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Abstract

The development of intra-grain orientation distributions is analysed for 446 individual grains of an alu-

minium polycrystal deformed in tension to successive strains of 1, 1.5, 2, 2.5 and 4.5%. In the experiment,

diffraction contrast tomography (DCT) and far-field 3D X-ray diffraction microscopy (3DXRD) were used,

and a reduced-order representation of the intra-grain orientation distributions was determined from the

broadening of the 3DXRD diffraction spots. A high-resolution finite-element simulation (700 elements/grain

on average) was conducted on the same polycrystal, providing detailed information on orientation evolu-

tion. Several metrics were considered to analyse the experimental and simulated orientation distributions,

including the average disorientation angles and the preferential disorientation axes. The average disori-

entation angles were found to increase almost linearly with strain, and to be in appreciable correlation

between experiment and simulation (albeit evolving faster in simulation). It was shown that the prefer-

ential disorientation axes are distributed perpendicularly to the tensile direction (Z) and perpendicular to

the X–Y component of the Rodrigues orientation vector. Detailed crystal plasticity analyses showed that

the distribution of preferential disorientation axes is related to the presence of larger slip variabilities on

particular slip systems. Using a simplified approach, it was shown that accurate knowledge of the average

stress of a grain is necessary in order to predict the preferential disorientation axis, which is well-captured

by the finite-element simulation. The intra-grain stress distribution appears to have comparatively less

influence.
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1 Introduction

The orientation distributions that develop inside grains of a polycrystal subjected to plastic deformation

are important both for practical applications and for the basic understanding of the mechanisms from which

they originate. In large-strain applications such as industrial rolling, intra-grain orientation distributions

influence the mechanical properties [1] and subsequent annealing phenomena such as recrystallization nu-

cleation [2, 3]. From the mechanics point of view, they hold archival information on the local deformation

mechanisms, such as crystallographic slip or grain interaction, and the general development of heterogeneous

stress and strain fields [4].

Historically, experimental (local) orientation distributions have been mostly observed in 2-D and after de-

formation, in single crystals or grains of polycrystals, primarily by electron backscattered diffraction (EBSD)

and especially in the case of rolling-type deformation modes [5–7]. EBSD was also used in conjunction with

the “microtexture tracking” or “split sample” technique, by which individual grains are followed on an in-

ternal surface of a sample, to access the orientation evolution with strain [8–10]. Experimental observations

were compared to full-field simulations based e.g. on the crystal-plasticity finite-element method [11–13] to

carry out detailed analyses of different attributes of the orientation distributions, which were considered in

terms of distribution over all grains or correlated to microstructural attributes, in particular grain (average)

orientation [4, 10, 14]. Actual grain-by-grain comparison between experiment and simulation on a general

3-D polycrystal potentially offers more information, but requires 3-D, non-destructive characterization of the

microstructure before and during deformation. Such characterizations became possible with the advent of

high-energy X-ray diffraction techniques, which have been applied mainly to uniaxial loadings [15]. This has

lead to the so-called “far-field 3-D X-ray diffraction microscopy (3DXRD)” technique [16], which was first

applied to follow the average rotations of grains in a plastically-deformed aluminium polycrystal [17] and com-

pare them to predictions from simple models [18]. Derivative techniques were then developed to access intra-

grain orientation information, such as diffraction-contrast tomography (DCT and 6D-DCT) [19, 20], which

primarily facilitates mapping of undeformed or slightly deformed polycrystalline microstructures (ε < 5%), or

high-energy diffraction microscopy (HEDM) [21], which also applies to moderately deformed polycrystalline

microstructures (ε < 20%). Applications include Refs. [22,23]. However, the 3DXRD technique itself, which is

experimentally simpler, also provides some degree of information on intra-grain orientation distributions [24].

Standard applications, which focus on the determination of the average orientations of grains, use only the

average positions of the spots, but their broadening contains information on the orientation distributions

(excluding the spatial arrangements), which can be used for example to determine the complete ODF of a

deformed grain [25, 26], or directly compare experiment and simulation [27]. When the focus is specifically

on the anisotropy properties of the orientation distributions, it should also be possible to determine them

directly from the broadening of the diffraction spots.

In this work, an experiment based on DCT and 3DXRD is used to track the development, via the

broadening of the diffraction spots, of the intra-grain orientation distributions in the grains of a deformed

polycrystal subjected to tension, and the results are compared to those of a simulation based on the crystal-

plasticity finite-element method. Using both data sets, the goal is to develop a better understanding of

the development of the intra-grain orientation distributions. The paper proceeds as follows. First, the

experiment and the method to determine the properties of the intra-grain orientation distributions from the

observed diffraction spots are presented in Section 2. Then, the finite-element simulation and the procedure to

determine the same properties are presented in Section 3. Next, the results on different metrics are presented

and compared in Section 4. Section 5 relates the metrics, in particular the preferential disorientation axes,

to deformation mechanisms, using a simplified approach. Section 6 completes the paper with conclusions.
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2 Experiment

A high-purity Al–0.3wt% Mn alloy was used. After casting, the material was cold-rolled to 80% height

reduction. A flat, dog-bone specimen was spark-machined with its tensile axis along the rolling direction,

and with a gauge of section 1 mm × 1 mm and height 1.5 mm. The material was then recrystallized at

450 °C for 25 min. This resulted in a microstructure consisting of nearly equiaxed grains of an average size

of about 150 µm with a relatively limited crystallographic texture. The grain orientations and reorientations

developing as the specimen was subjected to plastic deformation were then observed in situ by high-energy

X-ray diffraction at the Materials Science beamline of ESRF (ID11).

2.1 DCT and 3DXRD observation

Before deformation, the microstructure of the full gauge section of the specimen was mapped by DCT [28],

see Figure 1a. This was done using a beam of energy 41.7 keV and a FReLoN camera with 2048 × 2048

pixels of an effective size of 1.4 µm, located 5 mm behind the sample. The X-ray beam was 1 mm wide and

550 µm high, so that three scans were necessary to cover a sample region of height 1.4 mm with an overlap

of 75 µm between adjacent scans. Overlaps were used to facilitate the merging of the DCT polycrystal

volumes corresponding to the different scans. The acquisition was done over a full sample revolution, with

an integration step of 0.1° (3600 diffraction images) and an exposure time of 1 s. To merge the three

volumes, registration was applied between their intersections, using the absorption homograms. Common

grains between adjacent volumes were paired manually, and all pairs were finally merged automatically (this

was done before the dilation step of the standard DCT post-processing). The average orientations of the

grains subjected to merging were recomputed from the orientations of their pre-merging parts and did not

change by more than 0.05°. The resulting polycrystal volume contained 1848 grains and is shown in Figure 1b

and its texture in Figure 1c.

