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A doubly nonlinear evolution system with threshold effects
associated with dry friction

Samir Adly∗ Hedy Attouch† Manh Hung Le ‡

ABSTRACT. In this paper, we investigate the asymptotic behavior of inertial dynamics with dry fric-
tion within the context of a Hilbert framework for convex differentiable optimization. Our study focuses
on a doubly nonlinear first-order evolution inclusion that encompasses two potentials. In our analysis,
we specifically focus on two main components: the differentiable function f that needs to be minimized,
which influences the system’s state through its gradient, and the nonsmooth dry friction potential denoted
as ϕ = r‖ · ‖. It’s important to note that the dry friction term acts on a linear combination of the velocity
vector and the gradient of f . Consequently, any stationary point in our system corresponds to a critical
point of f , unlike the case where only the velocity vector is involved in the dry friction term, resulting
in an approximate critical point of f . To emphasize the crucial role of ∇f(x), we also explore the dual
formulation of this dynamic, which possesses a Riemannian gradient structure. To address these dynam-
ics, we employ the recently developed generic acceleration approach by Attouch, Bot, and Nguyen. This
approach involves the time scaling of a continuous first-order differential equation, followed by the ap-
plication of the method of averaging. By applying this methodology, we derive fast convergence results
for second-order time-evolution systems with dry friction, asymptotically vanishing viscous damping, and
implicit Hessian-driven damping.

Mathematics Subject Classifications: 37N40, 46N10, 49M30, 65B99, 65K05, 65K10, 90B50, 90C25.

Key words and phrases: fast convex optimization; damped inertial dynamic; dry friction; time scaling;
averaging; Nesterov algorithms; Hessian driven damping.
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1 Introduction

In recent years, the interplay between continuous optimization and the theory of dynamical systems has
resulted in significant advancements in the field of applied mathematics. The investigation of the long-term
behavior of inertial dynamics, particularly within the context of a Hilbert space for convex differentiable
optimization, has become a focal point. In this paper, we delve into a new layer of complexity by con-
sidering threshold effects associated with dry friction in the framework of inertial dynamics. We lay our
foundation on a doubly nonlinear first-order evolution equation that involves two potentials. The differen-
tiable function f to be minimized interacts with the system’s state via its gradient and the nonsmooth dry
friction potential ϕ = r‖ · ‖, r > 0, that operates on a linear combination of the velocity vector and the
gradient of f through its convex subdifferential. These two potential components interplay to shape the
dynamics of the system. In order to shed light on the centrality of ∇f(x), we adopt a dual formulation
approach, featuring a Riemannian gradient structure, thus providing a deeper insight into the dynamics of
the system. Building on the general acceleration method proposed by Attouch, Bot, and Nguyen [14], and
recently extended by Adly and Attouch [4] to dry friction, our methodology incorporates time scaling and
averaging of a first-order continuous differential equation. These techniques pave the way for obtaining
fast convergence results for second-order time-evolution systems that include dry friction, asymptotic van-
ishing damping, and Hessian-driven damping in an implicit form. In this paper, we develop these concepts,
provide mathematical proofs in support of our results and illustrate this through numerical simulations. We
believe that these new results can contribute to the understanding and development of accelerated gradient
methods from the continuous time perspective, potentially providing valuable insight into intricate opti-
mization problems. Let us just briefly recall some facts about previous related works and at the same time
highlight differences between those and our paper. First, acting as the basis upon which our current paper
is built is the work by Attouch, Bot, and Nguyen [14] on the acceleration of first order dynamics via the
time scaling and averaging techniques. The authors in that paper provide a generic approach by which sec-
ond order dynamics with improved convergence properties can be deduced from first order ones; what is
notable is while one needs to develop a Lyapunov analysis for the convergence of the first order dynamic,
the improved convergence properties of the resulting second order dynamic obtained by the the time scal-
ing and averaging techniques can be yielded solely by the differential and integral calculus. Making use
of this acceleration approach, we, in this paper, manage to speed up the convergence of a doubly nonlinear
evolution equation that involves the presence of dry friction. However, the addition we make, which is
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not performed in the original paper [14], is that we further propose a dual approach to the initial evolution
system by introducing a dual dynamic with the function variable being the gradient of the function to be
minimized f . The study of the dual dynamic makes it possible to have a better understanding of the prop-
erties of the gradient of f . This dual dynamic, which has a Riemannian gradient structure, further yields
a second order dynamic with accelerated convergence rates via the time scaling and averaging techniques.
Considering the dual approach is, in fact, initiated by Adly and Attouch in [4] where they also study a
doubly nonlinear evolution system involving dry friction which turns out to be a special case of our first
order dynamic. What distinguishes our work with [4] is largely in the first order dynamic itself. Equipped
with a slightly different dry friction term, our first order dynamic improves that of [4] in the sense that
the limit point of the solution trajectory is now the exact critical point, not just an approximate one. This
difference in the dynamic will be precisely indicated shortly.
Throughout this paper, H is a real Hilbert space equipped with the scalar product 〈·, ·〉 and the associated
norm ‖ · ‖. We first look at the first-order evolution equation.

(DRYAD) γ(ẋ(t) + β∇f(x(t))) + ∂ϕ
(
ẋ(t) + β∇f(x(t))

)
+∇f(x(t)) 3 0, t ∈ [t0,∞)

that is a doubly nonlinear dynamic that involves two potentials.
We make the following standing assumptions on the two potentials f and ϕ.

f : H → H is a continuously differentiable function which is bounded from below .

∇f is Lipschitz continuous on the bounded sets ofH.
ϕ : H → R satisfies ϕ(x) = r‖x‖ for some r > 0 and γ > 0, β ≥ 0.

This doubly nonlinear differential inclusion contains the term ∂ϕ
(
ẋ(t) +β∇f(x(t))

)
attached to dry fric-

tion, hence the abbreviation (DRYAD) for Dry friction Acting Doubly. The case β = 0 and γ = 1, was
studied in [4]. It’s worth noticing that the basic starting dynamic for the majority of gradient methods in
optimization is the steepest descent method. The first potential, designated as f , affects the system’s state
via its gradient and is a differentiable function to be minimized. The velocity vector is affected by the
second potential ϕ = r‖ · ‖. The study of the associated dynamics’ asymptotic behavior is significantly
altered by the presence of this nonsmooth dry friction potential.
One distinctive characteristic of (DRYAD) is the inclusion of the dry friction term ∂ϕ

(
ẋ(t)+β∇f(x(t))

)
,

which incorporates both the velocity vector and the gradient of f . This differentiation sets it apart from
previously studied dynamics, where the dry friction term exclusively involves the velocity vector. Al-
though seemingly straightforward, this modification significantly alters the dynamics in comparison to
those investigated in [2–4, 6]. An advantageous aspect of representing the dry friction term in this new
form is that each trajectory generated by (DRYAD) converges towards a critical point of f , specifically
a minimizer in the case of convex f . In fact, any stationary point x∞ of the dynamic (DRYAD) satisfies
∂ϕ(β∇f(x∞)) + (1 + γβ)∇f(x∞) 3 0. This condition is equivalent to β∇f(x∞) = prox β

1+γβ
ϕ
(0),

which, in combination with the dry friction property (DF)r, implies that ∇f(x∞) = 0 if β > 0 (see
Lemma 1.1). Thus, x∞ corresponds to a critical point of f . In contrast, in the case β = 0, each trajectory
generated by the dynamic converges towards an “approximate” critical point x∞ of f , characterized by
−∇f(x∞) ∈ ∂ϕ(0).
To emphasize the role played by the gradient, we also examine the dual approach that involves the dual
variable g(x) = ∇f(x), and the corresponding evolution reads

∇2f∗(g(t))ġ(t) +
γβ + 1

γ
g(t)− 1

γ
projB(0,r)(g(t)) = 0,

thus making appear the Riemannian structure associated with the Hessian of the convex Fenchel conjugate
function f∗ (when this function is assumed of class C2) associated with f . Here, projB(0,r) denotes
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the projection operator onto the closed ball B(0, r). Our first investigation focuses on the convergence
properties of the trajectories produced by the primal evolution system (DRYAD) and its dual.

