

Calcium isotope fractionation associated with adsorption and desorption on/from δ -MnO2

Anne-Désirée Schmitt, Sophie Gangloff, Jean-Michel Brazier, Nicolas Nuvoli,

Emmanuel Tertre

▶ To cite this version:

Anne-Désirée Schmitt, Sophie Gangloff, Jean-Michel Brazier, Nicolas Nuvoli, Emmanuel Tertre. Calcium isotope fractionation associated with adsorption and desorption on/from δ -MnO2. Geochimica et Cosmochimica Acta, 2023, 354, pp.109-122. 10.1016/j.gca.2023.06.003. hal-04166779

HAL Id: hal-04166779 https://cnrs.hal.science/hal-04166779v1

Submitted on 20 Jul 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Calcium isotope fractionation associated with adsorption and
2	desorption on/from δ-MnO ₂
3	Schmitt Anne-Désirée ^{1*} , Gangloff Sophie ¹ , Brazier Jean-Michel ^{1,2} , Nuvoli Nicolas ¹ , Tertre
4	Emmanuel ³
5	¹ Université de Strasbourg, CNRS, ENGEES, ITES UMR 7063, 5, rue Descartes, 67084 Strasbourg
6	Cédex, France
7	² Present address: Institute of Applied Geosciences, Graz University of Technology, Rechbauerstrasse
8	12, 8010 Graz, Austria
9	³ Université de Poitiers/CNRS, UMR 7285 IC2MP (équipe HydrASA), B8 rue Albert Turpain, 86073
10	Poitiers, France
11	* Corresponding author (email: adschmitt@unistra.fr)
12	
13	Abstract
14	Small mineral particles present in soils, such as clay minerals and some oxyhydroxides,
15	constitute important nutrient reservoirs. This behavior is due to the negative charges and high
16	specific surface areas of these particles allowing them to adsorb cations such as calcium (Ca),
17	a macronutrient that occupies key physiological and structural functions in plant metabolism.
18	Although the chemical reactivity of clay minerals is rather well-known in the literature,
19	especially toward macronutrients such as Ca, that of oxyhydroxides such as phyllomanganate
20	minerals remains largely unexplored.
21	To enhance our understanding of the mechanisms at the origin of the storage/release of the
22	different isotopes of Ca in a soil solution, the possible fractionation between ⁴⁰ Ca and ⁴⁴ Ca
23	during adsorption and desorption of Ca on a synthetic phyllomanganate, abiotically precipitated
24	in the laboratory [synthetic analog of vernadite (δ -MnO ₂)], was studied. Experiments were
25	performed in batch (closed system), and several parameters (time, pH of the solution. Ca

concentration and nature and concentration of the desorbent) were tested to cover a large rangeof physicochemical conditions.

This study demonstrated that the light 40 Ca isotope is preferentially adsorbed on δ -MnO₂, with 28 $\Delta^{44/40}$ Ca (the apparent fractionation between initial and final conditions) of the adsorbed Ca that 29 can reach 1.19 ± 0.15 ‰"The results showed that this isotopic fractionation occurs at chemical 30 equilibrium in a closed system and that the isotopic fractionation measured in this study during 31 Ca adsorption on phyllomanganate is significantly higher than that reported in the literature 32 during Ca adsorption on other soil constituents such as clay minerals. At pH below 4 Ca 33 occupies only the interlayer/basal sites whereas above this pH it fills first the interlayer/basal 34 sites (~86%) and then edges sites (~14%). By combining the experimental data obtained at 35 different pH values, initial Ca concentrations and interaction times, our results suggest that 36 isotopic signature of the Ca adsorbed on δ -MnO₂ is dependent on the nature of the site involved 37 in the adsorption step (i.e., enriched in 40 Ca in the interlayer with $\Delta^{44/40}$ Ca equal to -0.43‰ and 38 enriched in ⁴⁴Ca when bound to the edges with $\Delta^{44/40}$ Ca equal to +3.5‰). As revealed by surface 39 complexation modeling, such contrasting behavior between the two types of adsorption sites 40 could be due to the bidendate nature of the Ca adsorption occurring on edges and to ion 41 exchange of Ca²⁺ with H⁺ in the interlayer sites. Finally, desorption experiments point to total 42 but not instantaneous Ca desorption, probably due to a partial collapse of the interlayer with 43 some ions used to desorb Ca^{2+} (K⁺, NH₄⁺, hexaamine-cobalt). This suggests that the amount of 44 bioavailable Ca in soils by simple ion-exchange reactions is highly dependent on the nature of 45 the ions which could desorb Ca present in the soil solution. 46

47

48 Keywords

49 Ca isotopes, adsorption/desorption, δ-MnO₂ (vernadite), surface complexation model,
50 fractionation factor

51 **1. Introduction**

Sustainable management of forest ecosystems requires better knowledge of the dynamics of 52 nutrients in forest soils. In contrast to other macronutrients, such as nitrogen (N) or phosphorus 53 (P), studies about the dynamics in soils and the availability to plants of calcium (Ca) are not 54 well developed although it is an essential nutrient with key physiological and structural 55 functions in plant metabolism (Marschner, 1995). Field-based studies performed in nutrient-56 depleted soils (e.g. acidic substratum and/or subject to acidic rain) point to the essential role of 57 nutrients reservoir within soil in the Ca uptake by vegetation (e.g., soil solutions, adsorbed Ca 58 on organo-mineral soil phases, secondary minerals) (Schmitt et al., 2017). Consequently, it 59 60 appears essential to precisely identify and characterize these reservoirs to improve our understanding of the dynamics operating in the different soil reservoirs and the Ca 61 bioavailability for trees. 62

Over the last decade, , studies of the Ca biogeochemical cycle in the critical zone using the different stable Ca isotopes have revealed isotopic fractionations associated with biotic (taken up by roots and translocation within trees, recycling by vegetation) or abiotic (precipitation of secondary minerals, adsorption/desorption) processes (e.g., Cenki-Tok et al., 2009; Cobert et al., 2011; Schmitt et al., 2012; Bagard et al., 2013; Schmitt et al., 2013; 2017; 2018; Gangloff et al., 2014; Schmitt, 2016; Brazier et al., 2019; 2020; Griffith et al., 2020).

A recent study showed that during the adsorption and desorption of Ca on model phyllosilicates commonly found in soils (i.e., kaolinite KGa-2, montmorillonite Swy2 and Tuftane muscovite sorted in size), the light isotope (40 Ca) was preferentially adsorbed/desorbed (relative to 44 Ca) and that the amplitude of this fractionation for a given mineral was a function of (i) the particle size fraction considered (0.1–1 µm versus 50-200 µm; i.e., influence of the external specific surface area), (ii) the surface charge (induced in particular by the structural charge due to defects in the considered crystal structures), and (iii) the presence of an interlayer space accessible to cations (Brazier et al., 2019). In particular, these authors have shown that the most significant isotopic fractionation that has been measured (+ 0.24 ‰, apparent fractionation between solid and reactive solution) was obtained with the small size fraction (0.1–1 μ m) of muscovite, suggesting that the structural charge was, at least at zero order, the main force driving the isotopic fractionation for a given size fraction of a phyllosilicate mineral.

In addition to clay minerals, other layered minerals as phyllomanganates are ubiquitous in soils. 81 Therefore, question remains to discuss if parameters governing Ca isotopic fractionation during 82 Ca adsorption on phyllomanganates are the same than those previously obtained for 83 phyllosilicates (Brazier et al., 2019). For example, vernadite, (Na_{0.24}(H₂O)_{0.72}[Mn⁴⁺0.94□0.06]O₂, 84 Villalobos et al., 2006), which is a nanocrystalline turbostratic disordered phyllomanganate 85 86 oxide, is also common as nodules and coatings on minerals found in soils, sediments and rocks 87 (e.g., Burns and Burns, 1977; Dorn et al., 1992; Palumbo et al., 2001). Because of substitutions in its structure, hydrated cations such as Ca^{2+} can be located between the layers of this mineral 88 89 to compensate for the negative layer charge deficit and can also be adsorbed onto the edges of the particles if these sites are negatively charged (e.g., Lanson et al., 2000; 2002; Grangeon et 90 al., 2012; Manceau et al., 2013; Peňa et al., 2015; Simanova et al., 2015; Grangeon et al., 2017). 91 92 These minerals therefore have a high chemical reactivity in soils and play a major role in solidsolution interactions (Baize, 1997), especially in the biogeochemical cycles of cationic species. 93 The main objective of this study is to quantify the isotope fractionation during Ca adsorption 94 95 and desorption on and from a phyllomanganate. To do this, we abiotically precipitated a synthetic analog of vernadite (δ -MnO₂) in laboratory and performed Ca sorption experiments in 96 97 batch reactors to test the influence of several parameters (time, pH of the solution, Ca concentration and nature and concentration of the desorbent) on the magnitude of Ca isotopic 98 fractionation during adsorption and desorption on/from \delta-MnO₂. The obtained data were 99 interpreted by using a surface complexation model (SCM) to improve our understanding of the 100

mechanisms leading to the Ca storage/release in soils and to better explain the behavior of some
of its natural isotopes (i.e., ⁴⁰Ca and ⁴⁴Ca).