Deformation was then applied using the Nanox load frame [29], in several steps, to successive strains of

1, 1.5, 2, 2.5 and 4.5% (measured at the gauge section). After each deformation step, the grain orientations

were measured by 3DXRD at the center of the gauge section, on a height of 550 µm [15]. This was done

using a beam of energy 60 keV and a FReLoN camera with 2048 × 2048 pixels of an effective size of 48.5 µm,

located 260 mm behind the sample. Up to the strain of 2%, a beam of height of 550 µm and width of 1 mm

was used, and the acquisition was done over a full sample revolution, with an integration step of 0.03° (12,000
diffraction images) and an exposure time of 0.03 s. At higher strains, the acquisition parameters had to be

adapted, due to the peak broadening resulting from plastic deformation, to avoid spot overlaps and excessive

intensity loss. At a strain of 2.5%, the beam height was reduced to 275 µm, and two adjacent scans were

acquired with an integration step of 0.06° (6000 diffraction images). At a strain of 4.5%, the height was

reduced to 185 µm, and three adjacent scans were acquired with an integration step of 0.2° (1800 diffraction

images) and an exposure time of 0.06 s. Standard post-processing was used to “index” the diffraction spots

and relate them to the corresponding grains. The set of analysed grains is shown on Figure 1d, and typical

orientation spots are provided in Figure 1e. Diffraction spots are inherently 3D intensity distributions, but

are acquired as a set of 2D detector images (in u–v directions) at fixed rotation angle (ω). For each spot,

a stack of detector images can be used to reconstruct the full distribution. The distribution can then be

projected into the azimuthal plane (η, ω) to retain only the lattice rotation information [15]. Only the spots

that do not overlap with the spots of other grains were considered, which lead to sets of between 40 and 100

spots for each grain and at each strain. The resulting number of available spots tended to decrease as strain

increased, but always remained higher than about 40 (which is sufficient to unambiguously and accurately

determine the anisotropy properties of the corresponding orientation distribution). Among the total of 824

grains contained in the region covered by 3DXRD, 466 could be followed during the entire deformation and

will be used in the following.
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Figure 1: Principle and first results of the high-energy X-ray synchrotron experiment. (a) Tensile specimen

and observed regions in DCT and 3DXRD, (b) initial microstructure obtained by DCT and colored by

orientation, (c) crystallographic texture on the standard triangle (computed from the 466 followed grains),

(d) grains followed by 3DXRD, and (e) example of a series of diffraction spots of a particular grain (azimuthal

projection, ε = 4.5%).
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2.2 Determination of the intra-grain disorientation distributions

The orientation or disorientation distributions developing inside individual grains as a result of plastic

deformation are typically unimodal and anisotropic, i.e. form a single “cloud” of orientations that extends

differently depending on the direction [4,5], and it will also be the case in this work. In principle, multimodal

orientation distributions can also develop, but only for grains of specific initial orientations and after large

plastic strains [10,14]. For typical unimodal orientation distributions, the frequency profile along a direction

of the orientation distribution is bell-shaped and approaches a normal distribution [4, 6]. In this work, we

are only interested in the (statistical) anisotropy properties of the orientation distributions and therefore will

determine them directly from the diffraction spots, with no regards to the actual distributions. For each

grain, the diffraction spots (described in azimuthal plane (η, ω)) correspond to intensity maps, Iexp, which

constitute the input data to the approach.

2.2.1 Principle

For each grain, a reduced-order representation of the disorientation distribution is considered, and its

parameters are determined from the set of intensity maps (Iexp). Formally, this corresponds to the process

of fitting an analytical function to a collection of discrete data points, but with the analytical function and

the discrete data points defined in different spaces.

The disorientation distribution of a grain is expressed in tangent space of orientation space, where the

disorientation vector, w, is defined as w = r θ/2, where r and θ are the disorientation axis (expressed in

the reference coordinate system) and disorientation angle, respectively [30]. The (anisotropic) disorientation

distribution is defined as a 3-variate normal distribution, P ,

P (w) =
3∏

i=1

1√
2π θi

2
exp

(
−(w · vi)2

2 θi
2

)
, (1)

where vi are the three (orthogonal) principal directions of the distribution and θi are the associated charac-

teristic lengths of the distribution (θ1 ≥ θ2 ≥ θ3). This function can be seen as the union of different rotation

trends (θi) in three dominant (principal) directions (vi) that finally lead to the general, anisotropic distribu-

tion (P ). By definition, P is centered on the origin of the space and integrates to 1 over the full space. The

first principal axis (v1, associated to θ1) corresponds to the disorientation axis about which the disorientation

angles are the highest and will be referred to as “preferential disorientation axis” in the following [4].

The parameters of the disorientation distribution (vi and θi) are determined using a method based on

the generation of a set of diffraction spots, of intensities Igen, from the disorientation distribution (often

referred to as “forward simulation”1), and the optimization of its parameters so as to reproduce the set of

experimental diffraction spots (Iexp) as closely as possible. First, initial vi and θi values are considered: θ1,2,3
are set to δω (the integration step of the 3DXRD scan), and v1,2,3 are simply set to be coincident to the axes

of the reference coordinate system. Then, iterations are carried out on the values of vi and θi (and so, on the

disorientation distribution as a whole), until convergence, with these steps:

1. From vi and θi, generate diffraction spots, Igen;

2. From the experimental and generated diffraction spots (Iexp and Igen), compute their correspondence,

r (correlation factor defined in the following);

3. From the evolution of r over iterations (i.e., as a function of vi and θi), modify vi and θi values so as

to maximize r.

1In this article, the expressions “forward simulation” or “simulation” are not used to refer to the generation of diffraction

spots to avoid confusion with the (finite-element) simulation.
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Final results are values of vi and θi, and therefore the disorientation distribution (P ) corresponding to the

set of intensity maps (Iexp) of a particular grain.

The generation of diffraction spots (item 1) is described in Section 2.2.2, while the spot comparison

(item 2) is defined in Section 2.2.3 and optimization (item 3) is described in Section 2.2.4. An example of

application is provided in Section 2.2.5.

2.2.2 Generation of diffraction spots from the reduced-order disorientation function

Given values of vi and θi (which defines P ), diffraction spots (to be compared to the experimental ones)

are generated by first considering a “discrete approximation” of P , as illustrated on Figure 2. At small plastic

strains, for which lattice rotations are limited, P is mostly contained within a small region about the origin

of tangent space and its discrete approximation can appropriately be defined in this region. This region was

taken as a cube of half edge length equal to 3 θ1 (the greatest “three standard deviations”) to effectively

contain most of the distribution, with N voxels along each direction. A value of N = 80 provided a good

balance between the discretization accuracy and the computation time associated to the generation of the

spots from the orientation distribution (which scales with N3). The discrete approximation of P can then

be processed as a set of weighted disorientations
{
(wα, ϕα), α = 1, ..., N3

}
, where the disorientations (wα)

correspond to the centers of the voxels of the region, and the weights (ϕα) correspond to their P values

(ϕα = P (wα)).