Next, we leverage the universal acceleration approach developed by Attouch, Bot, and Nguyen [14],
wherein they employ a time scaling technique on a first-order continuous differential equation and sub-
sequently apply the method of averaging. These techniques give a second-order evolution system when
applied to (DRYAD)

z̈(s) +
α

s
ż(s) +

γβ + 1

γ
∇f
(
z(s) +

s

α− 1
ż(s)

)
+

1

γ
∇ϕ s

γ(α−1)

(
− s

γ(α− 1)
∇f(z(s) +

s

α− 1
ż(s))

)
= 0,

that involves dry friction aspects (smoothly via the gradient of the Moreau envelope ∇ϕ s
γ(α−1)

of ϕ),
asymptotically vanishing viscous damping (which is closely related to Nesterov’s accelerated gradient
method), and a damping term that is driven by the Hessian of f in an implicit form. Doing the same for
the dual dynamic, we obtain

∇2f∗
(
w(s) +

s

α− 1
ẇ(s)

)(
ẅ(s) +

α

s
ẇ(s)

)
+∇Ψ∗β

(
w(s) +

s

α− 1
ẇ(s)

)
= 0.

In the case of these inertial systems, there is no necessity to conduct a Lyapunov analysis due to the
utilization of the scaling and averaging method. Instead, we exploit the convergence results of the first-
order system (DRYAD) by employing techniques from differential and integral calculus. Consequently,
we achieve fast convergence results for second-order time-evolution systems that incorporate dry friction,
asymptotically vanishing viscous damping, and Hessian-driven damping in the implicit form.

1.1 Some historical facts

Let’s discuss the function and significance of each damping term involved in our inertial dynamics.

1.1.1 Viscous friction

The term γẋ(t) in (DRYAD) models the viscous damping with a positive coefficient γ > 0. This is linked
to the heavy ball with friction method of Polyak [33, 34]. Precisely, in [34] Polyak introduced the Heavy
Ball with Friction method, which is based on the following inertial system with a fixed viscous damping
coefficient

(HBF) ẍ(t) + γẋ(t) +∇f(x(t)) = 0.

The Heavy-Ball Method (HBF) ensures exponential convergence of f(x(t)) to minHf for a smooth
strongly convex function f . The convergence rate of (HBF) for general convex functions is O(1/t),
which isn’t faster than the steepest descent approach. Su-Boyd-Candès’ approach of introducing a vanish-
ing viscous damping coefficient in [38] , denoted by γ(t) = α/t, where α is a positive parameter, made
a substantial addition to the field. The corresponding ordinary differential equation (ODE) known as the
Su-Boyd-Candès dynamic represents a continuous surrogate of the Nesterov accelerated gradient (NAG)
method and is given by

(AVD)α ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) = 0.

We have the inversely quadratic convergence rate of the values f(x(t)) − minHf = O(1/t2) for any
trajectory x(t) of (AVD)α with α ≥ 3. The viscous damping coefficient α

t vanishes (tends to zero)
as time t approaches infinity, hence the terminology Asymptotic Vanishing Damping. The convergence
properties of the dynamic (AVD)α have been the subject of many recent studies, see [8, 9, 15–18, 20,
23, 24, 32, 38]. The case where the parameter α = 3 is crucial since it matches Nesterov’s historical
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algorithm. With the exception of the one dimensional case, where convergence of the trajectories has
been demonstrated [18], the question of whether the trajectories converge in this case is still unanswered.
According to Attouch-Chbani-Peypouquet-Redont [17], each trajectory weakly converges to a minimizer
of f for values α > 3. The corresponding algorithmic result was obtained by Chambolle-Dossal [27].
Furthermore, it has been proved in [20] and [32] that for α > 3, the asymptotic convergence rate of the
values is actually o(1/t2). Apidopoulos-Aujol-Dossal [11] and Attouch-Chbani-Riahi [18] investigated
the subcritical situation where α < 3 and showed that the convergence rate of the objective values is
O(t−

2α
3 ). These rates are optimal, which means they can be reached or approached arbitrarily closely.

1.1.2 Dry friction

Following [2, 3, 5], we say that the potential function ϕ satisfies the dry friction property (DF)r, r > 0, if
the following properties are satisfied:

(DF)r


ϕ : H → R+ is convex continuous,
minξ∈H ϕ(ξ) = ϕ(0) = 0,

ϕ(ξ) ≥ r‖ξ‖ ∀ξ ∈ H.

The function ϕ(x) = r‖x‖, r > 0 is a model example of potential which satisfies the dry friction property,
which will be used throughout this paper. An important property associated with dry friction is stated in
the lemma below (see [2, 3, 5] for further details).

Lemma 1.1 Suppose that ϕ : H → R+ satisfies (DF)r. Then one has B(0, r) ⊂ ∂ϕ(0), and therefore

‖x‖ ≤ λr =⇒ proxλϕ(x) = 0.

In the above formula, proxϕ : H → H denotes the proximal mapping associated with the convex function
ϕ. Recall that, for any x ∈ H, for any λ > 0

proxλϕ(x) = argminξ∈H
{
λϕ(ξ) + 1

2‖x− ξ‖
2
}
.

For a thorough background on convex analysis in Hilbert spaces, we refer to [25].
Lemma 1.1 establishes a thresholding property for the proximal operator associated with a dry friction
potential.

Dry friction holds significant importance in the realm of mechanics as it induces stabilization of me-
chanical systems within finite time. This stands in contrast to viscous damping, which tends to produce
numerous small oscillations asymptotically. Consequently, dry friction serves as an appealing tool for
optimization purposes. Although the use of dry friction in optimization is a relatively recent topic, initial
findings regarding the property of finite convergence under the influence of dry friction were obtained by
Adly, Attouch, and Cabot [6]. Corresponding results for Partial Differential Equations have been estab-
lished in [10, 28, 29, 36].