103

104 **2.** Materials and methods

105 2.1 Preparation of δ -MnO₂ minerals

106 The phyllomanganate used in this work was synthesized in the laboratory following the protocol

- 107 of Villalobos et al. (2003). For this, three solutions were prepared, containing the following:
- 108 1) 28 g (i.e., 0.7 mole) of NaOH in 1440 mL of distilled water

109 2) 40 g (i.e., 0.25 mole) of KMnO₄ in 1280 mL of distilled water

110 3) 75 g (i.e., 0.37 mole) of MnCl₂.4H₂O in 1280 mL of distilled water

111 The amounts used correspond to the stoichiometric quantities for the synthesis of δ -MnO₂, 112 therefore avoiding adsorption of Mn²⁺ in excess onto the surfaces of the synthesized 113 material,according to the following reaction proposed by Villalobos et al. (2003) and Marafatto 114 et al. (2018):

115
$$2 KMnO_4 + 3 MnCl_2 + 5 NaOH \rightarrow 5 MnO_2 + 2 KCl + 4 NaCl + 2 H_2O + OH^- + Na^+(1)$$

116 All of the solution 2) was added slowly to the solution 1) in a borosilicate beaker, previously cleaned with distilled water and 10% HCl, under continuous stirring with a magnetic bar at 400 117 rpm. Following this, the solution 3) was added to the solution 1)-2) mixture dropwise (3 118 mL.min⁻¹). The brown precipitates that formed were then transferred to 50 mL centrifuge tubes 119 and rinsed following five washing cycles with a 1 M NaCl solution and five rinsing cycles with 120 distilled water. These washing and rinsing cycles consisted of replacing the solutions in the 121 tubes with 1 M NaCl or distilled water followed by a stirring of the mixture solid-solution for 122 1 hour at 40 rpm on an SB3 StuartTM rotator and a centrifugation at 4700 rpm for 15 min on a 123

Thermo Jouan multifunction B4I®. After these cycles, the residue was dried for 72 hours in an 124 oven at 60 °C and gently hand ground in an agate mortar. The grounded solid was then sorted 125 granulometrically (size fraction of $0.1-1 \mu m$) to minimize impurities and match some previous 126 studies using other sorbents (i.e., phyllosilicates) (Brazier et al., 2019). For this, 1 g of raw dried 127 powder was mixed with 50 mL of a deflocculant solution (10⁻² mol.L⁻¹ Na₄P₂O₇,10H₂O) to 128 disperse the particles as much as possible and thus avoid aggregates. After 24 hours of stirring 129 at 40 rpm on an SB3 StuartTM, size separation was performed according to Stokes' law applied 130 to centrifugation steps, allowing the elimination of particles with sizes out the 0.1-1 µm range 131 (see Reinholdt et al., 2013). These centrifugations were carried out on a Thermo Scientific 132 Heraus Megafuge 40RTM centrifuge and a Beckman Coulter Avanti J-30ITM ultracentrifuge 133 instrument. After the size sorting, the 0.1-1 µm solid was rinsed several times with distilled 134 water by successive centrifugation, supernatant removal, and mixing with new distilled water 135 136 to remove the desorbent before its drying in an oven at 60°C.

137 The 0.1-1 µm size fraction powder was then conditioned in mono-ionic form (using Na⁺ in our case) to facilitate the interpretation of Ca adsorption. For Na saturation, 0.25 g of powder was 138 mixed with 50 mL of a 1 M NaCl solution (99.99%) (at distilled water pH = 5.6) for nine days. 139 140 Every three days, the supernatant was replaced with a new NaCl solution (three cycles) to remove the desorbed elements, with the second solution being at pH = 3 (acidified with HCl) 141 to ensure decarbonation of the sample. The samples were then dialyzed with distilled water for 142 five days in dialysis bags (porosity 6-8 kDa) from Spectrum Laboratories IncTM by filling them 143 with 200 mL of solution (NaCl + δ -MnO₂) and let them equilibrate in 1.5 L of distilled water. 144 This distilled water was renewed every 24 hours until its conductivity is sufficiently low (~ 30 145 μ S.cm⁻¹) and no longer changed, indicating that the dialysis/rinsing was finished. The 0.1–1 μ m 146 size fraction powder was then dried in an oven at 60 °C for five days, finely and gently crushed 147 148 using an agate mortar and stored until it was used (see Brazier et al., 2019).

The synthesized and conditioned final mineral was characterized by performing four types of 150 analyses: (1) A powder X-ray diffraction (XRD) analysis using a Bruker AXS D5000 151 152 diffractometer at the ITES (Strasbourg, France) was carried out in θ/θ mode by scanning between 3° and 65° with steps of 0.04° every 10 sec. Acquisition was obtained using an X-ray 153 tube equipped with a copper (Cu) anticathode operating at 40 kV and 30 mA. (2) The cation 154 exchange capacity (CEC) was measured at ITES (Strasbourg, France) using the hexaamine 155 cobalt-chloride method described by Ciesielski et al. (1997). Succintly, 100 mg of powder was 156 mixed with 45 ml of 10⁻² mol. L⁻¹ hexaamine cobalt-chloride solution for two hours at 40 rpm 157 on an SB3 StuartTM rotator at room temperature. The suspensions were then filtered at 0.22 µm 158 using regenerated cellulose filters and elementarily analyzed. (3) The external specific surface 159 area was measured on a Micrometrics TristarTM at IC2MP (Poitiers, France) according to the 160 Brunauer-Emmett-Teller (BET) method (Brunauer et al., 1938) using the N₂ adsorption 161 isotherm. (4) The chemical composition of the solid δ -MnO₂ was determined by wet chemistry 162 analysis. For this, 50 mg of initial δ -MnO₂ (after Na saturation and before Ca-exchange) and 163 aliquots of final δ -MnO₂ (after Ca adsorption) were digested in SavillexTM beakers with 5 N 164 HCl on a hot plate at 100 °C and then evaporated to dryness. The residues were then converted 165 to HNO₃, evaporated to dryness, and then dissolved in 0.25 M HNO₃ for analysis. 166

167

168 2.3 Ca-for-Na⁺ cation-exchange experiments and Ca desorption procedure

All adsorption and desorption experiments were performed in well-mixed closed reactors ("batch" system) allowing the homogeneity of the medium and by considering the decrease in the Ca concentration of the starting solution due to adsorption. The aqueous concentration of Ca in the initial solution was adjusted to be limiting (i.e., more than 75% of the initial Ca quantity is adsorbed at steady state) but to still have enough Ca remaining in the reactivesolution for isotopic fractionation quantification.

Adsorption experiments were performed with an initial solution prepared using hydrated 175 Ca(NO₃)₂ salt (Alfa Aesar 99.99% purity) at room temperature (20 °C) and by considering a 176 2.5 g.L⁻¹ solid/solution ratio. The ionic strength was comprised between 0.009 (at pH 10) and 177 $0.019 \text{ mol}.L^{-1}$ (at pH 2) and fixed solely by Ca(NO₃)₂, and the reagent used to adjust the pH of 178 the initial solutions between 2 and 10 (i.e., 5.10⁻² mol.L⁻¹ HNO₃ or 5.10⁻² mol.L⁻¹ NaOH). Each 179 experiment consisted of mixing 50 mg of dried δ -MnO₂ (0.1-1 µm Na⁺-size fraction) with 20 180 mL of initial Ca solution and corresponded to a single measurement point. Each mixture was 181 stirred at 40 rpm on an SB3 StuartTM rotator for a given duration and centrifuged for 5 min at 182 4000 rpm in a Thermo Jouan multifunction B4-ITM centrifuge. This procedure was used for the 183 184 following experiments):

Adsorption kinetics made of eight measurement points at different time (i.e., 5 min, 10 min, 15 min, 35 min, 65 min, 125 min, ~ 24 h and ~ 48 h; including the 5 min of centrifugation) at pH 7 with initial aqueous Ca concentrations fixed at 2.25 mmol. L⁻¹ (i.e., 0.10 mmol/mmol Mn).

2. Adsorption experiments performed at different initial pH values ranging from 2 to 10
(range chosen to match different pH soil environments) with initial Ca concentrations
fixed at 2.86 mmol. L⁻¹ (i.e., 0.124 mmol/mmol Mn) and an adsorption time reaction of
125 min.

3. Adsorption isotherms performed at different initial aqueous Ca concentration varying
from 2.20 to 9.81 mmol. L⁻¹ (i.e., 0.098 to 0.436 mmol/mmol Mn) at pH 7 and with an
adsorption time of 125 min. This initial aqueous Ca concentrations range was chosen to
cover a range from limiting to infinite Ca aqueous reservoir considering the
solid/solution ratio used (see discussion).