From the grain average orientation and the discretized disorientation distribution ({wα, ϕα}), a set of

orientations, {(qα, ϕα)}, was generated, and the diffraction spots corresponding to their (h k l) reflections

were then computed using the standard forward projection relation [15]. For each weighted orientation of

the distribution, (qα, ϕα), a weighted diffraction vector, ((ηα, ωα), ϕα), was obtained, and its weight (ϕα)

was added to the intensity of the corresponding bin of the (η, ω) grid. Considering the contribution of

all orientations, an intensity map, I0gen, is generated. However, as it is generated only from the discrete

approximation of the disorientation distribution, it does not include the effects of other microstructural or

experimental factors that affect the experimental intensity map). These effects must be taken into account to

lead an unbiased comparison of the experimental and generated intensity maps (Iexp and Igen). A possibility

would be to decorrelate the experimental intensity maps from these effects, but the effects can equivalently

be “added” to the generated intensity maps. The first operation is related to the ODF discretization and

the integration of the intensities of the diffraction vectors (which is done independently of the distance to

the bin center or the distance to the centers of the neighboring bins) and introduces “smoothing”, similar to

an experimental “broadening effect” of the detector itself, and the second operation introduces a “grain size

effect”, which causes broadening along η. The actual generated intensity map, Igen, was therefore obtained

as

Igen(η, ω) = I0gen(η, ω) ◦G1(η, ω) ◦G2(η), (2)

where ◦ is the convolution product. The ODF discretization correction, G1(η, ω), is defined as

G1(η, ω) =
1√

2π δr2
exp

(
− η2 + ω2

2 δr2

)
, (3)

where δr is the bin size of the (η, ω) grid. The grain size effect, G2(η), is defined as

G2(η) =
1√

2π ri2
exp

(
− η2

2 ri2

)
, (4)

where ri is the grain equivalent radius (determined by DCT or, equivalently, by 3DXRD, using the average

spot intensity of the grain [31]) expressed in units of η. An example of generated diffraction spot is provided

in Figure 2c.
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a b c

Figure 2: Discretization of a grain ODF. The parameter values are λ1 = 0.0087 (≃ 1°) and λ2 = λ3 = 0.0044

(≃ 0.5°). ∆r = 0.0524 (≃ 6°) and N = 23, resulting in δr = 0.0022 (≃ 0.25°). (a) Disorientation

distribution represented as an ellipsoid showing the isosurface at one standard deviation in the discretization

domain. (b) Discretized disorientation distribution in a domain containing 12167 voxels (in practice, N3 =

512, 000 voxels are used). (c) Corresponding intensity map in the (η, ω) plane (Igen).

2.2.3 Correspondence between experimental and generated diffraction spots

The correspondence between an experimental spot and a generated spot is quantified by the Pearson

product-moment correlation coefficient, r, which is defined as

r =

∑

i, j

(
Iijexp − Iexp

) (
Iijgen − Igen

)

√∑

i, j

(
Iijexp − Iexp

)2√∑

i, j

(
Iijgen − Igen

)2 , (5)

where (i, j) loops over all bins, I• is the average of Iij• over all bins, and r reaches the maximal value of 1 for

a perfect linear correlation. The correlation coefficient (r) is insensitive to the difference in average values, so

that the generated spots do not have to be defined by actual intensities. The objective function (to maximize)

is then simply expressed as

r =
1

N

N∑

k=1

rk, (6)

where N is the number of diffraction spots.

2.2.4 Optimization

While the set of principal axes (vi) and characteristic length (θi) represent a total of 12 variables, the

principal axes (vi) form a coordinate system whose orientation with respect to the reference coordinate

system can be described by a (3D) Rodrigues vector, thereby reducing the total number of variables from 12

to six. Determining the values of the six variables so as to maximize r consists of a non-linear optimization

problem, of unknown gradient, which is solved using the local optimization algorithm Subplex of the NLopt

library [32, 33]. The Subplex algorithm is derived from the Nelder-Mead simplex algorithm and decomposes

high-dimensional problems into a series of low-dimensional problems that can be handled by the simplex

algorithm.

2.2.5 Example of grain 1212

The method is applied to a particular grain (grain 1212), of an average size of 60 µm and an arbitrary

orientation (26° away from Cube). For this grain, 91 spots at ε = 1% down to 47 spots at ε = 4.5% were

obtained from the experimental data. The evolution of eight spots that were available at all deformations is

showcased in Figure 3a, and some of their anisotropy properties and r value are provided in Table 1. It can be
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clearly seen that, as deformation accumulates, the experimental diffraction spots broaden and show different

elongated shapes depending on the (h k l) direction, but also depending on the strain, which indicates that

the anisotropy properties of the orientation distribution evolve during deformation. The generated spots

properly capture the size, shape and direction of the experimental spots at all strains. Clearly, they also

“simplify” the experimental spots, which are less regular and sometimes exhibit local fluctuations, but the

differences can be considered of second order relative to the global, anisotropic character of the distribution.

Some degree of fluctuation, in particular, may be associated to experimental noise, which the reduced-order

representation allows to “filter”. For the grain of interest, the correlation coefficient (r) increases with strain

to a value as high as 0.95 at ε = 4.5%, which tends to confirm that 3-variate normal distributions can be

used to represent the orientation distributions of grains deformed to a plastic strain of a few percents [6].

a

b

ω

η

Figure 3: Comparison between experimental and generated spots for an arbitrary grain (grain 1212): (a) ex-

perimental and (b) generated. The spots are arranged by types of reflection (horizontally) and strain levels

(vertically), and are normalized to a maximal intensity of 1. The (h k l) directions are (2 0 0), (2 0 0), (2 2 0),

(2 2 0), (3 1 1), (1 3 1), (2 2 2) and (2 2 2), from left to right, and the successive strains are ε = 1, 1.5, 2, 2.5

and 4.5%.
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Table 1: Assessment of intra-grain orientation distributions: results of the optimization approach for an

arbitrary grain (grain 1212). v1 is expressed in the reference coordinate system.

Strain Number of spots θ1 (°) θ2 (°) θ3 (°) v1 r

1.0% 91 0.08 0.04 0.02 (0.836, 0.119, −0.536) 0.80

1.5% 83 0.16 0.08 0.05 (0.936, 0.194, −0.292) 0.86

2.0% 78 0.22 0.09 0.07 (0.946, 0.147, −0.288) 0.88

2.5% 44 0.30 0.13 0.09 (0.963, 0.050, −0.266) 0.93

4.5% 47 0.56 0.25 0.15 (0.962, 0.060, −0.267) 0.95
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3 Simulation

The plastic deformation of the polycrystal was simulated over the region mapped by DCT in order to

predict the resulting lattice reorientations of the grains, and the 466 grains followed by 3DXRD were used

for the analysis. Having a simulation region (the DCT region) significantly larger than the analysis region

(the 3DXRD region) made it possible to consider the real neighbors of the grains of the analysis region and

to apply the boundary conditions sufficiently far from these grains not to affect their reorientations. The

polycrystal deformation was simulated using the crystal-plasticity finite-element method, in which the grains

of the polycrystal are discretized into finite elements, deform by slip on specific crystallographic systems, and

interact according to mechanical equilibrium to develop heterogeneous stress and strain fields. The free /

open-source software packages Neper and FEPX were used for the polycrystal meshing, parallel simulation

deformation and result post-processing [13,34,35].

