≤ b < λB ≤ t] = 0. (3.12)

Starting from (3.9), one writes for every t > 0:

Pν [F (ZHB , ZHB−), HB <∞] =
1

t
Q̂ν [F (ZλB−, ZλB), b < 0 < λB ≤ t]

+
1

t
Q̂ν [F (ZλB−, ZλB), 0 ≤ b < λB ≤ t],

and let then t tend to 0 to obtain thanks to (3.12):

Pν [F (ZHB , ZHB−), HB <∞] = lim
t→0

1

t
Q̂ν [F (ZλB−, ZλB), b < 0 < λB ≤ t]

= lim
t→0

1

t

∫
E

ν(dx)ÎP x[f(X̂L̂B−), 0 < L̂B ≤ t]

= ε̂B(F )

which establishes (3.3) for Pν .
We check now that Pν satisfies (3.4).

Pν [F1(Z(HB + t), t ≥ 0); F2(Z((HB − t)−), t > 0); HB <∞] (3.13)

= Qν [F1(Z(HB + t), t ≥ 0); F2(Z((HB − t)−, t > 0); HB <∞; −1 ≤ S∗ < 0]

= Qν [F1(Z(HB + t), t ≥ 0); F2(Z((HB − t)−, t > 0); −1 ≤ HB < 0].

The random time HB is a stopping time for Qν (i.e. for every t ∈ IR , {HB ≤ t} ∈ Gt).
It is a an intrinsic stopping time ine the sense that on {HB < ∞} : b ≤ HB < d
and HB = t + HB ◦ σt, ∀t ∈ IR. This implies in particular that for every t: ZHB+t is
A-measurable, and hence so is (Z(HB−t)−, t ≥ 0).
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Using Proposition 2.4 (2.5) in [6], one has for every t > 0

1

t
Qν [F1(Z(HB + t), t ≥ 0); F2(Z((HB − t)−), t > 0); −t ≤ HB < 0] (3.14)

= Qν [F1(Z(HB + t), t ≥ 0); F2(Z((HB − t)−), t > 0); −1 ≤ HB < 0]

Under Qν , one has Markov property at time HB, under the following form (see e.g.
(10.12) in [8])

Qν [F1(Z(HB + t), t ≥ 0); F2(Z((HB − t)−), t > 0); −1 ≤ HB < 0]

= Qν [−1 ≤ HB < 0, IPZ(HB)[F1(Xs, s ≥ 0)]F2(Z(((HB − t)−), t > 0)],

which leads to

Qν [F1(Z(HB + t), t ≥ 0); F2(Z((HB − t)−), t > 0); −1 ≤ HB < 0]

=

∫
E

êB(dx)IPx[F1(Xs, s ≥ 0)]

Qν [−1 ≤ HB < 0, F2(Z(((HB − t)−), t > 0)|Z(HB) = x]

=

∫
E

êB(dx)IPx[F1(Xs, s ≥ 0)]

Q̂ν [0 < λB ≤ 1, F2(Z((λB + t), t > 0)|Z(λB−) = x]

(thanks to (3.8))

=

∫
E

êB(dx)IPx[F1(Xs, s ≥ 0)]

∫
E

Q̂ν [0 < λB ≤ 1, Z(λB) ∈ dy|Z(λB−) = x]

Q̂ν [0 < λB ≤ 1, F2(Z(((λB + t)), t > 0)|Z(λB−) = x, Z(λB) = y]

=

∫
E×E

ε̂(dxdy)IPx[F1(Xs, s ≥ 0)]

Q̂ν [0 < λB ≤ 1, F2(Z(((λB + t)), t > 0)|Z(λB−) = x, Z(λB) = y], (3.15)

using (3.3) for Pν .
Now, using both (3.14) and (3.8), we have for every t > 0

Q̂ν [0 < λB ≤ 1, F2(Z(((λB + s)), s > 0)f1(Z(λB−)f2(Z(λB))]

=
1

t
Q̂ν [0 < λB ≤ t, F2(Z(((λB + s)), s > 0)f1(Z(λB−)f2(Z(λB))]

=
1

t
Q̂ν [b < 0 < λB ≤ t, F2(Z(((λB + s)), s > 0)f1(Z(λB−)f2(Z(λB))]

+
1

t
Q̂ν [0 ≤ b < λB ≤ t, F2(Z(((λB + s)), s > 0)f1(Z(λB−)f2(Z(λB))]

Letting then t tend to 0 and using (3.12) one obtains:

Q̂ν [0 < λB ≤ 1, F2(Z(((λB + s)), s > 0)f1(Z(λB−)f2(Z(λB))] (3.16)

= lim
t→0

1

t
Q̂ν [b < 0 < λB ≤ t, F2(Z(((λB + s)), s > 0)f1(Z(λB−))f2(Z(λB))]

= lim
t→0

1

t

∫
E

ÎP ν [0 < L̂B ≤ t, F2(X̂(((L̂B + s)), s > 0)f1(X̂(L̂B−))f2(X̂(L̂B))]

10



We use now the splitting property of the random time L̂B to claim that

ÎP ν [ 0 < L̂B ≤ t, F2(X̂(L̂B + s)), s > 0)f1(X̂(L̂B−))f2(X̂(L̂B))]

= ÎP ν [0 < L̂B ≤ t,Γ(X̂L̂B
, F2)f1(X̂(L̂B−))f2(X̂(L̂B))],

where (Γ(x,A), x ∈ E,A ∈ F) is a Markov kernel (see Theorem 2.12 in [9] for a
complete description of Γ) independent of ν.
From (3.16), one hence obtains:

Q̂ν [0 < λB ≤ 1, F2(Z(((λB + s)), s > 0)f1(Z(λB−)f2(Z(λB))]

= εB(g)

where g denotes the function on E × E defined by g(x, y) = f1(x)f2(y)Γ(y, F2).
This implies that ê+B(dy) a.e. y:

Q̂ν [0 < λB ≤ 1, F2(Z(((λB + s)), s > 0)|Z(λB−) = x, Z(λB) = y] (3.17)

= Γ(y, F2)

=

∫
E

ν(dz)ÎP z[F2(X̂L̂B+s, s > 0)|X̂L̂B
= y],

which is hence independent of ν.
Coming back to (3.15) and using (3.13) one finally obtains:

Pν [F1(Z(HB + t), t ≥ 0); F2(Z((HB − t)−), t > 0); HB <∞]

=

∫
E×E

ε̂(dxdy)IPx[F1(Xt, t ≥ 0)]ÎP
B

y [F2(Zt, t > 0)].

One concludes that Pν satisfies (3.4). �

Suppose now that the excessive measure ν is purely excessive, which means that∫
E

ν(dx)Pt1(x)→t→∞ 0. (3.18)

In this case µν can be connected with another measure on A the σ-field generated by
the shift invariant sets of W . More precisely when ν is purely excessive there exists a
family of measures on E , (mt)t>0, such that

ν(f) =

∫ ∞
0

mt(f)dt and msPt−s = mt, 0 < s < t.

One says that (mt)t>0 is an entrance law associated to ν (see [3]). Define P∗ by

P∗(Zt1 ∈ A1, · · ·Ztn ∈ An) =

∫
A1

mt1(dx1) · · ·
∫
An

Ptn−tn−1(xn−1, dxn) (3.19)

for 0 < t1 ≤ .. ≤ tn and extend the definition to negative ti’s by setting ms = 0 for
s < 0.
We have shown in [4] ((5.10) in [4]) that for every A ∈ A: P∗(A) = Pν(A). This leads
to the following corollary.
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Corollary 3.4 Let X and X̂ be two transient standard processes in weak duality with
respect to a purely excessive measure ν. Then we have

µν = Pν = P∗|A .

The interest of Corollary 3.4 relies on an interpretation of the measure P∗ which can
be done under some additional assumptions. This is the object of the next section.

4 Interpretation of random interlacements

We have noticed in [4] (Remark 2.2) that a sufficient condition for ν to be purely
excessive (3.18) is ν finite excessive and the life time ζ of X is finite IPx a.s. for every x
in E. The interest of Corollary 3.4 relies on a peculiar interpretation of the measure P∗
under some additional assumptions. Indeed, assume that the three following properties
are satisfied

(i) ν is finite and excessive;

(ii) the life time ζ of X is finite IPx a.s. ∀x ∈ E;

(iii) ζ has no atom IPx a.s ∀x ∈ E

and let δ be a point outside E. We have shown in [4] that then there exists a Markov
process (Yt)t≥0 on E ∪ {δ} admitting δ as a recurrent point such that for every a in E:

((Xt, t < ζ)|X0 = a)
(law)
= ((Yt, t < Tδ)|Y0 = a),

where Tδ = inf{s ≥ 0 : Ys = δ}. Moreover the excursion process of Y with respect to
δ is a Poisson point process with intensity dt× P∗. One says that the process Y is an
extended Markov process of X, in short an extended X. Thanks to Corollary 3.4
one can hence interpret the random interlacements at level α as the excursion process
of Y from δ modulo time-shift up to the first time the local time at δ exceeds α.