198 (note that throughout the manuscript, mmol/mmol Mn refers to mmol Ca_{aq} /mmol Mn in the 199 solid or mmol $Ca_{adsorbed}$ /mmol Mn in the solid depending on the experimental conditions 200 (adsorption or desorption). After each experiment, the supernatant was removed using a 20-mL 201 syringe and filtered at 0.22 µm using cellulose acetate membrane filters and stored prior to 202 analyses.

Additionally, some solid residues recovered after adsorption experiments performed at pH 7 203 using an initial aqueous Ca concentration of 2.86 mmol. L⁻¹ were used for Ca desorption 204 205 experiments. These residues (i.e., slurry remaining after supernatant removal) were weighed to quantify the residual liquid mass, and were then stirred during 2 hours, at room temperature (20 206 °C), with 20 mL of different desorbents: hexamine cobalt-chloride - [(Co(NH₃)₆Cl₃] (2.10⁻², 10⁻ 207 ² and 10⁻¹ mol.L⁻¹), ammonium acetate (CH₃COONH₄) (10⁻¹ and 1 M) and potassium nitrate 208 (KNO₃) (10^{-2} , 10^{-1} and 1 mol. L⁻¹) (hereafter abbreviated Cohex, NH₄⁺ and K⁺, respectively). 209 210 The mixtures were then centrifuged at 4000 rpm for 5 min, the supernatant was taken up and filtered (following the same procedure presented above), and replaced by 20 mL of fresh 211 212 desorbents that were let to react for 48 h with the residues. This procedure was repeated two 213 additional times with 72 h and 120 h of interaction between fresh desorbents and residues.

These leaches will be referred to as "sequential leaches" later in the paper. In parallel, 20 mL of Cohex was added to the slurry for 72 h of interaction (referred to as "cumulative leaching" hereafter).

217 *2.4 Analytical procedures*

The evolution of pH with time was measured on an aliquot of each filtered sample using a Metrohm 905 TitrandoTM titrator calibrated at 25 °C. Elemental and isotopic analyses were performed at the Cortecs-Pacite platform of the University of Strasbourg at ITES (Strasbourg, France). Aqueous Ca, Na, P and Mn concentrations were measured with an ICP–AES iCAP 6000 Series (ThermoFisher ScientificTM), with detection limits, respectively equal to 0.08, 0.1, 0.1 and 0.01 μ mol.L⁻¹ The repeatability was equal to 5% of the concentration of the sample. The accuracy was assessed by repeated measurements of reference materials (SLRS5, Perade-20, Rain 97, Big-Moose 02, Super 05) during each sequence.

For the $\delta^{44/40}$ Ca analyses, 0.14 µmol of Ca from each analyzed solution supernatant and 227 digestion product was mixed with 0.01 umol of Ca from a ⁴²Ca-⁴³Ca double spike (⁴²Ca/⁴³Ca 228 spike ratio of ~5), and this mixture was dried at 70 °C on a hot plate. The mixtures were then 229 dissolved in 2 mol.L⁻¹ HNO₃, and chemical separations were performed on a DGA resin normal 230 (TODGA, TriskemTM) according to the procedure of Brazier et al. (2019). Eluted Ca was dried 231 a first time at 70 °C and converted to nitric form with 7 M HNO3 before a second phase of 232 drying at 70 °C on a hot plate. The total Ca blank for the chemical separation procedure 233 represents less than 1.25 nmol. This represents an average contribution of 0.009% to the Ca 234 235 present in the sample and will be considered negligible in the rest of this work.

The dried residues of the chemical separation were dissolved in 1 to 3 μ L of 1 mol.L⁻¹ HNO₃ 236 and deposited on single tantalum filaments (99.995% purity) previously outgassed and oxidized 237 (under primary vacuum) for the $\delta^{44/40}$ Ca measurements. All Ca isotope measurements were 238 performed on a TIMS (ThermoFischer Scientific TritonTM) in static mode (see details in Schmitt 239 et al., 2013 and Brazier et al., 2019). To avoid $\delta^{44/40}$ Ca_{SRM915a} intersession drifts, the ⁴²Ca-⁴³Ca 240 double spike was calibrated at each measurement session by measuring three mixtures 241 composed of NIST SRM 915a standard solution and ⁴²Ca-⁴³Ca double spike following the 242 protocol proposed by Lehn et al. (2013). 243

The measured values were expressed as $\delta^{44/40}$ Ca per mil relative to the NIST SRM915a standard (Hippler et al., 2003; Eisenhauer et al., 2004):

246
$$\partial^{44/40} Ca_{SRM915a} (\%_0) = \left(\frac{\left(\frac{4^4 Ca}{4^0 Ca}\right)_{Sample}}{\left(\frac{4^4 Ca}{4^0 Ca}\right)_{SRM915a}} - 1\right) \times 1000 \quad (2)$$

To directly assess the apparent isotopic fractionation, our results will be expressed as a difference ($\Delta^{44/40}Ca_i$) between the measured Ca isotopic composition in the final aqueous or solid phase ($\delta^{44/40}Ca_i$) and that of the initial solution ($\delta^{44/40}Ca_{ini}$):

250
$$\Delta^{44/40} Ca_i (\%) = \delta^{44/40} Ca_i - \delta^{44/40} Ca_{ini} (3)$$

where i represents the liquid after adsorption (LAA), the solid after adsorption (SAA) or theliquid after desorption (LAD).

253 The associated propagated uncertainty (Δ_{error} , in ‰) can be expressed as

254
$$\Delta_{error(\Delta^{44/40}Ca_{i})} = \sqrt{\left(\Delta_{\delta^{44/40}Ca_{i}}\right)^{2} + \left(\Delta_{\delta^{44/40}Ca_{ini}}\right)^{2}} \quad (4)$$

The average internal repeatability obtained during the course of the study was 0.07 ‰ based on 255 repeated measurements of NIST SRM 915a (2 SD, N=63). Repeated measurements of the 256 initial Ca solution yielded a value equal to 0.85 ± 0.04 ‰ (2SE, N=6). The external uncertainty 257 calculated from external long-term sample replicates was equal to 0.11 ‰ (2SD, N=22) for 258 $\delta^{44/40}$ Ca values. Using these values and according to Equation (4), the propagated error 259 associated with $\Delta^{44/40}$ Ca is equal to 0.15 ‰. The accuracy of our measurements was explored 260 through the measurements of an in-house Atlantic seawater standard (1.90% \pm 0.11, 2SD, 261 262 N=22) during the same period of time, which showed consistent values with those reported by Hippler et al. (2003) and Heuser et al. (2016 and references therein). 263

264

265

3. Modeling of adsorption experimental data

 δ -MnO₂ minerals have a layered structure with cations adsorbed in interlayer, allowing to 267 compensate the negative charge due to cation vacancies in the layer, and possible cations 268 adsorbed onto edge sites (van Genuchten and Peña, 2016; Marafatto et al., 2018). Thus, to 269 model the experimental data of Ca^{2+} adsorption on δ -MnO₂, two types of adsorption sites on 270 two different surfaces are considered. The first type of site corresponds to cation exchange sites 271 located in the interlayer/basal surface compensating the negative permanent charges due to the 272 vacancies in the structure (i.e., called $>X^-$ hereafter) and formed during the synthesis of δ -MnO₂ 273 (see below). On/in these sites, the Ca present in solution adsorbs on δ -MnO₂ by an exchange 274 with the compensating cations (Na⁺ and/or H⁺) electrostatically bounded to the basal/interlayer 275 surfaces (above the vacancies). This cationic exchange can be described by a selectivity 276 coefficient K_{sel} (Gaines and Thomas, 1953; Bradbury and Baeyens, 2009; Tertre et al., 2011). 277 The reactions of cation exchange can be expressed by the following equations: 278

279
$$2 > X - Na + Ca^{2+} \leftrightarrow > X_2 - Ca + 2Na^+ \quad (5) \qquad K_{sel.(2Na+/Ca2+)}$$

$$2 > X - H + Ca^{2+} \leftrightarrow > X_2 - Ca + 2H^+ \qquad (6) \qquad K_{\text{sel}.(2H^+/Ca^{2+})}$$

The second type of sites corresponds to the surface edge sites of the sheets with variable charge depending on the pH (i.e., called >SOH hereafter). Experimental data were modeled by using a geometrical diffuse layer model (DLM). It was used due to its simplicity (i.e., only K_{edge} as adjustable parameter; no capacitance values to fix; see Table 1). Coupling to protonation/deprotonation of the >SOH sites, the reactions of Ca²⁺ adsorption on these sites can be expressed by the following equations:

$$287 \qquad \qquad > SOH + H^+ \leftrightarrow > SOH_2^+ \qquad (7) \qquad K_{edge(SOH/SOH2+)}$$

 $288 \qquad >SOH \leftrightarrow >SO^{-} + H^{+} \qquad (8) \qquad K_{edge(SOH/SO-)}$

289 $2 > SOH + Ca^{2+} \leftrightarrow > Ca(SOH)_2 + 2H^+$

Kedge(2SOH/Ca(SOH)2)

(9)

The Visual Minteq program (Version 3.1; Gustafsson, 2013) together with the PEST optimization option (**P**arameter **EST**imation; see also <u>http://www.pesthomepage.org</u>) was used to model the experimental data of Ca²⁺ adsorption on δ -MnO₂ considering the two types of adsorption sites mentioned above. The adsorption model was applied to the initial Ca solutions in contact with δ -MnO₂ (see section 4), using the aqueous species constants from the default thermodynamic database associated with Visual Minteq 3.1., and the sites densities (for >X⁻ and >SOH) deduced from experimental data measured in this study.