3.1 Constitutive equations

Plastic deformation occurs by slip on the 12 {1 1 1}⟨1 1 0⟩ systems. The slip rate of a given slip system,

γ̇α, is related to its resolved shear stress, τα, through a power law,

γ̇α = γ̇0

∣∣∣∣
τα

gα

∣∣∣∣
1
m

sgn (τα) , (7)

where sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 if x < 0, m is the strain-rate sensitivity coefficient, γ̇0 is the

fixed-state strain rate scaling coefficient, and gα is the current system strength. The hardening on a slip

system, ġα, is described by a Voce hardening assumption,

ġα = h0

(
gs − gα

gs − g0

)n

γ̇, where γ̇ =
∑

α

|γ̇α|. (8)

At the initial state (ε = 0), all gα are taken equal to the g0 value. In such a case, it can be noticed

from Eq. 8 that the yield surface grows isotropically with strain. The material parameters were identified

from the experimental stress-strain behavior, and their values are γ̇0 = 1 s−1 (a convention), m = 0.03,

h0 = 47 MPa, g0 = 6 MPa, gs = 455 MPa and n = 2.6. The crystal elastic anisotropy was modelled using

stiffness parameters of C11 = 107.3 GPa, C12 = 60.9 GPa and C44 = 56.6 GPa [36]. A complete description

of the constitutive model and the finite element method implementation can be found in Refs. [11, 12].

3.2 Polycrystal meshing and deformation

The polycrystal image obtained by DCT was defined in raster format, using voxels. In contrast, the

synthetic polycrystals typically used in finite-element crystal-plasticity simulations are defined in vector for-

mat, using points, straight edges, planar faces and (convex) volumes, which is the input of standard meshing

tools [34, 37]. In this work, such a description was accordingly obtained by approximating the polycrystal

image by its nearest convex-grain geometry, using the general approach presented in Ref. [35]. Formally,

any polycrystal made of convex grains which meet along grain boundaries, triple lines and quadruple points,

such as the polycrystal used in this work but also most single-phase (and some multi-phase) polycrystals,

corresponds to a normal tessellation, and any normal tessellation can be represented by a Laguerre tessella-

tion [38]. It is therefore possible to approximate a polycrystal by an optimal convex-cell geometry using a

Laguerre tessellation, given proper determination of its parameters.

Given a spatial domain D ∈ ℜn, a Laguerre tessellation is defined from a set of seeds, Si, described by

their positions, xi, and weights, wi, where each seed (Si) generates a Laguerre cell, Ci, as follows:

Ci =
{
P (x) ∈ D | d(x, xi)

2 − wi < d(x, xj)
2 − wj ∀j ̸= i

}
, (9)
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where d is the Euclidean distance. In 3D, and under the Laguerre tessellation parameterization, any normal

tessellation comprising N cells (and so any polycrystal made of N convex grains) can therefore be described

by a set of a maximum of 4N parameters. It is, however, non trivial to determine the values of these

parameters. In this work, this was done by minimizing an objective function, O, that quantifies the difference

between the input (DCT) polycrystal and the output (convex-cell) tessellation in terms of distance between

their internal boundaries [35],

O =

√√√√√
2

nv ⟨d⟩2
N∑

i=1

∑

vk ∈Gb
i

d (vk, Ci)
2 with nv =

N∑

i=1

|Gb
i |, (10)

where Gb
i represents the set of boundary voxels of grain i, d (vk, Ci) is the Euclidean distance between a

boundary voxel of grain i, vk ∈ Gb
i , and its corresponding cell, Ci,

∣∣Gb
i

∣∣ is the number of elements of Gb
i ,

nv is the total number of boundary voxels, and ⟨d⟩ is the average grain size [35].2 The optimization problem

is large-scale, non-linear and of unknown gradient, and was solved using the local optimization algorithm

subplex of the NLopt library [32, 33, 35]. The final average distance between the grain boundaries of the

polycrystal and those of the approximating tessellation was 10 µm.

The cells were then assigned the crystal orientations of the grains, and the tessellation was regularized

so as to remove its smallest edges and faces, which avoids the generation of low-quality elements during

meshing [34]. The tessellation was finely and homogeneously discretized into 10-node tetrahedral elements,

with an average of 700 elements per grain, which lead to a mesh comprising about 1,338,000 elements and

1,833,000 nodes, as shown in Figure 4a.

The mesh was subjected to the experimental deformation of 4.5% tension (at a strain rate of 10−2 s−1)

by imposing a non-zero z velocity to the top surface while the bottom surface remained fixed along z (with

additional constraints to avoid rigid body motions). Figure 4b provides an example of results on the deformed

mesh.

a b

Figure 4: Principle and first results of the finite-element simulation. (a) mesh, and (b) lattice rotation angle

(from the initial orientation) at 4.5%.

2The expression differs from the one used in Ref. [35] by a scaling factor, but this does not affect the optimization nor final

tessellation.
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3.3 Determination of the intra-grain disorientation distributions

For each grain (and at each strain), the finite-element simulation provides a set of weighted orienta-

tions (corresponding to the elemental orientations and volumes), {(qα, ϕα), α = 1, . . . , N}, from which the

anisotropy parameters vi and θi of the disorientation distribution can be determined. The average grain

orientation, q, is first computed by quaternion averaging [4,5]. For each element of the grain, the disorienta-

tion with respect to the average orientation is then computed and written as the disorientation vector, wα

(associated to its weight, ϕα).

The anisotropy parameters of the discrete disorientation distribution can then be computed directly (i.e.,

without actually fitting the distribution3), as first proposed by Glez and Driver [5] for EBSD data and Barton

and Dawson [39] for crystal-plasticity finite-element data, as illustrated on Figure 5. Given the set of weighted

disorientations expressed in tangent space, {(wα, ϕα), α = 1, . . . , N}, a 3×3 covariant matrix, S, is defined

as

S =
1

Φ

N∑

α=1

ϕα(wα ⊗wα) with Φ =

N∑

α=1

ϕα, (11)

which is symmetric and can be diagonalized. The eigenvectors and the square roots of the eigenvalues of S

can be identified to the principal directions and characteristic lengths of the disorientation distribution P

(Equation 1), vi (i ∈ {1, 2, 3}) and θi, respectively.

a

b

c

Figure 5: Illustration of the computation of the preferential disorientation axis from discrete orientation

sets. Example of grain 1212 at ε = 4.5%. (a) Disorientations (wα) represented on the mesh of the grain.

The color key is defined in tangent space, as a ball of radius corresponding to a maximal disorientation of

2.3°. (b) Disorientations (wα) represented in tangent space, using the same colors as in (a). (c) Preferential

disorientation axis (v1) computed from Equation 11.