1.1.3 Hessian-driven damping

The combination of viscous friction with dry friction and Hessian driven damping has been considered
by Adly and Attouch in [2, 3, 5]. The Hessian driven damping has a natural connection with the strong
damping property in mechanics and physics, see [30]. It helps to control and attenuate the oscillation
effects that occur naturally with inertial systems. Recent research has concentrated on the inertial dynamic

(DIN)α,β ẍ(t) +
α

t
ẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0,
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which combines asymptotic vanishing damping with Hessian-driven damping. The corresponding algo-
rithms involve a correcting term in the Nesterov accelerated gradient method which reduces the oscillatory
aspects, see Attouch-Peypouquet-Redont [21], Attouch-Chbani-Fadili-Riahi [22], Shi-Du-Jordan-Su [37].
Related to this is the Inertial System with Implicit Hessian Damping

(ISIHD) ẍ(t) +
α

t
ẋ(t) +∇f

(
x(t) + β(t)ẋ(t)

)
= 0,

considered by Alecsa-László-Pinta in [7], see also Attouch-Fadili-Kungurtsev [19] in the perturbed case.
The justification for using the term “implicit” stems from the observation that through Taylor expansion
(as t→∞ we obtain ẋ(t)→ 0) one has

∇f
(
x(t) + β(t)ẋ(t)

)
≈ ∇f(x(t)) + β(t)∇2f(x(t))ẋ(t),

hence making the Hessian damping appear indirectly.

1.2 Contents

The structure of this paper is as follows. In Section 2, we study the first order system (DRYAD), where
we show the wellposedness of the system, energy estimates and some convergence properties. A dual
approach to (DRYAD) is studied in Section 3. Then, in Section 4, we use the time scaling and averaging
technique to (DRYAD) to obtain an inertial dynamic with accelerated convergence results. We also employ
these techniques for the dual dynamic of (DRYAD) in Section 5. We illustrate our theoretical results with
some numerical examples in Section 6.

2 Study of the first order system (DRYAD)

2.1 Wellposedness, and energy estimates: f not necessarily convex

Recall that our approach is based on the dynamical system (DRYAD)

(DRYAD) γ(ẋ(t) + β∇f(x(t))) + ∂ϕ
(
ẋ(t) + β∇f(x(t))

)
+∇f(x(t)) 3 0,

which is a doubly nonlinear evolution equation.
Let us first observe that the Cauchy problem associated with (DRYAD) is well posed. In fact, we can
rewrite (DRYAD) as follows

(I +
1

γ
∂ϕ)(ẋ(t) + β∇f(x(t))) 3 −1

γ
∇f(x(t)).

This is equivalent to

ẋ(t) + β∇f(x(t)) = prox 1
γ
ϕ(−1

γ
∇f(x(t))), (2.1)

where prox 1
γ
ϕ denotes the proximal operator which is single-valued since ϕ : H → R is a convex function

(hence ∂ϕ is a maximally monotone operator). Set T : H → H defined by T (y) = −βy+ prox 1
γ
ϕ(− 1

γ y),
Equation (2.1) can be cast under the form

ẋ(t) = T (∇f(x(t))) = F (x(t)),

where F = T ◦ ∇f . Since T is globally Lipschitz continuous and ∇f is Lipschitz continuous on the
bounded sets, F is Lipschitz continuous on the bounded sets. This property guarantees the existence and
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uniqueness of a local solution to (DRYAD) according to the classical Cauchy-Lipschitz theorem.
To pass from a local to a global solution, we need the following energy estimates

γ

∫ t

t0

‖y(s)‖2ds+ r

∫ t

t0

‖y(s)‖ds+ β

∫ t

t0

‖∇f(x(s))‖2ds+ f(x(t)) ≤ f(x(t0)),

where y(t) = ẋ(t) + β∇f(x(t)).
This, combined with f being bounded below, classically implies the global existence property. In order to
achieve this energy estimate, we proceed as follows. Taking the scalar product of (DRYAD) with y(t), we
obtain

γ‖y(t)‖2 + 〈∂ϕ(y(t)), y(t)〉+ 〈∇f(x(t)), ẋ(t) + β∇f(x(t))〉 = 0

As a property of dry friction, we have

〈∂ϕ(y(t)), y(t)〉 ≥ r‖y(t)‖.

Therefore,

γ‖y(t)‖2 + r‖y(t)‖+ β‖∇f(x(t))‖2 +
d

dt
f(x(t)) ≤ 0.

Taking the integration from t0 to t yields the energy estimate. We summarize what has just been shown in
the following theorem.

Theorem 2.1 Given an arbitrary x0 ∈ H, there exists a unique global solution trajectory x : [t0,∞)→ H
such that x(t0) = x0 to the system (DRYAD). Furthermore, we have the following properties

• t 7→ f(x(t)) is decreasing

•
∫ ∞
t0

‖ẋ(t) + β∇f(x(t))‖2dt <∞

•
∫ ∞
t0

‖ẋ(t) + β∇f(x(t))‖dt <∞

•
∫ ∞
t0

‖∇f(x(t))‖2dt <∞.

Taking advantage of the following form of (DRYAD)

ẋ(t) + β∇f(x(t)) = prox 1
γ
ϕ(−1

γ
∇f(x(t))),

it is easy to show, using Lemma 1.1, that if ‖∇f(x(t))‖ ≤ r then the system (DRYAD) becomes the
gradient flow (continuous steepest descent method), that is, ẋ(t) + β∇f(x(t)) = 0. We will see later that
∇f(x(t)) tends to zero as t tends to +∞. There is therefore a change in the nature of the dynamic after a
certain time, going from a doubly nonlinear evolution equation to the gradient flow (without perturbation).
Since the acceleration of gradient flow is well understood, it is interesting to examine the new dynamics
and their convergence properties attached to our approach.
We initially examine the primal problem and subsequently explore its dual approach.
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2.2 (DRYAD) seen as the perturbed gradient flow: f convex

Let us start from the equivalent formulation of (DRYAD) given by

ẋ(t) + β∇f(x(t)) = prox 1
γ
ϕ(−1

γ
∇f(x(t))).

Let us show that the right hand side of the above equality, defined by g(t) := prox 1
γ
ϕ(− 1

γ∇f(x(t))),
satisfies ∫ ∞

t0

‖g(t)‖dt < +∞.

Indeed we have ∫ ∞
t0

‖g(t)‖dt =

∫
‖∇f(x(t))‖≤r

‖g(t)‖dt+

∫
‖∇f(x(t))‖>r

‖g(t)‖dt.

On the set {‖∇f(x(t))‖ ≤ r}, we have according to Lemma 1.1

g(t) = prox 1
γ
ϕ(−1

γ
∇f(x(t))) = 0.

Hence, ∫ ∞
t0

‖g(t)‖dt =

∫
‖∇f(x(t))‖>r

‖g(t)‖dt.

Then note that the proximal mapping of ϕ is nonexpansive, and is equal to zero at zero. So we have

‖g(t)‖ = ‖prox 1
γ
ϕ(−1

γ
∇f(x(t)))‖ ≤ 1

γ
‖∇f(x(t))‖.

On the set {‖∇f(x(t))‖ > r}, we deduce that

‖g(t)‖ ≤ 1

γ
‖∇f(x(t))‖ ≤ 1

γr
‖∇f(x(t))‖2.

Therefore, ∫ ∞
t0

‖g(t)‖dt =

∫
‖∇f(x(t))‖>r

‖g(t)‖dt ≤ 1

γr

∫
‖∇f(x(t))‖>r

‖∇f(x(t))‖2dt.

Finally we get, ∫ ∞
t0

‖g(t)‖dt ≤ 1

γr

∫ ∞
t0

‖∇f(x(t))‖2dt.

According to Theorem 2.1 we have , ∫ ∞
t0

‖∇f(x(t))‖2dt < +∞.