297

298 **4. Results**

299 4.1 Mineral characterization

The acid digestion experiment allowed us to determine the molar ratios Ca/Mn and Na/Mn of 300 the δ -MnO₂ mineral (0.001 and 0.29, respectively). Based on the generic formula for δ -MnO₂ 301 minerals (Na_v(Mn_{x \square a})O₂,H₂O), and the fact that Na/Mn = y/x+a = 1, and y=4a (Villalobos et 302 al., 2003), the following structural formula can be proposed for the solid: 303 $Na_{0.27}(Mn_{0.93}\square_{0.07})O_2,H_2O$ (M=107.73 g.mol⁻¹) in accordance with the literature (Post and 304 Veblen, 1990; Drits et al., 1997; Luo et al., 2000; Villalobos et al., 2003). The solid 305 characterized by this structural formula will be represented by the term "δ-MnO₂" throughout 306 the manuscript. Consequently, the minimum percentage of structural vacancies is equal to 7%. 307 By considering this structural formula, the average Mn oxidation number is equal to 3.93, which 308 is close to that reported by previous authors (between 3.49 and 4.02) (Villalobos et al., 2003; 309 Zhao et al., 2009; Grangeon et al. 2012). Furthermore, the Na⁺/Mn_{total} ratio equal to 0.29 in our 310 case is representative of the negative structural charge of the solid (Villalobos et al., 2003) and 311 gives an indication of the layer charge per cell value. 312

The CEC and BET N₂ specific surface area values measured in this work on the 0.1-1 μ m size fraction of the Na⁺- δ -MnO₂ synthesized grains are presented in Table 2. The CEC is rather high

(215 meg/100 g) compared to those of the previous phyllosilicate minerals used for similar 315 experiments (see Table 2). The percentage of the CEC represented by Na cations in the initial 316 solids was calculated (see Table 2) and was higher than 99%, indicating that Na-homoionic 317 conditioning was effective. The BET specific surface area measured (i.e., 27.6 m^2/g) is in the 318 range of the values that can be found in the literature for MnO₂ solids (from 15 to 290 m²/g) 319 (e.g., -Murray, 1975; Balistrieri and Murray, 1982; Catts and Langmuir, 1986; Burdige et al., 320 1992; Gotfredsen and Stone, 1994; Nelson et al., 1999; Villalobos et al., 2003; Tonkin et al., 321 2004; Marafatto et al., 2018). The value obtained is coherent with those obtained for other 322 materials characterized by the same particle size (see Table 2). The experimental XRD pattern 323 confirmed that δ -MnO₂ is poorly crystallized (see S1 in Appendix A). 324

325

4.2 Calculation of Ca and Na concentrations and mass balance

The Ca adsorption and desorption experimental results from the filtered supernatant obtained at the end of the adsorption and desorption steps are presented in Tables 3 and 4. The amount of adsorbed Ca (and desorbed Na) is calculated as the difference between (i) the initial amount of Ca (or Na) in the liquid (Ca_{ini} = 0.124 mmol/mmol Mn; Na_{ini} = 0.002 mmol/mmol Mn) and (ii) the amount of Ca (or Na) in the supernatant after adsorption (Ca_{LAA}) (or desorption, Na_{LAA}) experiments.

It has to be noted that the filtration process is never total at the end of the adsorption step procedure, and thus some aqueous Ca remaining in the pores of the slurry after Ca adsorption have to be considered in the calculation of the amount of desorbed Ca (and associated isotopic ratio). These values (i.e., Ca_{LAD_corr} , $\delta^{44/40}Ca_{LAD_corr}$) are calculated as the difference between the quantity of Ca measured in the supernatant after desorption (Ca_{LAD} , $\delta^{44/40}Ca_{LAD}$) and the sum of Ca remaining in the slurry and present in the desorbent itself (see Brazier et al., 2019 for detailed calculations). Applied corrections were not significant in either elemental 340 concentration (~1% in average) or isotopic measurements (1.5% of the Δ -value in average), and 341 they will no longer be considered in this work.

The dissolution of δ -MnO₂ during the adsorption/desorption experiments can also be neglected. 342 Indeed, no aqueous Mn was detected in the analyzed supernatants ($<0.01 \mu$ mol. L⁻¹), and the 343 total amount of Ca from dissolution of the solid (0.01 µmol.mg⁻¹) was less than 1% of the Ca 344 coming from the initial solution used for adsorption experiments. Similarly, no P (< 0.1 µmol.L⁻ 345 ¹) was detected, so that there could be no pyrophosphate adsorption onto MnOx particles nor 346 interferences to subsequent Ca^{2+} adsorption. Finally, for the samples for which the apparent 347 isotopic composition of Ca in both the residual liquid (LAA) and in the solid (SAA) after 348 adsorption were analyzed, we ensured that the mass balance was equilibrated using the equation 349 (see section 4.1): 350

$$\Delta^{44/40} Ca_{IS} = f \times \Delta^{44/40} Ca_{LAA} + (1 - f) \times \Delta^{44/40} Ca_{SAA}$$
(10)

with *IS* the initial solution, and *f* is the proportion of Ca remaining in the aqueous phase afterthe adsorption step.

4.3 Kinetics of Ca adsorption and desorption

After 20 min of adsorption, the amount of Ca remaining in the aqueous phase stabilizes to approximately $1.5 \pm 0.9\%$ of the initial Ca, which corresponds to approximately $98.5 \pm 0.9\%$ (2SE, N=7) of Ca adsorbed (Table 3; Fig. 1a). In contrast, Ca desorption by Cohex is not complete since beyond 30 min of reaction this amount stabilizes to $72.1 \pm 1.4\%$ (2SE, N=6) of adsorbed Ca (Table 4; Fig. 1a).

Isotopically, the first interaction times experience high $\Delta^{44/40}$ Ca values of the solution, followed by a decrease (after 15 and 10 min for adsorption and desorption, respectively) and again an increase, whether for adsorption or desorption steps. After 20 (or 15) min of adsorption (desorption), the isotope composition in Ca of the solution stabilizes to approximately $\Delta^{44/40}$ Ca = 1.26 ± 0.09 ‰ (2SE, N=5) (0.49 ± 0.07 ‰, 2SE, N=5) (Fig. 1b). Note that the Ca isotope 365 composition of the supernatant after desorption is enriched in the light ⁴⁰Ca isotope of 0.77 ‰
366 relative to the supernatant after adsorption, pointing to partial desorption.

Furthermore, the amount of Ca that is desorbed is linked to the nature of the desorbent used, its 367 concentration and the interaction time with the solid (Fig. 2a). The higher the concentration of 368 the desorbent, and the higher the number of successive sequential desorption, the greater the 369 quantity of Ca extracted (Fig. 2a). The maximum quantity of Ca (99.5%) is extracted with 0.1 370 M Cohex and with four successive desorption cycles (2 h + 48 h + 72 h + 120 h) (Fig. 2a). After 371 2 hours of interaction, the apparent isotopic fractionation compositions of the desorbed Ca are 372 variable (from 0.12 ‰ for 0.1 M Cohex to 0.90 ‰ for 0.01 M) (Fig. 2b). For 0.1 M Cohex, the 373 first fractions are enriched in the heavy ⁴⁴Ca isotope (0.12 ‰ for the first 56.6%), while the 374 more we extract Ca, the more we enrich the aqueous phase in the light ⁴⁰Ca isotope (-1.17 ‰ 375 for the last 8.3%) (Table 4; Fig. 2b). The weighted average $\Delta^{44/40}$ Ca value of the different 0.1 376 M Cohex extractions is -0.12 ± 0.24 %, which is equal, within propagated error, to the value of 377 the initial solution (i.e. $\Delta^{44/40}$ Ca =0) used for the experiments, confirming that mass balance is 378 effective. 379

380

381 4.4 Results of pH and initial Ca concentration

4.4.1 pH effect (at Ca equal to 0.124 mmol/mmol Mn and 125-min interaction time)

For this experiment, the elemental and isotopic analysis results of the liquid and solid fractions after Ca adsorption are presented in Table 5 and in Fig. 3a and b. For Ca solutions with an initial pH between 2 and 4, the concentrations of adsorbed Ca vary between 0.042 mmol/mmol Mn and 0.118 mmol/mmol Mn. At the same time, an increase in final pH from 2.3 to 5.6 is observed, coinciding with a decrease in H_3O^+ in solution, as well as a variation in desorbed Na concentration from 0.244 mmol/mmol Mn (at pH=2) to 0.202 mmol/mmol Mn (at pH=4). Over this pH range, there is thus an adsorption of H_3O^+ and Ca^{2+} with a desorption of Na⁺. For Ca solutions with an initial pH between 6 and 10, the adsorbed Ca concentrations are relatively
stable at 0.122 mmol/mmol Mn. At the same time, the final pH decreased with a stabilization
of approximately 6.1.