3Fitting a 3-variate normal distribution to the discrete disorientation set of the grain, similar to the experimental approach,

would be another possibility, but would lead to very close results for significantly larger complexity.
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4 Results

Attributes of the intra-grain orientation distributions were analysed for the 466 tracked grains, in exper-

iment and simulation. In the following, we first define some metrics to describe the orientation distributions

and analyse trends in these metrics using distributions. We then look for grain-by-grain correlations between

experiment and simulation, and correlations with the average grain orientation.

In the cases of results computed over all grains (average values, distributions, etc.), and due to the presence

of (non-random) texture in the set of investigated grains (see Figure 1d), a texture correction is applied so

as to obtain results that are representative of a texture-free material (in place of the polycrystal specifically

considered). The texture correction defines a weight for each grain, from the size of the “local neighborhood”

of its orientation (on the IPF, which is the appropriate space under the uniaxial symmetry condition). It

follows that clustered orientations, which tend to over-represent particular orientations, have smaller weights,

while isolated orientations, which represent large portion of possible orientations, have larger weights. The

method is described in Section A, and the obtained (relative) grain weights vary from 0.07 to 8.

4.1 Average disorientation angle and anisotropy factor

The angular extent of the orientation distribution of a grain is typically quantified as the average dis-

orientation angle with respect to the average orientation, θ̄ [4, 10], and is straightforward to compute in the

case of discrete orientation sets (simulation results). In the case where only the anisotropy parameters of the

orientation distribution (θi, vi) are known (experimental results), it can be computed with high accuracy as

θ̄ = a (θ1
p + θ2

p + θ3
p)

1
p , (12)

with a =
√

2/π and p = 1.58 (see Appendix B). The distributions of the average disorientation angles at

successive strains are provided in Figure 6, and the corresponding average values are provided in Table 3,

for experiment and simulation. In both cases, the average disorientation angles increase gradually with

strain. On average over all grains, the average disorientation angle increases almost linearly with strain, at

rates of 0.08 and 0.18° per percent strain, for experiment and simulation, respectively. The constant rate

of evolution can be explained by the fact that the deformation remains small enough so that the average

orientation does not change significantly and the deformation conditions (slip rates, etc.) and therefore the

reorientation conditions (including the disorientation distribution evolution) remain nearly the same [4]. The

faster evolution in simulation was not observed in a previous work on the same material (deformed in hot

plane strain compression to large strains) [4], but may be related to a smaller strain-rate sensitivity (m, see

Equation 7), as using a larger value indeed reduces the θm values.

The strength of the anisotropy of the orientation distribution of a grain can be described by an “anisotropy

factor”, θa, defined as

θa = θ1/
3
√
θ1 θ2 θ3, (13)

which takes a minimal value of 1 for an isotropic distribution. θa just serves for the comparison between

experiment and simulation; specifically, it is not particularly related to any physical phenomenon, and other

applications actually suggested expressions based on additive rather than multiplicative composition [3].

The distribution of the anisotropy factors are provided in Figure 7 for experiment and simulation, and

the corresponding average values are provided in Table 3. Experiment and simulation show comparable

distributions and average values of 1.7–2.0, while only the experimental anisotropy factors tend to increase

with strain.

The experimental and simulated average disorientation angles and anisotropy factors at all strains are

compared grain-by-grain in Figure 8. The θm values show appreciable correlation, with a linear correla-

tion coefficient higher than 0.45 for strains of 1.5% and larger, while the anisotropy factors show only low

correlation, if any.
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Figure 6: Distributions over all grains of the average disorientations, θ̄. (a) experiment and (b) simulation.
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Figure 7: Distributions over all grains of the anisotropy factors, θa. (a) experiment and (b) simulation.

Strain Average disorientation angle, θ [°] Average anisotropy factor, θa [-]

Experiment Simulation Experiment Simulation

1.0% 0.10 0.20 1.75 1.78

1.5% 0.14 0.30 1.81 1.77

2.0% 0.17 0.39 1.85 1.76

2.5% 0.20 0.48 1.96 1.76

4.5% 0.35 0.82 2.03 1.75

Table 2: Evolution of the average disorientation angles and anisotropy factors with strain in the experiment

and simulation.
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Figure 8: Grain-by-grain comparison between experiment and simulation of (a) the average disorientation

angle (θ̄) and (b) the anisotropy factor (θa). Note the different x and y scales in (a).

Strain Linear correlation coefficient [-]

Average disorientation angle, θ Anisotropy factor, θa

1.0% 0.32 ≃ 0

1.5% 0.47 ≃ 0

2.0% 0.47 0.16

2.5% 0.48 0.17

4.5% 0.45 0.18

Table 3: Correlation between the grain average disorientation angles and anisotropy factors in experiment

and simulation.
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4.2 Preferential disorientation axis

The distributions of preferential disorientation axes (v1) at successive strains are provided in Figure 9,

for both experiment and simulation. The equal-area projections are plotted onto the sample X–Y plane

(Z = tensile direction), with uniaxial symmetry applied to the density field. Figure 9 shows that, in the

experiment, the axes are initially almost uniformly distributed and then become perpendicular to the tensile

direction as strain increases. A smooth transition occurs with strain, and the distribution becomes clearly

defined from a strain of 2%. In the simulation, the distributions are very similar at all strains and show the

same distribution of axes perpendicular to the tensile direction. The simulated distribution is slightly more

diffuse than the two final experimental ones (strains of 2.5 and 4%).

Figure 10 provides the distributions of the angles between the experimental and simulated preferential

disorientation axes (vexp
1 and vsim

1 , respectively) at successive strains. The distributions show that the agree-

ment between experiment and simulation improves as strain increases, which is consistent with the progressive

evolution of the experimental distributions toward the simulated distributions (distributions perpendicular

to the tensile direction). A possible interpretation for an agreement improving with strain is that, at larger

strains, and in particular after the elastic-plastic transition [36], the stress state “stabilizes” in a specific

vertex of the yield surface, and that this occurs more rapidly in the simulation than in the experiment.

a b

Figure 9: Distributions over all grains of the preferential disorientation axes, v1, at increasing strains, in

(a) experiment and (b) simulation. On the (equal-area) projections, the tensile axis (Z) is at the center of

the figures, the data of each grain is represent by a dot, and uniaxial symmetry is applied to compute the

density field (data averaging at constant distance from the origin).
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Figure 10: Distribution of the correlations between the experimental and simulated preferential disorientation

axes (vexp
1 and vsim

1 , respectively). The frequency plots are normalized with respect to the case of a random

direction distribution (dotted line).

4.3 Correlation of the preferential disorientation axis with grain average orientation

To investigate the relationships between the preferential disorientation axes and the corresponding average

orientations of the grains, the preferential axes can be plotted in the fundamental region of the Rodrigues

orientation space [40]. The locations of the typical orientation fibers (Z ∥ ⟨1 0 0⟩, ⟨1 1 0⟩ and ⟨1 1 1⟩) are shown
in Figure 11. The distributions of the preferential axes in the fundamental region, at successive strains and

both for experiment and simulation, are plotted in Figures 12 and 13, as 3D views and views along the tensile

direction (Z), respectively. The views along Z somehow allow to “reduce” the data set according to the

uniaxial symmetry conditions. In Figure 12, the apparent non-uniform distribution of batons in Rodrigues

space is due to the combined effects of the (non-random) texture and a higher density of Rodrigues space at

the origin. A preferential disorientation axis is represented as a small baton as follows [4]:

• The radius and length are constant.