Thus, (DRYAD) is the gradient flow with a right-hand side in L1(t0,+∞), which classically preserves the
convergence properties of the gradient flow. We refer to [26] for further details on this topic.

We have established that (DRYAD) can be regarded as a perturbed gradient flow with the perturbation
belonging to L1(t0,+∞). As a result, it exhibits the classical convergence properties observed in the
gradient flow literature [26]. Additionally, as we will prove in the subsequent section, (DRYAD) even-
tually transforms into the unperturbed gradient flow after a finite time. Consequently, it inherits all the
convergence rates detailed in Theorem A.1.
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Remark 2.1 It is an open question to obtain convergence rates for the perturbed gradient flow equation
(A.1) under the sole assumption

∫ +∞
t0
‖g (t)‖ dt < +∞. We know that there is convergence of the tra-

jectories, but in the above result, to get convergence rates, we need also to use the energy assumption∫ +∞
t0

t ‖g (t)‖2 dt < +∞.

3 A dual approach to (DRYAD)

Examining the dual dynamic of (DRYAD) can help us better comprehend the convergence properties of
gradients, which is of fundamental importance in (DRYAD).
To begin with, let us recall our dynamical system

γ(ẋ(t) + β∇f(x(t))) + ∂ϕ(ẋ(t) + β∇f(x(t))) +∇f(x(t)) 3 0.

Set Ψ(x) = γ
2‖x‖

2+ϕ(x). We have ∂Ψ(x) = (γI+∂ϕ)(x). We transform the original system as follows

A := γ(ẋ(t) + β∇f(x(t))) + ∂ϕ(ẋ(t) + β∇f(x(t))) +∇f(x(t)) 3 0,

⇐⇒ −∇f(x(t)) ∈ ∂Ψ(ẋ(t) + β∇f(x(t)))

⇐⇒ ∇f(x(t)) ∈ ∂Ψ(−ẋ(t)− β∇f(x(t))),

⇐⇒ − ẋ(t)− β∇f(x(t)) ∈ ∂Ψ∗(∇f(x(t)))

⇐⇒ ẋ(t) + ∂G(∇f(x(t))) 3 0, where G(x) =
β

2
‖x‖2 + Ψ∗(x)

⇐⇒ − ẋ(t) ∈ ∂G(∇f(x(t)))

⇐⇒ ẋ(t) ∈ ∂G(−∇f(x(t)))

⇐⇒ −∇f(x(t)) ∈ ∂G∗(ẋ(t))

⇐⇒ ∂G∗(ẋ(t)) +∇f(x(t)) 3 0

We have G∗ = (β2 ‖ · ‖
2 + Ψ∗)∗ which is exactly the Moreau envelop of Ψ, denoted by Ψβ . Hence, we

have the dual dynamical system of (DRYAD) having the following form

∇Ψβ(ẋ(t)) +∇f(x(t)) = 0.

Set g(t) = ∇f(x(t)), and the idea is to transform this dynamical system such that the left hand side is a
function of g(t). To this end, we have

∇Ψβ(ẋ(t)) + g(t) = 0⇐⇒ −g(t) = ∇Ψβ(ẋ(t))

⇐⇒ ẋ(t) = ∇Ψ∗β(−g(t)).

Assume that f is a convex function, it follows that

g(t) = ∇f(x(t))⇐⇒ x(t) ∈ ∂f∗(g(t)).

Therefore,

d

dt
(∂f∗(g(t)))−∇Ψ∗β(−g(t)) 3 0.
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Since Ψβ = (β2 ‖ · ‖
2 + Ψ∗)∗, we have Ψ∗β = β

2 ‖ · ‖
2 + Ψ∗ and hence∇Ψ∗β(x) = βx+∇Ψ∗(x).

Let us recall that Ψ(x) = γ
2‖x‖

2 + ϕ(x). Based on the specific form of the dry friction, we can compute
the Fenchel conjugate of Ψ as follows

Ψ∗(x) =
1

2γ
dist2(x,B(0, r)).

Hence, we can compute its gradient∇Ψ∗(x) = 1
γ (x− projB(0,r)(x)). Therefore

∇Ψ∗β(x) = βx+∇Ψ∗(x) = βx+
1

γ
(x− projB(0,r)(x)) =

γβ + 1

γ
x− 1

γ
projB(0,r)(x).

Plugging this into d
dt(∂f

∗(g(t)))−∇Ψ∗β(−g(t)) 3 0, we have

d

dt
(∂f∗(g(t))) +

γβ + 1

γ
g(t)− 1

γ
projB(0,r)(g(t)) 3 0. (3.1)

Assume that f∗ is of class C2, this system can be equivalently written as

(DDRYAD) ∇2f∗(g(t))ġ(t) +
γβ + 1

γ
g(t)− 1

γ
projB(0,r)(g(t)) = 0,

thus making appear the Riemannian structure associated with the Hessian of the convex function f∗.
Let us summarize the above results in the following statement, and establish the convergence rates of the
gradients.

Theorem 3.1 Let x : [t0,∞)→ H be a global solution trajectory of (DRYAD). Suppose that f is convex.
Then g(t) := ∇f(x(t)) is a solution trajectory of the generalized Riemannian flow.

d

dt
(∂f∗(g(t))) +

γβ + 1

γ
g(t)− 1

γ
projB(0,r)(g(t)) 3 0.

Furthermore, the following convergence properties hold as t→∞

• The function t 7→ D(g(t), 0) is decreasing where

D(g(t), 0) = f∗(0)− f∗(g(t)) + 〈∇f∗(g(t)), g(t)〉

• ‖g(t)‖ = ‖∇f(x(t))‖ = o
(

1√
t

)
Proof. First, we define the Bregman distance function

D(g(t), 0) = f∗(0)− f∗(g(t)) + 〈∇f∗(g(t)), g(t)〉.

We have t 7→ D(g(t), 0) is nonnegative because f∗ is convex.
Let us derivate t 7→ D(g(t), 0) to get

d

dt
D(g(t), 0) = − d

dt
f∗(g(t)) + 〈 d

dt
∇f∗(g(t)), g(t)〉+ 〈∇f∗(g(t)), ġ(t)〉

= 〈 d
dt
∇f∗(g(t)), g(t)〉

= −γβ + 1

γ
‖g(t)‖2 +

1

γ
〈projB(0,r)(g(t)), g(t)〉,
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where the last inequality comes from the dual inclusion (3.1).
Define h(x) = γΨ∗(x) = 1

2dist2(x,B(0, r)). We have h is a smooth and convex function. Therefore,
according to the first order characteristic of convex functions we have

0 ≥ h(g(t))− 〈g(t)− projB(0,r)(g(t)), g(t)〉.