In parallel, the isotopic compositions in $\Delta^{44/40}$ Ca of the aqueous phase, at the end of the Ca adsorption step, increase from pH 2 to pH 4 from 0.25 to 1.15 ‰ and stabilize above pH 4 at 1.23 ± 0.06 (2SE, N=2). Concomitantly, the isotopic compositions of solids vary from -0.43 ‰ at pH 2 to -0.06 ‰ at pH 4 to finally attain 0.12 ‰ at pH 10 (Table 5 and Fig. 3b).

397

4.4.2 Ca concentration effect (at pH=7 and 125-min interaction time)

The results of elemental and isotopic analyses of the supernatant liquid after adsorption and of 399 the solid after the Ca-adsorption step are presented in Table 6 and Figs. 3c and d. At pH 7, when 400 the initial Ca concentration increases from 0.098 mmol/mmol Mn to 0.436 mmol/mmol Mn, 401 the adsorbed Ca concentrations vary between 0.097 mmol/mmol Mn and 0.138 mmol/mmol 402 Mn. During this variation, we also noticed a decrease in pH, initially at 7, from 6.36 to 4.48 and 403 404 an increase in desorbed Na⁺ from 0.184 to 0.229 mmol/mmol Mn (Table 6), suggesting desorption of H⁺ and Na⁺ during Ca²⁺ adsorption. Such a decrease in pH was also observed by 405 van Genuchten et Peña (2016) during the sorption of cations to δ -MnO₂. The adsorbed Ca 406 concentrations stabilize to approximately 0.129 ± 0.006 (2SE, N=6) mmol/mmol Mn from the 407 initial Ca concentration of 0.127 mmol/mmol Mn, and those of desorbed Na stabilize to 408 approximately 0.226 ± 0.004 (2SE, N=6) (Table 6; Fig. 3c). Isotopically, as the initial Ca 409 concentration increases, $\Delta^{44/40}$ Ca_{LAA} decreases from 1.19 ± 0.01 (2SE, N=2) to stabilize at 0.34 410 \pm 0.06 (2SE, N=2) for the largest amount of Ca adsorbed investigated. The behavior of the solid 411 logically follows that of the liquid with lighter values of 1.27 ± 0.23 ‰ (2SE, N=4) (Fig. 3d). 412

413

414 4.5 Modelling

415 The results obtained by modelling the experimental Ca adsorption data on δ -MnO₂ by considering two types of sites (i.e. interlayer and edge sites) are shown in Figures 4a and 4b. 416 417 Consequently, Ca adsorption on δ -MnO₂ suggests two types of adsorption sites on two different reactive surfaces. Their corresponding modeling parameters are shown in Table 1. These results 418 allow to deduce the relative proportion of the two species of Ca as a function of the initial pH 419 values (Fig. 5). For initial pH values between 2 and 4, this model shows that there is an exchange 420 between Ca²⁺ in solution, and Na⁺ and H⁺ adsorbed. This exchange occurs only through sites of 421 fixed charge (interlayer/basal site due to vacancies in the structure). For initial pH>4, the 422 adsorption of Ca²⁺ is maximal and is distributed for approximately 14% on the edge sites and 423 approximately 86% on/in interlayer sites for charge compensation. For adsorption of Ca²⁺ on 424 edge sites, the best fit is obtained by considering a bidentate coordination (see Fig. 4a) rather 425 than monodentate coordination (results not shown). 426

Final pH's calculated by the model are also in good agreement with experimental ones 427 measured at stationary state (not shown). This can be illustrated in the Appendix in which a 428 good agreement can be observed by comparing the pH variations (i.e. between the initial Ca 429 solution and the supernatant at the end of the experiment) of both experimental and modelled 430 data sets (see Tables 5 and 6 for the variations). The initial pH and the initial Ca concentrations 431 have been presented on the abscissa for the graphical representations throughout the 432 manuscript, in agreement with representations used in previous studies (e.g. Su et al., 2010; 433 Huang et al, 2017; Yuan et al., 2018; Li et al., 2020; Xu et al., 2020). 434

Note also that over the pH range considered in this study, Ca is either in dissolved or adsorbed
form and is never located in precipitated forms. Calculations performed with VisualMinteq TM
version 3.1 software associated with the "thermo.vdb" thermodynamic database (Gustafsson,
2013) indeed showed that all solutions recovered after adsorption and desorption experiments

are strongly undersaturated with respect to Ca(NO₃)₂, CaCO₃, Ca(MnO₄)₂ and Ca₂P₂O₇ solid
phases. Thus, isotopic fractionation due to Ca precipitation in solution can be excluded.

442 **5.** Discussion

443 5.1 Calcium fractionation coefficient $\alpha_{\delta-MnO2-solution}$

The experiments show that the solution is enriched in the heavy isotope ⁴⁴Ca over time to reach 444 a plateau after 65 min of adsorption (Fig. 1). These results agree with those obtained by using 445 phyllosilicate minerals, for which authors reported that the light ⁴⁰Ca isotope was preferentially 446 adsorbed on the solid (Brazier et al., 2019). The representation of $\Delta^{44/40}$ Ca versus the fraction 447 of Ca in solution (f) shows that the data follow a straight line (Fig. 6). This implies a 448 fractionation in a closed system at equilibrium between δ -MnO₂ and the corresponding solution 449 450 of Ca and not by a kinetic fractionation process. At first sight the desorption is slow (Fig. 1a), but it is nevertheless complete after 4 successive sequential extractions with Cohex and 242 h 451 of interactions (Fig. 2), probably because Ca is more strongly retained in the interlayer sites 452 which are more abundant than edge sites (see paragraph 4.5). This behavior tends to indicate 453 that Ca forms exchangeable bonds with the studied manganese oxide. 454

From isotopic signatures of supernatant recovered after the adsorption experiment ($\Delta^{44/40}Ca_{LAA}$) and that of the initial solution ($\Delta^{44/40}Ca_{IS}$), a global isotope fractionation factor (i.e. δ -MnO₂solution) can be calculated as follows:

458
$$\alpha_{\delta-MnO_{2-solution}} = \frac{\Delta^{44/40} C a_{IS} + 1000}{\Delta^{44/40} C a_{LAA} + 1000}$$
(11)

We obtain a fractionation factor $\alpha_{\delta-MnO2-solution}$ equal to 0.99874 ± 0.00005 (N=5). This value is slightly lower than those obtained during the adsorption of Ca on the muscovite of Tuftane (0.99976) or the montmorillonite Swy-2 (0.99991) due to larger amplitudes of fractionation between the solid and the liquid (see paragraph 5.3). Ikeda et al. (2007) showed that exchange

reactions of hydrated Ca²⁺ have a weak associative character, suggesting that Ca is mainly 463 linked to water molecules in the solution, in accord with previous studies (e.g., Koneshan et al., 464 1998; Jalilehvand et al., 2001). Consequently, since our experiments follow a closed-system 465 equilibrium fractionation process, the ⁴⁴Ca heavy isotope is mainly concentrated in the aqueous 466 phase having the highest bond force constant (Urey, 1947; Bigeleisen and Mayer, 1947), 467 whereas the light ⁴⁰Ca isotope is preferentially adsorbed to the reactant (i.e., δ -MnO₂ in our 468 case). Thus, similar to the explanation proposed for ⁴⁰Ca incorporation in carbonate minerals 469 (Marriott et al., 2004) we suggest that the change from Ca binding to water molecules in 470 solution to the binding of Ca to δ -MnO₂ involves a decrease in bond strength and thus causes 471 light ⁴⁰Ca isotope enrichment into the solid. 472

473

474 5.2 Factors controlling adsorption

Cations can adsorb on internal and external sites of Mn oxides. For vernadite samples, internal 475 sites (i.e., interlayers) exist due to the deficit of charge in the sheets (vacancies) and lead to 476 adsorption of cations above the sheet or within the interlayer space. Cations can also adsorb on 477 edge sites located on the lateral borders of the δ -MnO₂ sheets (i.e., -OH functional groups). 478 Their reactivity depends on the pH of the medium (Villalobos et al., 2003; Manceau et al., 2007; 479 Grangeon et al., 2008; Sherman and Peacock, 2010; Grangeon et al., 2012; Li et al., 2020). The 480 point of zero charge (PZC) of δ -MnO₂ is between pH values of 1.5 and 3 (Murray, 1974; Tonkin 481 et al., 2004 and references therein), which is consistent with our results. Over the whole range 482 483 of pH values investigated in this study, adsorption takes place which implies that, the pH_{PZC} of studied δ -MnO₂ is below 2. For pH values lower than 4, there is competition between H⁺ and 484 Ca^{2+} for the exchange sites available in the system studied (Fig. 3a). This competition is not 485 significant for pH values above 4 (Fig. 3a). Indeed, as pH increases, the -OH sites at the edge 486 of the sheet deprotonate (their pKa has been estimated to be between pH 6 and 7; Tonkin et al., 487

2004; van Genuchten and Pena, 2016), allowing the binding of metal cations such as Ca²⁺
(Morton et al., 2001; Tonkin et al., 2004; Villalobos, 2015; van Genuchten and Pena, 2016).