• The barycenter is on the average orientation.

• The axis is along the preferential disorientation axis, in orientation space.

• The color is related to the preferential disorientation axis components. Axes aligned with X, Y or Z

are colored red, green or blue, respectively. Intermediate positions are represented by mixed colors, as

indicated on Figures 12 and 13.

It can be clearly seen from the distributions that the experimental axes are of mixed directions at ε = 1%,

and that they rotate toward X–Y directions as strain accumulates, which is consistent with previous results

(Figure 9). The simulated axes have similar X–Y directions at all deformations. In both experiment (at the

largest strains) and simulation (at all strains), the preferential direction axes tend to be perpendicular to the

tensile direction (Z) and to the X–Y component of the orientation vector. For example, orientations with

a dominant X component (in Rodrigues space) have a preferential axis along Y, and, similarly, orientations

with a dominant Y component (in Rodrigues space) have a preferential axis along X. This trend is global,

and the regions about the Z ∥ ⟨1 0 0⟩, Z ∥ ⟨1 1 0⟩ and Z ∥ ⟨1 1 1⟩ fibers (shown on Figure 11) do not show any

particularity.
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Figure 11: Ideal fibers for uniaxial tension (along Z) on an FCC polycrystal (Z ∥ ⟨1 0 0⟩, ⟨1 1 0⟩ and ⟨1 1 1⟩,
which correspond to the three vertices of the standard triangle). Perspective and Z views.
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a b

Figure 12: Correlation between the preferential disorientation axes and the average orientations of the grains,

illustrated in the Rodrigues fundamental region (perspective view), for (a) experiment and (b) simulation.

For each grain, the preferential disorientation axis is represented as a baton located at the average orientation

of the grain. The color of the axis is related to its direction following the color key. From top to bottom,

ε = 1, 1.5, 2, 2.5 and 4.5%, successively.
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Figure 12: (continued)
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a b

Figure 13: Correlation between the preferential disorientation axes and the average orientations of the grains,

illustrated in the Rodrigues fundamental region (Z view), for (a) experiment and (b) simulation. For each

grain, the preferential disorientation axis is represented as a baton located at the average orientation of the

grain. The color of the axis is related to its direction following the color key. From top to bottom, ε = 1, 1.5,

2, 2.5 and 4.5%, successively.
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Figure 13: (continued)
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5 Discussion

A set of 466 grains was used to analyse the evolution of the anisotropy properties of their orientation

distributions, which can be considered as statistically significant [41]. Different metrics were used to describe

the anisotropy properties of the orientation distributions, for which experiment and simulation show different

degrees of agreement. The preferential disorientation axis, in particular, appear to be particularly interesting,

as it is an important attribute of the orientation distribution and shows quite clear dependency on orienta-

tion. In both experiment and simulation, the preferential disorientation axes distribute perpendicular to the

tensile direction (Z) and perpendicular to the X–Y component of the orientation vector. In experiment, this

develops progressively with strain. The appreciable agreement on the preferential disorientation axis between

experiment and simulation, including grain by grain, allows for more detailed analysis of their relationship to

the deformation mechanisms. In Ref. [4], such an analysis was carried out for hot plane strain compression,

and a mechanics-based model for the development of an anisotropic orientation distribution was proposed.

Following a similar approach, the simulation results are first used to relate the preferential disorientation axes

to the slip geometry (Section 5.1), and the simplified model is used and extended to investigate the role of

the stress distribution (Section 5.2).

5.1 Slip geometry and variability

In a grain, plastic deformation occurs by activation of slip on specific systems (among {1 1 1}⟨1 1 0⟩). Slip
on a specific system generates lattice rotation about its spin vector, tα = mα×sα, where mα is the slip plane

normal and sα is the slip direction. It follows that a variation of slip on a system generates a variation of lattice

rotations about its spin vector (tα), which finally leads to a 1-D orientation distribution along the spin vector

(tα). The simultaneous activation of several systems generates lattice rotation variations about spin vectors

of different directions, which finally leads to a general, 3-D orientation distribution. However, as the systems

showing the larger slip variations produce the larger rotation variations, the 3-D orientation distribution is

anisotropic and preferentially elongated along the spin vectors of these systems. The orientation distribution

of a grain therefore depends on the slip activity (and heterogeneity) inside the grain, and therefore holds a

certain degree of information on it.

The slip activity inside the grains of the polycrystal can be investigated from the elemental slip rates.

As the focus is on the distributions of orientations, the slip rates are also considered in terms of distribution

(over all elements), with no consideration to their spatial locations within the grain. Values at the final strain

(ε = 4.5%) are considered, but considering other strains (or even the slips at final strain) would provide similar

results, as the simulated preferential disorientation axes are largely independent of strain (see Figures 9b,

12b and 13b). To determine what are the characteristic directions (mα, sα and tα) of the most active slip

systems, the characteristic directions of all systems are weighted by the corresponding average absolute slip

rates, |γ̇α|, and their distributions over all grains are analysed. For each grain, the average values of the

characteristic directions, mα, sα and tα, are used (12 values per grain). The distributions of |γ̇α|mα, |γ̇α| sα
and |γ̇α| tα over all grains are provided in Figure 14. Both the slip plane normals (mα) and slip directions (sα)

are distributed at about 45° from the tensile direction (Z), and the spin vectors (tα) have X–Y directions,

i.e. are perpendicular to the tensile direction (Z). These characteristics correspond to those of the systems

of maximal Schmid factors for uniaxial tension.

The slip rate variability on a specific system of a grain is quantified as the standard deviation of the slip

rates of all elements (considering, as before, the values at ε = 4.5%). The slip rate variabilities are plotted

against the (absolute) slip rates on Figure 15. It is clear that the systems of high slip rates exhibit that higher

slip rate variability. The higher slip rate variabilities of the most active slip systems combined with their

spin vectors being perpendicular to the tensile direction lead to the (experimental and simulated) preferential

disorientation axis distributions perpendicular to the tensile direction (see Figure 9). The dependency of the

variability of slip rate on the (absolute) average slip rate only applies to first order, however, as significant
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scatter also exists on Figure 15: systems of similar average slip rates may exhibit significantly different slip

rate variabilities or, equivalently, similar slip rate variabilities can be observed for systems of different slip

rates (this was also observed for higher strain rate sensitivity [4]). So, the (absolute) average slip rate and

slip rate variability on a slip system also depend on the conditions that the system (and the grain) locally

undergoes, especially in terms of the local stress and stress heterogeneity, which depends not only on the

grain orientation but also on grain interaction.