In case the set of the three above properties (i)-(iii) is not satisfied, one can still make a
connection between the random interlacements of X and the excursion process of some
Markov process on E ∪ {δ} by assuming that X has finite 0-potential densities with
respect to ν. Indeed we have shown ([4], Corollary 2.4) that under this assumption
there exists a positive function q on E such that the measure ν · q is finite (where
ν · q (dx) = q(x)ν(dx)) and that there exists a Markov process (Yt)t≥0 with state space
E ∪ {δ} admitting a local time process (Lxt (Y ), x ∈ E, t ≥ 0) with respect to ν · q and
δ as recurrent point, satisfying for every a in E:

((Lx∞(X), x ∈ E)|X0 = a)
(law)
= ((LxTδ(Y ), x ∈ E)|Y0 = a),
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where (Lx∞(X), x ∈ E) denotes the total accumulated local time process of X with
respect to ν.
We still say that the process Y is an extended Markov process of X, or an extended
X. Note that Y depends on the choice of q but that this choice does not affect the law
of (LxTδ(Y ), x ∈ E).
Following exactly the same sequence of arguments as for the proof of Proposition 5.3 in
[4], one obtains the following proposition. Note that as soon as X has finite 0-potential
densities with respect to ν then necessarely ν is a reference measure for (Pt)t≥0.

Proposition 4.1 Let X be a transient standard process with semigroup (Pt)t≥0 in weak

duality with respect to a σ-measure ν with a standard process with semigroup (P̂t)t≥0.
Assume that X has finite 0-potential densities with respect to ν. Then the field of occu-
pation times of the random interlacement at level α associated to {ν, ((Pt)t≥0, (P̂t)t≥0)}
equals in law the local time process of an extended X at the first time its local time at
δ exceeds α.

5 Illustrations

5.1 Lévy processes

Lévy processes are standard processes. Besides a Lévy process X on IRd is in weak
duality with (−X) with respect to the Lebesgue measure on IRd. Obviously the
Lebesgue measure on IRd is not finite.
In case the Lévy process X is transient, according to Definition 3.2 and Theorem 3.3,
the random interlacements at level α associated to X is the Poisson point process with
intensity measure αPν (ν here is the Lebesgue measure on IRd).
If moreover X has finite 0-potential densities then X admits an extended Markov
process Y on IRd ∪ {δ} such that for every α > 0, the occupation field of the random
interlacements of X at level α equals in law the local time process of Y at the first
time the local time at δ exceeds α.

In [13], Rosen defines directly the random interlacements at level α as the Poisson point
process with intensity measure αPν . He considers then exclusively the case when X is a
symmetric transient IRd-valued Lévy process and does not admit local times. Theorem
3.3 ensures that this Poisson point process coincides with the one given by Definition
3.2 but the interpretation provided by Proposition 4.1 is not available in his framework.

5.2 Extension of Sznitman’s isomorphism Theorem

For any transient standard process X with finite symmetric 0-potential densities
(u(x, y), (x, y) ∈ E×E) with respect to a σ-measure ν, one has obtained (Theorem 3.1
in [4]) the following isomorphism theorem for Y , an extended X. Under IP [ . |Y0 = δ],
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one has:

(
1

2
η2x + Lxτα(Y ), x ∈ E)

(law)
= (

1

2
(ηx +

√
2α)2, x ∈ E), (5.1)

where (Lxτα(Y ), x ∈ E) is the local time process (with respect to ν · q) of Y , at the
first time the local time of Y at δ exceeds the value α, and (ηx, x ∈ E) is a centered
Gaussian process with covariance (u(x, y), (x, y) ∈ E × E), independent of Y .
According to Proposition 4.1, one can rewrite (5.1) under the following form:

(
1

2
η2x + Lx,α , x ∈ E)

(law)
= (

1

2
(ηx +

√
2α)2, x ∈ E), (5.2)

where (Lx,α, x ∈ E) is the occupation time of the random interlacements at level α of
X.
The identity (5.2) represents an extension to the discontinuous case of Sznitman’s
isomorphism Theorem for random interlacements.

It holds in particular for any symmetric transient Lévy process admitting local times.
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