At pH 7, except for the lowest values of initial Ca, amounts of adsorbed Ca and desorbed Na remain rather stable compared to the amount of adsorbed protons which increases with increasing initial Ca concentration (Fig. 3c). Furthermore, for a given concentration, for initial pH values above 4, the final pH stabilizes at approximately 6.3 ± 0.3 (2SE, N=4) (Table 5). Beyond pH 6-7, the edge sites are deprotonated, and a release of H⁺ ions at these pH values could suggest that the H⁺ were located initially in the interlayer or above the vacant sites.

At pH=7, during the first 5 minutes, the $\Delta^{44/40}$ Ca of the liquid increases rapidly to reach 1.31 496 ‰, which corresponds to approximately 82% Ca adsorption. After 15 minutes, it decreases to 497 0.63 ‰, corresponding to approximately 95% adsorption, and then reaches a plateau at 1.26 ‰ 498 beyond 35 minutes and almost 100% adsorption (Table 3, Fig. 1). This could correspond to Ca 499 500 adsorption on two different types of sites: first in the interlayer, and then on the edge sites, then again in the interlayer. It could also correspond to an effect of interlayer migration of adsorbed 501 Ca ions to edge sites. Based on the results reported in Tables 3 and 5, we can estimate that the 502 signatures of Ca bound to the interlayer are enriched in 40 Ca ($\Delta^{44/40}$ Ca equal to -0.43 ‰), while 503 those bound to the edge sites are enriched in ⁴⁴Ca ($\Delta^{44/40}$ Ca equal to 3.5 ‰) (see explanations 504 in Appendix A). At first sight these two splitting intensities might be contradictory to the 505 discussion in section 5.1. However, in section 5.1, we discussed the global average isotope 506 fractionation factor which results from the combination of the apparent isotopic signatures due 507 to adsorption in/on different adsorption sites, as in interlayer space and on the edges (see e.g. 508 Tertre et al., 2009; Lu et al., 2014 for additivity of sorption properties of different types of 509 sorption sites). 510

511

512

513

In this study, a higher amplitude of $\Delta^{44/40}$ Ca fractionation between final and initial solutions 514 during Ca adsorption on δ -MnO₂ (1.19‰) was measured and compared to other minerals 515 previously analyzed in the literature (phyllosilicates; between 0 and 0.22‰) (Brazier et al., 516 517 2019). Different fractionation amplitudes were already suggested for different adsorption sites (interlayer or edge sites, as in this study) or for different minerals containing Ca in their crystal 518 lattice (silicates, carbonates, phosphates, hydrous minerals...) or aqueous species. Previous 519 works explained that these different fractionation amplitudes could be related to the 520 coordination number or the mineral-dependent Ca-O bond length (e.g., Hedwig et al., 1980; 521 Katz et al., 1996; Jalilehvand et al., 2001; Ikeda et al., 2007; Colla et al., 2013; Moynier and 522 Fuji, 2017; Huang et al., 2019; Méheut et al., 2021; Nelson et al., 2021). For the adsorption of 523 Ca on phyllosilicate minerals, Brazier et al. (2019) showed that the magnitude of the apparent 524 525 fractionation of Ca was controlled by the layer charge and the external specific surface of the mineral (i.e., size fraction) considered, as well as by the presence or absence of an interlayer 526 space open to aqueous cations. Following the results of the present study, it can be proposed 527 that the fractionation amplitude depends also on the nature of the site involved in the adsorption 528 (interlayer vs. edge sites; see Section 5.2) and thus on the nature of the bonds. Indeed, the results 529 from the surface complexation model suggest that the adsorption bonds with the edges are of 530 the bidendate type, while those implying interlayer sites create H-bonds between H₂O bound to 531 Ca and O of the sheet (Gaillot, 2002). 532

Further structural studies are necessary to better explain the mechanisms of fractionationdepending on the nature of the adsorption sites involved.

535

536

537 5.4 Conventional methods of extracting bioavailable Ca and implication for natural538 environments

Identifying nutrient pools and accurately quantifying their size are necessary for the sustainable 539 management of forest ecosystems. Classically, exchangeable reservoirs are considered as 540 major contributors in nutrient cycles in soils. Decomposition of litter, atmospheric inputs and 541 rock/mineral weathering provide nutrient cations, while root removal and runoff via gravity 542 water carry them out of the reservoir. The cations (such as Ca^{2+} , Mg^{2+} , Na^{+}) electrostatically 543 retained on the negative charges of the soil constituents (e.g., humic substances, phyllosilicates, 544 oxy-hydroxides) by outer sphere complexes are generally easily exchangeable with other 545 cations (e.g., Gangloff et al., 2016). 546

The reserves of basic cations in soils are classically estimated by measuring the quantities of 547 cations extracted by soluble salts (e.g., ammonium acetate, sodium acetate, magnesium 548 549 chloride, magnesium nitrate, potassium nitrate, ammonium chloride, barium chloride, cobalt hexamine chloride (e.g., Tessier et al., 1979; Ciesielski et al., 1997; Leleyter and Probst, 1999; 550 551 Blum et al., 2002; Nezat et al., 2007; Holmden and Bélanger, 2010; Bélanger et al., 2012; Moore et al., 2013; Andrews et al., 2016; Bullen and Chadwick, 2016; Lehn et al., 2017). Note, 552 however, that several authors showed that the choice of the salt used for the extraction, as well 553 554 as the concentration of the salt, pH and interaction times (from 1 h to 24 h), could induce significant variation in the amount of cations that could be exchanged (e.g., Ciesielski et al., 555 1997; Jaremko and Kalembasa, 2014). The results obtained in the present study showed that 556 the isotopic signature of the solution after Ca desorption from δ -MnO₂ by using a specific 557 desorbent (Cohex) was highly dependent on the concentration of this desorbent and the time of 558 the interaction. Indeed, solution after partial desorption (lower than ~70 % of Ca desorbed) was 559 enriched in heavier isotopes (i.e., positive $\Delta^{44/40}$ Ca value in Fig. 2b) compared to the initial 560 solution, while it was enriched in lighter isotopes (i.e., negative $\Delta^{44/40}$ Ca value in Fig. 2b) when 561

more than 70% of the Ca is desorbed. In agreement with what we observed for the adsorption 562 experiments, one could suggest that desorption occurs first from a ⁴⁴Ca-enriched site and then 563 from a ⁴⁰Ca-enriched site. However, if we make the analogy that, as for the phyllosilicates, Ca 564 desorbs first from the interlayer sites and then from the edges, this is in contradiction with the 565 results of this study, which suggest that the edges have a signature enriched in the heavy isotope 566 (⁴⁴Ca). Meanwhile, the interlayer space has a signature enriched in the light isotope ⁴⁰Ca.. Such 567 behavior obtained for δ -MnO₂ is significantly different from what was recently measured from 568 clay minerals (Brazier et al., 2019), especially for smectites and fine muscovite particles, for 569 570 which isotopic signatures of the desorbed Ca solutions (from Cohex asused in this study) were instantaneously equal to that of the initial solution used to perform adsorption, due to full 571 desorption, irrespective of the time contact. These different behaviors between clay minerals 572 and δ -MnO₂ could be tentatively assigned to structural control during the exchange of Ca²⁺ in 573 the interlayer space of δ -MnO₂ considering other cations (Cohex, K⁺ or NH₄⁺; Table 4 and Fig. 574 2). Indeed, for Mn oxides, a possible rearrangement of the different cations in the interlayer 575 space during exchange cannot be excluded; a process which could lead to a decrease in the 576 577 thickness of the interlayer space and can cause then cause a partial collapse of the interlayer as 578 reported in previous studies (Drits et al., 1998; Gaillot, 2002, Han et al., 2022). Furthermore, it is interesting to note that the concentration of aqueous K⁺ in natural waters is generally lower 579 than 10⁻² mol/L (e.g., Wang et al. 2021) implying that desorption of an initial cation adsorbed 580 on mineral (as Ca^{2+} on δ -MnO₂) by another cation in the fluid (as K^+) is rarely total. This leads 581 then to isotopic signature of the fluid after interaction that are highly dependent on the Ca 582 fraction desorbed from the solid. In this context, it is likely that a part of the Ca trapped in the 583 interlayer space will tend not to be desorbed without a weathering reaction leading to hydrolysis 584 of δ -MnO₂. This suggests that under natural condition, not all the bioavailable Ca in soils is 585 attainable by exchange reactions, as often suggested. 586