a b c

Figure 14: Geometry of the active slip systems for the 466 grains in simulation. Distributions of (a) |γ̇α|mα,

(b) |γ̇α| sα and (c) |γ̇α| tα in simulation (equal-area projections). Uniaxial symmetry is applied. For clarity,

the discrete data (12 slip systems × 466 grains) are omitted to show only their distributions.
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Figure 15: Relation between the slip rate variability and the average slip rate. The data are plotted for the

12 slip systems of each of the 466 grains in simulation.
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5.2 Influence of the stress distribution

The lattice reorientation rate depends on the slip rates on the slip systems, which are themselves related

to the resolved shear strengths (Equation 7) and, hence, to the stress. In the grains of a polycrystal, stress

variation develops as a result of grain interaction. Under the assumption of zero (or negligible) local rigid-body

rotation, the dependence of lattice reorientation on stress is given by

∂ṙ∗

∂σv
= −

∑

α

∂γ̇α

∂τα
(tα ⊗ pα) , (14)

where σv is the stress written in vector form [4]. The partial derivative is known from the kinetics expression

given by Equation 7,

∂γ̇α

∂τα
=

γ̇0
mgα

∣∣∣∣
τα

gα

∣∣∣∣
1
m
−1

, (15)

or, in terms of slip rate γ̇α,
∂γ̇α

∂τα
=

γ̇0
mgα

∣∣∣∣
γ̇α

γ̇0

∣∣∣∣
1−m

. (16)

For usual values of m in the range 0.02–0.15 (here 0.03), it is a strongly increasing function of τα and a nearly

linear function of γ̇α. The factor (tα ⊗ pα), where tα is (as before) the spin vector, pα is the symmetrical

Schmid tensor written in vector form and ⊗ is the dyadic product between vectors, is fully geometrical and

depends only on the crystal lattice orientation. Following Equations (14)–(16), the most active slip systems

have a greater contribution to ∂ṙ∗/∂σv, according to the ∂γ̇α/∂τα factor.

By definition, ∂ṙ∗/∂σv provides the variation of the reorientation velocity vector as a function of a variation

of the stress vector, and so the stress distribution inside a grain generates a reorientation distribution (and

finally an orientation distribution) depending on ∂ṙ∗/∂σv (Equation 14). This expression can be subjected

to a singular value decomposition,
∂ṙ∗

∂σv
= U S V T , (17)

where U is a (3, 3) orthogonal tensor, S is a (3, 6) diagonal tensor, and V is a (6, 6) orthogonal tensor. The

diagonal entries of S are sorted in decreasing order. It is important to note that U is a basis of the physical

(real) space and V is a basis of the stress space.

A Taylor (iso-strain) assumption was used in Ref. [4] to compute the nominal stress, slip rates and value of

∂ṙ∗/∂σv. A random, isotropic stress distribution (random vectors in stress space) was then considered, which

leads to a reorientation velocity distribution of principal directions given by the rows of U and magnitudes

given by the associated diagonal entries of S. Note that the resulting distribution will necessarily show

greater orientation dependency than the experimental or simulated ones, as the preferential disorientation

axes depend only on orientation. The distribution of the preferential disorientation axis resulting from these

assumptions is provided in Figure 16. It can be seen that the equal-area projection is in good agreement

with the experimental and simulated ones (see e.g. Figure 9a,b at ε = 4.5%), but that the distribution in

orientation space (Figure 16b versus Figures 12 and 13) shows less agreement (while good agreement was

obtained for hot plane strain compression [4]). Specifically, considering an idealized configuration consisting

of a Taylor stress and an isotropic stress distribution does not reproduce the distribution of the preferential

disorientation axes in a region surrounding the Z∥⟨1 0 0⟩ fiber where the axes are oriented parallel (rather

than perpendicular) to the X–Y component of the orientation vector.

Given that the idealized configuration does not fully reproduce the observed (experimental or simulated)

orientation dependency of the preferential disorientation axes, the following question arises: what is (or are)

the driving factor(s) for the difference (especially around Z∥⟨1 0 0⟩), in terms of the assumptions made in

the idealized configuration? As per the specificities of the idealized configuration, the two main factors may

be: (1) the assumption of iso-strain (Taylor model) to compute the nominal stress and ∂ṙ∗/∂σv, and (2)
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the assumption of an isotropic stress distribution to compute the preferential disorientation axes. Another

possible factor is (3) the assumption of zero (or negligible) local rigid-body rotation, which, based on the

analysis made in Section 5.1, should not play an important role, but is also considered in the following for

completeness.

The procedure to determine the relative influences of the three main assumptions is to consider the

idealized configuration and relax each assumption independently, as follows:

1. Relaxed iso-strain assumption: the finite-element average stress is considered in place of the Taylor

stress. This provides a new value of ∂ṙ∗/∂σv, from which the preferential disorientation axis of the

grain is computed as previously, by singular value decomposition (Equation 17).

2. Relaxed isotropic-stress-distribution assumption: the (discrete, anisotropic) finite-element stress dis-

tribution is considered instead of the ideal isotropic distribution. So, the nominal value of ∂ṙ∗/∂σv
is still used, but the finite-element stress vectors (with respect to the average stress) are then multi-

plied by ∂ṙ∗/∂σv to obtain the corresponding (discrete) reorientation rate distribution, from which the

preferential disorientation axis is computed as for the simulation results, using Equation 11.

3. Relaxed zero-spin assumption: the (discrete, anisotropic) finite-element spin rate distribution is intro-

duced. The finite-element spin rate vectors (with respect to the average spin) are combined with the

reorientation rate vectors resulting from the isotropic stress distribution as per the standard composi-

tion [4] to obtain a new reorientation rate distribution, whose anisotropy properties are computed as

in the simulation, using Equation 11 (due to the discrete nature of the spin rates, the isotropic stress

distribution is also considered as discrete, as in configuration 2).

Figure 17 provides the preferential disorientation axes obtained in the three configurations, as equal-area

projections and distributions in orientation space (to be compared to Figures 9, 12 and 13 at ε = 4.5%).