Therefore,

〈projB(0,r)(g(t)), g(t)〉 = ‖g(t)‖2 − 〈g(t)− projB(0,r)(g(t)), g(t)〉 ≤ ‖g(t)‖2 − h(g(t))

Using this inequality gives us the following estimate of d
dtD(g(t), 0)

d

dt
D(g(t), 0) ≤ −β‖g(t)‖2 − 1

γ
h(g(t))

Considering the integral while acknowledging the nonnegativity of D(g(t), 0) yields∫ t

t0

β‖g(s)‖2 +
1

γ
h(g(s))ds ≤ D(g(t0), 0)

Due to the nonnegativity of β‖g(s)‖2 + 1
γh(g(s)), we can take the limit as t tends to infinity and obtain∫ ∞

t0

β‖g(s)‖2 +
1

γ
h(g(s))ds ≤ D(g(t0), 0) <∞

Let us now pass from this integral property to asymptotic properties. Recall that we have

d

dt
(∂f∗(g(t))) +

γβ + 1

γ
g(t)− 1

γ
projB(0,r)(g(t)) 3 0

Taking the scalar product of both sides of this inclusion with ġ(t), we obtain

〈 d
dt

(∂f∗(g(t))), ġ(t)〉+
β

2

d

dt
‖g(t)‖2 +

1

γ
〈g(t)− projB(0,r)(g(t)), ġ(t)〉 = 0

⇐⇒ 〈 d
dt

(∂f∗(g(t))), ġ(t)〉+
β

2

d

dt
‖g(t)‖2 +

1

γ
〈ḣ(g(t)), ġ(t)〉 = 0

⇐⇒ 〈 d
dt

(∂f∗(g(t))), ġ(t)〉+
β

2

d

dt
‖g(t)‖2 +

1

γ

d

dt
h(g(t)) = 0

Due to the convexity of f∗, we have 〈 ddt(∂f
∗(g(t))), ġ(t)〉 = 〈∇2f∗(g(t))ġ(t), ġ(t)〉 ≥ 0. Combining this

with the last equality, we have

d

dt

(β
2
‖g(t)‖2 +

1

γ
h(g(t))

)
≤ 0,

which means that the function t 7→ β
2 ‖g(t)‖2 + 1

γh(g(t)) is decreasing. On the other hand, we have∫ ∞
t0

β

2
‖g(s)‖2 +

1

γ
h(g(s))ds ≤

∫ ∞
t0

β‖g(s)‖2 +
1

γ
h(g(s))ds <∞.

Therefore we obtain that

lim
t→∞

t
(β

2
‖g(t)‖2 +

1

γ
h(g(t))

)
= 0.

Or equivalently (due to the nonnegativity of the underlying functions and the fact that h(g(t)) ≤ 1
2‖g(t)‖2)

lim
t→∞

t‖g(t)‖2 = lim
t→∞

t‖∇f(x(t))‖2 = 0, or ‖g(t)‖ = ‖∇f(x(t))‖ = o
( 1√

t

)
.

The last conclusion is obtained due to the following lemma (see [1, Lemma 5.2]).
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Lemma 3.1 Let h : [t0,∞] → R+ be a nonincreasing function belonging to L1([t0,∞]). Then it holds
that limt→+∞ th(t) = 0.

The proof of Theorem 3.1 is thereby completed.

As a consequence we have the following corollary.

Corollary 3.1 Suppose that f : H → R is a convex differentiable function that satisfies S = argminf 6=
∅. Let x : [t0,+∞[→ H be a solution trajectory of (DRYAD). Then the following statements are satisfied:

(i) (convergence of gradients towards zero) ‖∇f (x (t))‖ = o

(
1√
t

)
as t→ +∞.

(ii) (integral estimate of the gradients)
∫ +∞

t0

t ‖∇f (x (t))‖2 dt < +∞.

(iii) (convergence of values) f (x (t))− infH f = o

(
1

t

)
as t→ +∞.

(iv) The solution trajectory x(·) converges weakly as t→ +∞, and its limit belongs to S = argmin f .

Proof. It follows from Theorem 3.1 that ∇f(x(t)) approaches zero as t approaches infinity. As
previously stated, when ‖∇f(x(t))‖ ≤ r, the system becomes the gradient flow. Consequently, there
exists a T > 0 such that for all t ≥ T , the system is the gradient flow. Therefore, any solution trajectory
generated by (DRYAD) inherits all the convergence rates of the continuous steepest descent method listed
in Theorem A.1 (in the appendix).

When H is a finite dimensional Euclidian space, we have the following corollary concerning the con-
vergence property (DRYAD) when the objective function f is not necessarily convex but satisfies the
Kurdyka–Lojasiewicz property. Let us recall some basic facts concerning the Kurdyka–Lojasiewicz prop-
erty, which we briefly designate by (KL). No convexity assumption is made on the function f to be min-
imized. A function f : RN → R satisfies the (KL) property if its values can be reparametrized in the
neighborhood of each of its critical points, so that the resulting function becomes sharp. This means that
there exists a continuous, concave, increasing function θ such that for all u in a slice of f , we have

‖∇(θ ◦ f)(u)‖ ≥ 1.

The function θ captures the geometry of f around its critical points, and is called a desingularizing func-
tion; see [12, 13], for further details.

Corollary 3.2 Suppose that f : RN → R is a differentiable function that satisfies the (KL) property. Then,
any bounded solution trajectory of (DRYAD) has a finite length and hence converges to a critical point of
f , as t→∞

Proof. Since (DRYAD) arrives at the regime of the gradient flow from a sufficiently large time, the
statement of the corollary follows from the result of Lojasiewicz [31]

Remark 3.1 Let us present a dual viewpoint on the finite time stabilization property. Since ∇f(x(t))
converges to zero as t → ∞, from a sufficiently large time T , we have ∇f(x(t)) ∈ B(0, r) and hence
g(t)− projB(0,r)(g(t)) = 0. As a result, the dual dynamical system becomes

d

dt
(∂f∗(g(t))) + βg(t) = 0,

or equivalently

∇2f∗(g(t))ġ(t) + βg(t) = 0,

when f∗ is assumed to be twice continuously differentiable.
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4 Applying the time scaling and averaging techniques to (DRYAD)

Before going further, let us mention that these techniques of scaling and averaging were initiated by At-
touch, Bot and Nguyen [14] for the gradient flow method. In our specific case, we have adapted these
techniques to address our problem, and we now recapitulate only the essential elements required for our
analysis.

4.1 Time scaling

The time scaling technique is in fact a change of variable t = τ(s), where τ is an increasing function from
R+ to R+ which is continuously differentiable and which tends to∞ when s→∞. Set

y(s) = x(τ(s))

We have

ẏ(s) = τ̇(s)ẋ(τ(s))

As a result, to obtain the corresponding dynamical system associated with the new trajectory y(s), we
respectively replace x(t) and ẋ(t) in the original system with y(s) and ẏ(s)

τ̇(s) . To this end, we obtain

γ
( ẏ(s)

τ̇(s)
+ β∇f(y(s))

)
+ ∂ϕ

( ẏ(s)

τ̇(s)
+ β∇f(y(s))

)
+∇f(y(s)) 3 0.

Using the positive homogeneity of degree zero of ∂ϕ, this system can be simplified as

ẏ(s) +
τ̇(s)

γ
∂ϕ
(
ẏ(s) + βτ̇(s)∇f(y(s))

)
+
γβ + 1

γ
τ̇(s)∇f(y(s)) 3 0 (4.1)

4.2 Averaging

Let us attach to y(·) the new function z : [s0,∞]→ H define by

ż(s) +
1

τ̇(s)
(z(s)− y(s)) = 0,

with z(s0) = y(s0) = x0 given inH. Equivalently,

y(s) = z(s) + τ̇(s)ż(s).