Finally, other studies have questioned the relevance of using these salts to access the 587 bioavailable fraction of nutrient cations in soils (e.g., Mengel and Rahmatullah, 1994; Hamburg 588 et al., 2003; Lucash et al., 2012). Indeed, different reservoirs that can play a role as Ca reservoirs 589 in soils are not extractable by soluble salts, such as Ca trapped in oxalate compounds, microbial 590 biomass, carbonate minerals, primary minerals (e.g., apatite or secondary minerals, such as Fe 591 oxy-hydroxides) and organic complexes bound in P fractions (Sparks, 1987; Farkas et al., 2011; 592 Dauer and Perakis, 2014; van der Heijden et al., 2014; Schmitt et al., 2017; Chabaux et al., 593 2019; Rodionov et al., 2020; Uhlig et al., 2020). To extract bioavailable nutrients from these 594 different reservoirs, sequential leaching can be considered. Problems similar to those noted in 595 this study are therefore likely to arise depending on the different reagents/interaction times used 596 in these steps, as well as on the nature of the soil. Combining these basic approaches with 597 isotopic measurements allows us to identify the underlying mechanisms. 598

599

600 5 Conclusion

This study confirms that, as observed for Ca adsorption on phyllosilicates, the light isotope ⁴⁰Ca 601 is preferentially adsorbed on δ -MnO₂. As the experiments follow equilibrium fractionation in a 602 closed system, this implies that the heavy isotope ⁴⁴Ca remains preferentially bound to the 603 604 aqueous phase of the nutrient solution. Our results suggest that at pH below 4, Ca almost exclusively occupies the interlayer space, while above pH 4, Ca first fills the interlayer space 605 (~86%) and then edges (~14%). Our results propose that the isotopic signature of Ca bound to 606 the edge sites is enriched in ⁴⁴Ca ($\Delta^{44/40}$ Ca equal to 3.5‰) compared to that of Ca adsorbed in 607 the interlayer space ($\Delta^{44/40}$ Ca equal to -0.43‰). 608

609 This contrasting behavior between the two types of adsorption sites could be due to the 610 bidendate nature of the Ca surface complex formed on the edge sites and to exchange of Ca^{2+} 611 with H⁺ in the interlayer sites, as revealed by surface complexation modeling. Finally, our study shows that Ca adsorption on a poorly crystallized phyllomanganate (δ -MnO₂) exhibits the highest fractionation intensity observed to date in Ca adsorption on solids ($\Delta^{44/40}$ Ca is equal to 1.19 ± 0.15‰). These inter- and intramineral differences could be explained by different types of Ca binding or coordination, with the precise mechanisms yet to be determined.

We also observed that, unlike phyllosilicates, the Ca desorption was complete, but not instantaneous. This could be explained by structural control during the exchange of Ca^{2+} in the interlayer, which can lead to the partial collapse of the latter, making Ca difficult to extract. This questions the use of salts in the laboratory and the representativeness of the exchange complex to have access to the full amount of bioavailable Ca. Similarly, in the natural environment, this suggests that other Ca reservoirs should be considered, and that much of bioavailable Ca remains non-extractable using conventional methods.

623

624 Acknowledgments

This project received financial support from CNRS through the MITI interdisciplinary ISOTOP program. Colin Fourtet from ITES is acknowledged for his help with elementary concentration measurements. Eric Pelt, also from ITES, is thanked for his help with Triton. Jean-Dominique Comparot from IC2MP is thanked for specific surface area measurements. AD Schmitt wants to thank Merlin Méheut for discussion about mechanisms governing isotopic fractionations. The manuscript benefitted from constructive reviews by three anonymous reviewers, the executive editor, J. G. Catalano, and the associate editor O. S. Pokrovsky

632

633 Appendix A. Supplementary Materials

Information about X-ray data performed on the studied δ -MnO₂, comparison of initial and final pH values for experimental and modelled data as well as calculation of $\Delta^{44/40}$ Ca isotope signature in the interlayer and on the edges are provided in Supplementary materials.

637 **Bibliography**

- Andrews M. G., Jacobson A. D., Lehn G. O., Horton T. W. and Craw D. (2016) Radiogenic
 and stable Sr isotope ratios (⁸⁷Sr/⁸⁶Sr, δ^{88/86}Sr) as tracers of riverine cation sources and
 biogeochemical cycling in the Milford Sound region of Fiordland, New Zealand.
 Geochim. Cosmochim. Acta 173, 284–303.
- Bagard M.-L., Schmitt A.-D., Chabaux F., Pokrovsky O. S., Viers J., Stille P., Labolle F. and
 Prokushkin A. S. (2013) Biogeochemistry of stable Ca and radiogenic Sr isotopes in a
 larch-covered permafrost-dominated watershed of Central Siberia. *Geochim. Cosmochim. Acta* 114, 169–187.
- Baize D. (1997) *Teneurs totales en éléments traces métalliques dans les sols (france)*. INRA
 Editions, Versailles.
- Balistrieri L. S. and Murray J. W. (1982) The surface chemistry of δMnO₂ in major ion sea
 water. *Geochim. Cosmochim. Acta* 46, 1041–1052.
- Bélanger N., Holmden C., Courchesne F., Côté B. and Hendershot W. H. (2012) Constraining
 soil mineral weathering ⁸⁷Sr/⁸⁶Sr for calcium apportionment studies of a deciduous forest
 growing on soils developed from granitoid igneous rocks. *Geoderma* 185–186, 84–96.
- Bigeleisen J. and Mayer M. G. (1947) Calculation of Equilibrium Constants for Isotopic
 Exchange Reactions. J. Chem. Phys. 15, 261–267.
- Black J. R., Epstein E., Rains W. D., Yin Q. and Casey W. H. (2008) Magnesium-Isotope
 Fractionation During Plant Growth. *Environ. Sci. Technol.* 42, 7831–7836.
- Blum J. D., Klaue A., Nezat C. A., Driscoll C. T., Johnson C. E., Siccama T. G., Eagar C.,
 Fahey T. J. and Likens G. E. (2002) Mycorrhizal weathering of apatite as an important
 calcium source in base-poor forest ecosystems. *Nature* 417, 729–731.
- Bradbury M. H. and Baeyens B. (2009) Sorption modelling on illite Part I: Titration
 measurements and the sorption of Ni, Co, Eu and Sn. *Geochim. Cosmochim. Acta* 73,
 990–1003.
- Brazier J.-M., Schmitt A.-D., Gangloff S., Pelt E., Chabaux F. and Tertre E. (2019) Calcium
 isotopic fractionation during adsorption onto and desorption from soil phyllosilicates
 (kaolinite, montmorillonite and muscovite). *Geochim. Cosmochim. Acta* 250, 324–347.
- 666 Brazier J.-M., Schmitt A.-D., Gangloff S., Pelt E., Gocke M. I. and Wiesenberg G. L. B. (2020) 667 Multi-isotope approach ($\delta^{44/40}$ Ca, $\delta^{88/86}$ Sr and 87 Sr/ 86 Sr) provides insights into rhizolith 668 formation mechanisms in terrestrial sediments of Nussloch (Germany). *Chem. Geol.* 545, 669 119641.
- Brunauer S., Emmett P. H. and Teller E. (1938) Adsorption of Gases in Multimolecular Layers. *J. Am. Chem. Soc.* 60, 309–319.
- Bullen T. and Chadwick O. (2016) Ca, Sr and Ba stable isotopes reveal the fate of soil nutrients
 along a tropical climosequence in Hawaii. *Chem. Geol.* 422, 25–45.
- Burdige D. J., Dhakar S. P. and Nealson K. H. (1992) Effects of manganese oxide mineralogy
 on microbial and chemical manganese reduction. *Geomicrobiol. J.* 10, 27–48.
- Burns R. G. and Burns V. M. (1977) Chapter 7 Mineralogy. In *Elsevier Oceanography Series*(ed. G. P. Glasby). Marine Manganese Deposits. Elsevier. pp. 185–248.