In addition, the correlation to the experimental disorientation axes (vexp
1 ) is quantified as the average value

of the angles between the experimental and predicted axes (same metric as in Figure 10). The values are

46° for the idealized configuration (iso-strain and isotropic stress distribution), and 38°, 56° and 47° for the

three successive relaxed configurations (37° for the finite element simulation). It is clear from these results

that considering the finite-element average stresses instead of the Taylor stresses (configuration 1) largely

corrects the preferential disorientation axes in the Z∥⟨1 0 0⟩ region, and gives a degree of agreement very close

to the experiment–simulation one. Conversely, considering an anisotropic stress distribution or a non-zero

spin distribution (alone) does not improve the distribution. This can be explained by several reasons. First,

good results with an isotropic stress distribution (configuration 1) indicate that the preferential disorientation

axes are controlled by the shape of ∂ṙ∗/∂σv rather than by the shape of the stress distribution. ∂ṙ∗/∂σv
depends on the crystal orientation, (non-linearity of the) slip law, and average stress of the grain, which

ensures proper selection of the active slip systems. Second, the lack of improvement when considering the

actual stress distribution (variations about the average) can be related to the fact that it is not considered

about the correct nominal stress. Finally, the spin, as not being intrinsically associated to particular spatial

directions (unlike slip), does not involve a particular distribution of the associated reorientation directions.
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a

b

Figure 16: Preferential disorientation axes resulting from an isotropic stress variability shown as (a) distribu-

tion over all orientations (equal-area projections) and (b) correlation with the associated average orientations.
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a b c

Figure 17: Preferential disorientation axes resulting from the idealized configuration and (a) the relaxed

iso-strain assumption, (b) the relaxed isotropic-stress-distribution assumption and (c) the relaxed zero-spin

assumption.
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6 Conclusions

The orientation distributions developing within individual grains of an aluminium polycrystal deformed in

tension were experimentally characterized by far-field 3D X-ray diffraction microscopy and simulated using the

finite-element method. A statistically significant set of 466 grains was considered. In the experiment, a method

was presented to unambiguously determine the anisotropy properties of the orientation distributions from

the broadening of the diffraction spots. In the simulation, each grain was discretized into several hundreds

of elements, also giving access to intra-grain orientation distributions. The anisotropy properties of the

orientation distributions were analysed in terms of angular extent (average disorientation angle, θ̄), anisotropy

factor (θa) and preferential disorientation axis (v1). A high degree of variability of the results was found among

grains both in experiment and simulation. The average disorientation angles were found to increase almost

linearly with strain and to be in appreciable agreement between experiment and simulation, although evolving

faster in simulation. The anisotropy intensity was found to remain similar during deformation, with typical

values in the range 1.5–3, with only a slow increase with strain in experiment. The preferential disorientation

axes were found to be mainly oriented perpendicular to the tensile direction (Z) and perpendicular to the X–Y

component of the Rodrigues orientation vector. Here, experiment and simulation are in good agreement. An

analysis based on the simulation results revealed that the development of preferential disorientation axes can

be explained by larger slip variations developing on the most active slip systems. Using a simplified approach,

it was possible to show that an accurate estimate of the (average) stress is essential to properly predict the

preferential disorientation axis, especially for orientations about the Z ∥ ⟨1 0 0⟩ fiber, which is properly done

by the finite-element simulation. The intra-grain stress distribution (about the average) has comparatively

less influence and can be assumed as isotropic to first order.
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A Orientation weights and texture correction

In the presence of a preferential grain orientation distribution (or (non-random) “texture”) in the investi-

gated polycrystal, weights can be defined from the grain orientations and used when computing results over

all grains, so that the obtained results are representative of a general, texture-free material. This process is

referred to as “texture correction”.

Under uniaxial sample symmetry, orientations can be plotted on the standard triangle (inverse pole

figure), where each orientation is represented by a unique point corresponding to the position of the tensile

axis in the crystal coordinate system. For each orientation, a weight can then be defined from the fraction

of all possible orientations (all positions of the standard triangle) the orientation represents. This is done by

Voronoi tessellation, by which each orientation generates a cell that correspond to the region that is closer to

the orientation than to any other orientation. The weight of an orientation is then defined as the (relative)

surface area of its associated Voronoi cell. (Equal-area projection is considered for the inverse pole figure, so

that the surface areas of the orientation cells are not biased by the projection itself.) The more orientation

are “clustered”, the smaller their weights; conversely, the more “isolated” an orientation is, the larger its

weight. For a texture-free material, all orientations have (roughly) equal surface areas.

The resulting tessellation is provided in Figure 18a, and the (normalized) surface areas of the orientations

vary from 0.07 to 8, while 90% range from 0.2–2.5. As expected, smaller (normalized) surface areas are
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obtained for orientations where the ODF is larger (compare Figures 18a and 1d). The present definition or

orientation weights is therefore similar (still generally non-equivalent) to considering the inverse values of the

ODF.
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Figure 18: Computation of orientation weights via Voronoi tessellation on the standard triangle (inverse pole

figure) under equal-area projection. (a) Voronoi tessellation, where the orientations are represented by the

black dots and the Voronoi cells are colored according to their (normalized) surface areas. (b) Distributions

of the orientation weights over all grains.

B Computation of the average disorientation angle

For nD isotropic, normal disorientation distributions, the expression of the average disorientation angle

(θ̄) as a function of the standard deviation of the normal distribution in one direction (n), is given by [5]

θ̄ ≃ C(n)σ, (18)

where

C(n) =
√
2
Γ [(n+ 1) /2]

Γ (n/2)
, (19)

which yields

C(1) =
√
2/π < C(2) =

√
π/2 < C(3) = 2

√
2/π. (20)
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For a 3D anisotropic disorientation distribution, the expression of the average disorientation angle (θ̄) must

involve the standard deviations of the normal distributions in the three principal directions (θ1, θ2 and θ3).

The scaling factors of nD isotropic distributions given in Equation 20 (C(•)) also applies to the special cases

of 3D anisotropic distributions of standard deviations (i) θ1 = σ, θ2,3 = 0 (for C(1)), (ii) θ1,2 = σ, θ3 = 0

(for C(2)) and (iii) θ1,2,3 = σ (for C(3)) and can be considered as reference values to be reproduced (or

closely approximated) by any expression of θ̄ generalized to the anisotropic case. We propose an expression

proportional to the Lp-norm of the (θ1, θ2, θ3) vector:

θ̄ = a (θ1
p + θ2

p + θ3
p)

1
p . (21)

The values of a and p can be determined by comparing the θ̄ values provided by Equations 18 and 21

for different values of n (to first order, and knowing that the problem is overdetermined). Considering

n = 1, we get a = C(1) =
√

2/π. Then, following simple mathematical manipulations, n = 2 yields

p = ln(2)/ ln(π/2) ≃ 1.535 while n = 3 yields p = ln(3)/ ln(2) ≃ 1.585. The similar values of p obtained

for n = 2 and n = 3 (both of which would also apply to n = 1), which correspond to extremal values of

θi (in their respective domains of definition), show that the expression of θ̄ provided by Equation 21 can be

appropriately used. An “optimal” value of p can be obtained by fitting Equation 21 to data obtained from

numerical experiments. To do so, θ2 and θ3 were varied over their respective domains of definition (θ2 ∈ [0, θ1]

and θ3 ∈ [0, θ2]), and, for each value, 106 data points were generated following the corresponding 3-variate

normal distribution, and the actual value of θ̄ was computed. The data are shown on Figure 19, and the

identification provided p = 1.58. It is clear from Figure 19 that Equation 21 with a =
√

2/π and p = 1.58

closely approximates the numerical values. The average error is 0.32% and the maximum error is 1.2%.

Figure 19: Relation between the average disorientation angle (θ̄) and the standard deviations about the

principal disorientation axes (θ1, θ2 and θ3). The dots represent the numerical values, and the surface

represents the analytical approximation.
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