By temporal derivation we have

ẏ(s) = (1 + τ̈(s))ż(s) + τ̇(s)z̈(s)

After plugging y(s) and ẏ(s) by their expressions in terms of z(t) into the dynamical system obtained
from time scaling (4.1) and dividing both sides by τ̇(s) we have

z̈(s) +
τ̈(s) + 1

τ̇(s)
ż(s) +

γβ + 1

γ
∇f(z(s) + τ̇(s)ż(s)) +

1

γ
∂ϕ(a(s)) 3 0 (4.2)

where a(s) = ẏ(s) + βτ̇(s)∇f(y(s)).
Let us return to the dynamical system (4.1) and express it using the notation a(s). So we have

a(s) +
τ̇(s)

γ
∂ϕ(a(s)) +

τ̇(s)

γ
∇f(y(s)) = 0
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Therefore

∂ϕ(a(s)) = − γ

τ̇(s)
a(s)−∇f(y(s))

= − γ

τ̇(s)

(
I +

τ̇(s)

γ
∂ϕ
)−1(

− τ̇(s)

γ
∇f(y(s))

)
−∇f(y(s))

=
γ

τ̇(s)

[
−
(
I +

τ̇(s)

γ
∂ϕ
)−1(

− τ̇(s)

γ
∇f(y(s))

)
− τ̇(s)

γ
∇f(y(s))

]
= ∇ϕ τ̇(s)

γ

(− τ̇(s)

γ
∇f(y(s)))

= ∇ϕ τ̇(s)
γ

(
− τ̇(s)

γ
∇f(z(s) + τ̇(s)ż(s))

)
Plugging this into the dynamical system (4.2) gives

z̈(s) +
τ̈(s) + 1

τ̇(s)
ż(s) +

γβ + 1

γ
∇f(z(s) + τ̇(s)ż(s)) +

1

γ
∇ϕ τ̇(s)

γ

(
− τ̇(s)

γ
∇f(z(s) + τ̇(s)ż(s))

)
= 0

(4.3)

Finally we have obtained a second order dynamical system by doing time scaling and averaging from
the original first order dynamic. In order to have fast convergence properties, we choose τ such that the
viscous damping coefficient in this dynamical system asymptotically vanishes as follows

τ̈(s) + 1

τ̇(s)
=
α

s
,

for some α > 1. We can easily show that this is achieved by setting τ(s) = s2

2(α−1) .
Hence, the dynamical system (4.3) becomes

(iDRYAD) z̈(s) +
α

s
ż(s) +

γβ + 1

γ
∇f
(
z(s) +

s

α− 1
ż(s)

)
+

1

γ
∇ϕ s

γ(α−1)

(
− s

γ(α− 1)
∇f(z(s) +

s

α− 1
ż(s))

)
= 0

The corresponding convergence properties for z(s) with this specific choice of τ are captured in the
following theorem

Theorem 4.1 Let f be a convex smooth function whose gradient is Lipschitz continuous on the bounded
sets and such that argminf is non empty. Assume α > 3, let z : [s0,∞]→ H be a solution trajectory of

z̈(s) +
α

s
ż(s) +

γβ + 1

γ
∇f
(
z(s) +

s

α− 1
ż(s)

)
+

1

γ
∇ϕ s

γ(α−1)

(
− s

γ(α− 1)
∇f(z(s) +

s

α− 1
ż(s))

)
= 0

Then we have the following properties

• f(z(s))− infHf = O(1/s2)

• ‖∇f(z(s))‖ = O(1/s)

•
∫ ∞
s0

s3‖∇f(z(s) +
s

α− 1
ż(s))‖2ds <∞

• only assume that α > 1, then z(s) converges weakly and its limit belongs to argmin f
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Proof. Since our original system follows the steepest descent method after a finite time, the results are
achieved according to [14]. Let us present the main lines. First, we interpret the transition from y to z as
an averaging process. Precisely, rewriting the relation between y and z we obtain

sż(s) + (α− 1)z(s) = (α− 1)y(s)

Multiplying this equation with sα−2, we get

sα−1ż(s) + (α− 1)sα−2z(s) = (α− 1)sα−2y(s),

which is equivalent to

d

ds
(sα−1z(s)) = (α− 1)ss−2y(s).

Integrating this equation from s0 to s, we obtain

z(s) =
sα−10

sα−1
y(s0) +

α− 1

sα−1

∫ s

s0

uα−2y(u)du,

which can be written abstractly as

z(s) =

∫ s

s0

y(u)dµs(u),

where µs is the positive Radon measure [s0, s] defined by

µs =
sα−10

sα−1
δs0 + (α− 1)

uα−2

sα−1
du,

where δs0 denotes the Dirac measure at s0. Since µs is positive and has the integral over [s0, s] being 1,
it is a probability measure. It is clear that z(s) can be seen as the average of trajectory y(·) on [s0, s] with
respect to µs.
For the first item of the theorem, we use the Lipschitz continuity of the gradient of f

f(z(s))− infHf ≤ f
(∫ s

s0

y(u)dµs(u)
)
− infHf +O(1/s2).

What remains is to show that

f
(∫ s

s0

y(u)dµs(u)
)
− infHf = O(1/s2),

which can be achieved by making use of the convexity of f , and hence the Jensen inequality.

For the second item, since∇f(x∗) = 0 and according to [35, Theorem 2.1.5], we have

1

2L
‖f(z(s))‖2 ≤ f(z(s))− infHf.

This inequality combined with the first item gives us the result.

For the third item, according to Corollary 3.1, we have for any solution trajectory of (DRYAD) that∫ +∞

t0

t ‖∇f (x (t))‖2 dt < +∞.
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Making a change of variable associated with the time scaling step

t = τ(s) =
s2

2(α− 1)
,

we obtain ∫ +∞

t0

s3 ‖∇f (y (s))‖2 dt < +∞,

where y(s) = x(τ(s)). In light of the averaging step, we replace y(s) with x(s) + s
α−1 ẋ(s) and obtain the

result of this item.

For the last item which concerns the weak convergence of z(s), we argue as follows. We know that the
solution trajectory of the steepest descent dynamic converges weakly to a solution x∗ ∈ S = argmin f .
This immediately gives that y(s) = x(τ(s)) converges weakly to x∗. To pass from this result to the result
of z(·), we use the interpretation of z as an average of y

z(s) =
sα−10

sα−1
y(s0) +

α− 1

sα−1

∫ s

s0

uα−2y(u)du.

In order to have the weak convergence of z(·), meaning 〈z(s), v〉 → 〈x∗, v〉 as s→∞ for all v ∈ H, after
elementary calculus, it is sufficient to require that if a(·) is a positive real valued function which satisfies
limr→∞ a(r) = 0, then lims→∞A(s) = 0, where

A(s) =
α− 1

sα−1

∫ s

s0

rα−2a(r)dr,

which indeed can be proven to be true.

5 Applying the time scaling and averaging techniques to the dual system
(DDRYAD)

Let us recall the dual dynamical system

d

dt
(∂f∗(g(t))) +∇Ψ∗β(g(t)) 3 0

Performing similarly to the case of (DRYAD), we can apply the time scaling and averaging to the dual
system to obtain the following second order dynamic

(iDDRYAD) ∇2f∗
(
w(s) +

s

α− 1
ẇ(s)

)(
ẅ(s) +

α

s
ẇ(s)

)
+∇Ψ∗β

(
w(s) +

s

α− 1
ẇ(s)

)
= 0,

where the relation of g(t) with w(t) is as follows{
v(s) = g(τ(s)),

v(s) = w(s) + τ̇(s) + ẇ(s)
, with τ(s) =

s2

2(α− 1)

Here v is associated with the scaling step and w is associated with the averaging step.
Recall that for the dual dynamic, we have

lim
t→∞

t‖g(t)‖2 = 0
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As τ(s)→∞ as s→∞, we can replace t with τ(s) in the above limit to obtain

lim
s→∞

s‖v(s)‖ = 0, or ‖v(s)‖ = o(1/s)

The differential equation connecting v and w gives us the interpretation of w as an average of v as follows:

w(s) =

∫ s

s0

v(u)dµs(u),

where µs =
sα−1
0
sα−1 δs0 + (α − 1)u

α−2

sα−1 du is a probability measure on [s0, s]. Here δs0 denotes the Dirac
measure at s0.
According to the convexity of ‖ · ‖ and the Jensen inequality, we obtain that

‖w(s)‖ = o(1/s)

The following theorem summarizes the results we just showed for this second order dual dynamic

Theorem 5.1 Let x : [t0,∞) → H be a global solution trajectory of (DRYAD). Then g(t) := ∇f(x(t))
is the solution trajectory of the generalized Riemannian flow

d

dt
(∂f∗(g(t))) +

γβ + 1

γ
g(t)− 1

γ
projB(0,r)(g(t)) 3 0.

Set τ(s) = s2

2(α−1) with α > 1, and v(s) = g(τ(s)). Define w as the solution of the differential equation

ẇ(s) +
1

τ̇(s)
(w(s)− v(s)) = 0, with w(s0) = v(s0) = x0.

Then w satisfies the following inertial system

∇2f∗
(
w(s) +

s

α− 1
ẇ(s)

)(
ẅ(s) +

α

s
ẇ(s)

)
+∇Ψ∗

β

(
w(s) +

s

α− 1
ẇ(s)

)
= 0,

and we have ‖w(s)‖ = o(1/s) as s→∞

6 Numerical results

In this section, we will use adapted standard Runge-Kutta methods to solve numerically the involved
continuous dynamics and conduct a series of numerical illustrative experiments to illustrate the theoretical
results discussed in the previous sections.

Example 6.1 Let us begin this section by considering an example to illustrate the dynamic (DRYAD)
in dimension 2 in the case of a convex and quadratic function. More precisely, let us set f(x1, x2) =
ax21 + bx22 with 0 ≤ a < b and the initial condition x(1) = (1, 1) and ẋ(1) = (0, 0). Note that f is of the
form f(x) = 〈x,Qx〉 with Q = diag([a, b]). We take ϕ(x) = r‖x‖2, with r = 0.1.

In Figure 1 we illustrate the behaviors of several quantities associated with (DRYAD). Figure 1(a) shows
the value of the objective function f along the trajectory as a function of time. We can see that the
function value decreases over time which is in accordance with the theoretical result. Figure 1(b) shows
the trajectory of the system starting from an initial position and finally ending up at the unique minimizer
of f . The last two figures display the convergences towards zero of the velocity and gradient vectors.
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Figure 1: Illustration of the convergence results of (DRYAD).
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Figure 2: Comparison between (DRYAD) and (iDRYAD)
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Example 6.2 Let us now compare the two primal dynamics (DRYAD) and (iDRYAD) on a quadratic
function in dimension 2.

Similarly to Example 6.1, we consider 4 comparison criteria in Figure 2, namely the objective value,
solution trajectories, norm of the gradient, and norm of the velocity. As can be seen from the figures,
(iDRYAD) displays a superior performance compared to (DRYAD) which confirms our theoretical results.

Example 6.3 We conduct the same numerical experiments as the previous example to compare the two
dual dynamics (DDRYAD) and (iDDRYAD).
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Figure 3: Comparison between (DDRYAD) and (iDDRYAD)

In this comparison, in addition to providing the solution trajectories of (DDRYAD) and (iDDRYAD) on
the plane, we also present the evolutions of the norm of their trajectories, which are supposed to converge
to zero according to the theoretical results. Clearly, (iDDRYAD) outperforms (DDRYAD).

Example 6.4 Let us conclude the numerical tests with this example where we bring together the 4 dy-
namics, namely (DRYAD), (iDRYAD), (DDRYAD), and (iDDRYAD) into one plot. To this end, we will
display the norms of the gradients of the two primal dynamics’ trajectories and the norms of the two dual
dynamics’ trajectories. We will see the evolutions of these 4 quantities which are supposed to converge to
zero as time tends to infinity. We use a quadratic problem for this numerical test.
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Figure 4: Comparing the four dynamics
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If we look at Figure 4, in addition to the observation that the second order dynamics have faster
convergences than the first order ones, which has been seen in previous examples, we can also say that the
primal dynamics seem to have slightly better performances than the dual dynamics in terms of convergence
to zero of their respective considered quantities

In summary, based on the above examples and the theoretical results, it is evident that inertial dy-
namics exhibit accelerated convergence rates for objective values, gradient norms and velocity vectors in
both primal and dual contexts. These enhanced convergence properties present important advantages in
the optimization field by facilitating more effective and efficient optimization processes. The ability to
achieve faster convergence means that optimal or near-optimal solutions can be obtained more quickly,
reducing computation time and improving resource utilization. These benefits not only improve overall
optimization efficiency, but also the performance of various optimization applications. Consequently, the
enhanced convergence properties of inertial dynamics make them extremely valuable and desirable tools
in the optimization field.

7 Conclusion

In this paper, we study the long-time behavior of inertial dynamics with dry friction in a Hilbert setting for
convex differentiable optimization problems. The analysis made use of the the time scaling and averaging
techniques developed by Attouch, Bot and Nguyen [14] to accelerate first order dynamical systems. We
initially study a doubly nonlinear first-order evolution equation, and subsequently adopt the mentioned ac-
celeration method to obtain a second-order in time evolution system involving dry friction, asymptotically
vanishing viscous damping, and a damping driven by the Hessian in the implicit form. The obtained accel-
erated convergence rates of the inertial dynamic do not require developing a Lyapunov analysis, but instead
relies on the convergence results of the original first-order system and tools from differential and integral
calculus. However, there are several questions that require more research regarding this topic. One natural
direction is to study the case where the objective funtion f is a nonsmooth convex function by replacing
the gradient terms in (DRYAD) by the subdifferential of f . Another important area is to design from
(DRYAD) the associated first order dynamic representing the minimization problem of additive functions
where f is the sum of a smooth and a nonsmooth function. Regarding the dual formulation of (DRYAD),
the double differentiability of the Legendre-Frenchel transform f∗ of the convex function f plays a crucial
role in the formulation of the dual dynamic approach. This poses an issue since this assumption may not
be available in practice. The numerical experiments highlight the accelerated convergence properties of
inertial dynamics as opposed to their first order counterparts. While we have focused on continuous-time
scenarios in this paper, it is important to explore the temporal discretization of these dynamics and exam-
ine the convergence properties of the associated algorithms. In addition, it would be interesting to carry
out tests on various optimization problems at different scales. This research will enable us to gain a deeper
understanding of these algorithms, their optimization efficiency and their applicability to a wider range of
problem sizes.

A Asymptotic convergence rates for the perturbed gradient flow

Let us provide asymptotic convergence rates for the perturbed gradient flow, which we have rely on in
previous sections.

Theorem A.1 Suppose that f : H → R a convex differentiable function that satisfies S = argminf 6= ∅.
Let z : [t0,+∞[→ H be a solution trajectory of

ż(t) +∇f(z(t)) = g(t) (A.1)
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where g : [t0,+∞[→ H is such that∫ +∞

t0

‖g (t)‖ dt < +∞ and
∫ +∞

t0

t ‖g (t)‖2 dt < +∞. (A.2)

Then the following statements are satisfied:

(i) (convergence of gradients towards zero) ‖∇f (z (t))‖ = o

(
1√
t

)
as t→ +∞.

(ii) (integral estimate of the gradients)
∫ +∞

t0

t ‖∇f (z (t))‖2 dt < +∞.

(iii) (convergence of values) f (z (t))− infH f = o

(
1

t

)
as t→ +∞.

(iv) The solution trajectory z(·) converges weakly as t→ +∞, and its limit belongs to S = argmin f .

Proof. For sake of completeness, let us recall some of the arguments used in the asymptotic analysis
of the perturbed steepest descent system when the perturbation g satisfies (A.2). Given z∗ ∈ S, let T > t0
be fixed and for every t0 ≤ t ≤ T consider

ET (t) := t

(
f (z (t))− inf

H
f

)
+

1

2
‖z (t)− z∗‖2 +

∫ T

t
〈z (τ)− z∗ + τ ż (τ) , g (τ)〉 dτ.

Differentiating ET gives for all T ≥ t ≥ t0

d

dt
ET (t) = f (z (t))− inf

H
f + t 〈∇f (z (t)) , ż (t)〉+ 〈z (t)− z∗, ż (t)− g (t)〉 − t 〈ż (t) , g (t)〉

= f (z (t))− inf
H
f − t ‖ż (t)‖2 − 〈z (t)− z∗,∇f (z (t))〉

≤ −t ‖ż (t)‖2 , (A.3)

where the second equality comes from (A.1), and the last inequality follows from the convexity of f . By
integration from t0 to t, we deduce that

t

(
f (z (t))− inf

H
f

)
+

1

2
‖z (t)− z∗‖2

≤ C +

∫ t

t0

〈z (τ)− z∗, g (τ)〉 dτ +

∫ t

t0

τ 〈ż (τ) , g (τ)〉 dτ −
∫ t

t0

τ ‖ż (τ)‖2 dτ

≤ C +

∫ t

t0

‖z (τ)− z∗‖ ‖g (τ)‖ dτ +
1

2

∫ +∞

t0

τ ‖g (τ)‖2 dτ − 1

2

∫ t

t0

τ ‖ż (τ)‖2 dτ. (A.4)

We obtain the following estimate (recall that C denotes a generic constant), satisfied for all t ≥ t0

1

2
‖z (t)− z∗‖2 ≤ C +

∫ t

t0

‖z (τ)− z∗‖ ‖g (τ)‖ dτ.

According to Gronwall Lemma , we conclude that for all t ≥ t0

‖z (τ)− z∗‖ ≤
√

2C +

∫ t

t0

‖g (τ)‖ dτ ≤
√

2C +

∫ +∞

t0

‖g (τ)‖ dτ < +∞.
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The trajectory is therefore bounded. Using this property and (A.2) allows us to assert from (A.4) that

t

(
f (z (t))− inf

H
f

)
+

1

2
‖z (t)− z∗‖2 +

1

2

∫ t

t0

τ ‖ż (τ)‖2 dτ ≤ C. (A.5)

The above estimate does not depend on T , so it is satisfied for all t ≥ t0. It immediately gives the
convergence rate of the values for the solution trajectories of the perturbed (SD)

f(z(t))− inf
H
f ≤ C

t
.

Since t (f (z (t))− infH f) + 1
2 ‖z (t)− z∗‖2 ≥ 0 for t ≥ t0, letting t goes to +∞ in (A.5), we get∫ +∞

t0

t ‖ż (t)‖2 dt < +∞.

According to the constitutive equation (A.1) we get∫ +∞

t0

t ‖∇f(z(t)‖2 dt ≤ 2

∫ +∞

t0

t ‖ż (t)‖2 dt+ 2

∫ +∞

t0

t ‖g (t)‖2 dt < +∞.

Let us differentiate the anchor function, which is another classical ingredient of the Lyapunov analysis

d

dt

(
1

2
‖z (t)− z∗‖2

)
= 〈z (t)− z∗, ż (t)〉

= −〈z (t)− z∗,∇f (z (t))〉 − 〈z (t)− z∗, g (t)〉

≤ −
(
f (z (t))− inf

H
f

)
+ sup
t≥t0
‖z (t)− z∗‖ · ‖g (t)‖ (A.6)

≤ sup
t≥t0
‖z (t)− z∗‖ · ‖g (t)‖ . (A.7)

Recall that the trajectory z(·) is bounded. According to assumption (A.2), we deduce that the right hand
side of (A.7) belongs to L1 ([t0,+∞[). Therefore, from [1, Lemma 5.1] we obtain that

lim
t→+∞

‖z (t)− z∗‖2 ∈ R exists

and so limt→+∞ ‖z (t)− z∗‖ ∈ R does. In other words, the first condition of Opial’s lemma is fulfilled.
Furthermore, since limt→+∞ f (z (t)) = infH f and f is convex and weakly lower semicontinuous, the
second condition of Opial’s lemma is also fulfilled. This gives the weak convergence of the trajectory z(t)
as t→ +∞ to an element in S = argmin f .
Now let us show that in fact

lim
t→+∞

t

(
f (z (t))− inf

H
f

)
= 0,

meaning that the convergence rate of f (z (t))− infH f is actually o (1/t). To see this, we integrate (A.6)
from t0 to t > t0 and then let t converge to +∞. This yields∫ +∞

t0

1

t
t

(
f (z (t))− inf

H
f

)
dt =

∫ +∞

t0

(
f (z (t))− inf

H
f

)
dt < +∞ (A.8)
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and thus lim inft→+∞ t (f (z (t))− infH f) = 0. It remains to show that this limit exists. To this end we
compute the time derivative of t (f (z (t))− infH f) and apply once again [1, Lemma 5.1]

d

dt

(
t

(
f (z (t))− inf

H
f

))
= f (z (t))− inf

H
f + t 〈∇f (z (t)) , ż (t)〉

= f (z (t))− inf
H
f − t ‖ż (t)‖2 − t 〈g (t) , ż (t)〉

≤ f (z (t))− inf
H
f +

1

4
t ‖g (t)‖2 .

Statement (iii) follows from assumption (A.2) and (A.8).
Let L be the Lipschitz constant of∇f on a ball containing the trajectory z(·). It follows from [22, Lemma
1] that for every t ≥ t0

0 ≤ t

2L
‖∇f(z(t))‖2 ≤ t(f(z(t))− inf

H
f),

which implies that limt→+∞ t ‖∇f(z(t))‖2 = 0 and proves (i).
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[26] H. Brézis, Opérateurs maximaux monotones dans les espaces de Hilbert et équations d’évolution,
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