- 678 Catts J. G. and Langmuir D. (1986) Adsorption of Cu, Pb and Zn by δMnO₂: applicability of
 679 the site binding-surface complexation model. *Appl. Geochem.*1, 255–264.
- Cenki-Tok B., Chabaux F., Lemarchand D., Schmitt A.-D., Pierret M.-C., Viville D., Bagard
 M.-L. and Stille P. (2009) The impact of water-rock interaction and vegetation on
 calcium isotope fractionation in soil- and stream waters of a small, forested catchment
 (the Strengbach case). *Geochim. Cosmochim. Acta* 73, 2215–2228.
- Chabaux F., Stille P., Prunier J., Gangloff S., Lemarchand D., Morvan G., Négrel J., Pelt E.,
 Pierret M.-C., Rihs S., Schmitt A.-D., Trémolières M. and Viville D. (2019) Plant-soilwater interactions: Implications from U-Th-Ra isotope analysis in soils, soil solutions and
 vegetation (Strengbach CZO, France). *Geochim. Cosmochim. Acta* 259, 188–210.
- Ciesielski H., Sterckeman T., Santerne M. and Willery J. P. (1997) Determination of cation
 exchange capacity and exchangeable cations in soils by means of cobalt hexamine
 trichloride. Effects of experimental conditions. *Agronomie* 17, 1–7.
- Cobert F., Schmitt A.-D., Bourgeade P., Labolle F., Badot P.-M., Chabaux F. and Stille P.
 (2011) Experimental identification of Ca isotopic fractionations in higher plants. *Geochim. Cosmochim. Acta* 75, 5467–5482.
- Colla C. A., Wimpenny J., Yin Q.-Z., Rustad J. R. and Casey W. H. (2013) Calcium-isotope
 fractionation between solution and solids with six, seven or eight oxygens bound to
 Ca(II). *Geochim. Cosmochim. Acta* 121, 363–373.
- Dauer J. M. and Perakis S. S. (2014) Calcium oxalate contribution to calcium cycling in forests
 of contrasting nutrient status. *For. Ecol. Manage.* 334, 64–73.
- Dorn R. I., Krinsley D. H., Liu T., Anderson S., Clark J., Cahill T. A. and Gill T. E. (1992)
 Manganese-rich rock varnish does occur in Antarctica. *Chem. Geol.* 99, 289–298.
- Drits V. A., Lanson B., Gorshkov A. I. and Manceau A. (1998) Substructure and superstructure of four-layer Ca-exchanged birnessite. *Am. Mineral.* 83, 97–118.
- Drits V. A., Silvester E., Gorshkov A. I. and Manceau A. (1997) Structure of synthetic
 monoclinic Na-rich birnessite and hexagonal birnessite: I. Results from X-ray diffraction
 and selected-area electron diffraction. *Am. Mineral.* 82, 946–961.
- Eisenhauer A., Nägler T. F., Stille P., Kramers J., Gussone N., Bock B., Fietzke J., Hippler D.
 and Schmitt A.-D. (2004) Proposal for International Agreement on Ca Notation Resulting
 from Discussions at Workshops on Stable Isotope Measurements Held in Davos
 (Goldschmidt 2002) and Nice (EGS-AGU-EUG 2003). *Geostand. Geoanal. Res.* 28,
 149–151.
- Farkaš J., Déjeant A., Novák M. and Jacobsen S. B. (2011) Calcium isotope constraints on the
 uptake and sources of Ca²⁺ in a base-poor forest: A new concept of combining stable
 (δ^{44/42}Ca) and radiogenic (εCa) signals. *Geochim. Cosmochim. Acta* 75, 7031–7046.
- Gaillot A.-C. (2002) Caractérisation structurale de la birnessite : Influence du protocole de synthèse. Phd-thesis, Université Joseph-Fourier - Grenoble I.
- Gaines G. L. and Thomas H. C. (1953) Adsorption Studies on Clay Minerals. II. A Formulation
 of the Thermodynamics of Exchange Adsorption. J. Chem. Phys. 21, 714–718.
- Gangloff S., Stille P., Pierret M.-C., Weber T. and Chabaux F. (2014) Characterization and
 evolution of dissolved organic matter in acidic forest soil and its impact on the mobility

- of major and trace elements (case of the Strengbach watershed). *Geochim. Cosmochim. Acta* 130, 21–41.
- Gangloff S., Stille P., Schmitt A.-D. and Chabaux F. (2016) Factors controlling the chemical
 composition of colloidal and dissolved fractions in soil solutions and the mobility of trace
 elements in soils. *Geochim. Cosmochim. Acta* 189, 37–57.
- van Genuchten C. M. and Peña J. (2016) Sorption selectivity of birnessite particle edges: a d PDF analysis of Cd(II) and Pb(II) sorption by δ-MnO₂ and ferrihydrite. *Environ. Sci. Process Impacts* 18, 1030–1041.
- Godtfredsen K. L. and Stone A. T. (1994) Solubilization of manganese dioxide-bound copper
 by naturally occurring organic compounds. *Environ. Sci. Technol.* 28, 1450–1458.
- Grangeon S., Fernandez-Martinez A., Claret F., Marty N., Tournassat C., Warmont F. and
 Gloter A. (2017) In-situ determination of the kinetics and mechanisms of nickel
 adsorption by nanocrystalline vernadite. *Chem. Geol.* 459, 24–31.
- Grangeon S., Lanson B., Lanson M. and Manceau A. (2008) Crystal structure of Ni-sorbed
 synthetic vernadite: a powder X-ray diffraction study. *Mineral. Mag.* 72, 1279–1291.
- Grangeon S., Manceau A., Guilhermet J., Gaillot A.-C., Lanson M. and Lanson B. (2012) Zn
 sorption modifies dynamically the layer and interlayer structure of vernadite. *Geochim. Cosmochim. Acta* 85, 302–313.
- Griffith E. M., Schmitt A.-D., Andrews M. G. and Fantle M. S. (2020) Elucidating modern
 geochemical cycles at local, regional, and global scales using calcium isotopes. *Chem. Geol.* 534, 119445.
- Gustafsson J. P. (2013) *Visual MINTEQ. Version 3.1.*, Division of Land and Water Resources.
 Royal Institute of Technology, Stockholm, Sweden.
- Hamburg S. P., Yanai R. D., Arthur M. A., Blum J. D. and Siccama T. G. (2003) Biotic Control
 of Calcium Cycling in Northern Hardwood Forests: Acid Rain and Aging Forests. *Ecosystems* 6, 399–406.
- Han S. and Kwon K. D. (2022) Interlayer water structure of phyllomanganates: Insights from
 MD simulations of chalcophanite-group oxide dehydration. *Geochim. Cosmochim. Acta* 318, 495–509.
- Hedwig G. R., Liddle J. R. and Reeves R. D. (1980) Complex formation of nickel(II) ions with
 citric acid in aqueous solution: a potentiometric and spectroscopic study. *Aust. J. Chem.*33, 1685–1693.
- van der Heijden G., Legout A., Pollier B., Ranger J. and Dambrine E. (2014) The dynamics of
 calcium and magnesium inputs by throughfall in a forest ecosystem on base poor soil are
 very slow and conservative: evidence from an isotopic tracing experiment (²⁶Mg and
 ⁴⁴Ca). *Biogeochemistry* 118, 413–442.
- Heuser A., Schmitt A.-D., Gussone N., Wombacher F. (2016) Analytical methods. In: Gussone
 N., Schmitt A.-D., Heuser A., Wombacher F., Dietzel M., Tipper E., Schiller M.
 "Calcium Stable Isotope Geochemistry", Springer, 23-73.
- Hippler D., Schmitt A.-D., Gussone N., Heuser A., Stille P., Eisenhauer A. and Nägler T. F.
 (2003) Calcium Isotopic Composition of Various Reference Materials and Seawater. *Geostand. newsl.* 27, 13–19.

- Holmden C. and Bélanger N. (2010) Ca isotope cycling in a forested ecosystem. *Geochim. Cosmochim. Acta* 74, 995–1015.
- Huang F., Zhou C., Wang W., Kang J. and Wu Z. (2019) First-principles calculations of
 equilibrium Ca isotope fractionation: Implications for oldhamite formation and evolution
 of lunar magma ocean. *Earth Planet. Sci. Lett.* 510, 153–160.
- Huang X., Chen T., Zou X., Zhu M., Chen D. and Pan M. (2017) The Adsorption of Cd(II) on
 Manganese Oxide Investigated by Batch and Modeling Techniques. *IJERPH* 14, 1145.
- 769 Ikeda T., Nishiyama T., Yamada S. and Yanagi T. (2007) Microstructures of olivine-plagioclase
 770 corona in meta-ultramafic rocks from Sefuri Mountains, NW Kyushu, Japan. *Lithos* 97,
 771 289–306.
- Jalilehvand F., Spångberg D., Lindqvist-Reis P., Hermansson K., Persson I. and Sandström M.
 (2001) Hydration of the Calcium Ion. An EXAFS, Large-Angle X-ray Scattering, and
 Molecular Dynamics Simulation Study. J. Am. Chem. Soc. 123, 431–441.
- Jaremko D. and Kalembasa D. (2014) A Comparison of Methods for the Determination of
 Cation Exchange Capacity of Soils/Porównanie Metod Oznaczania Pojemności Wymiany
 Kationów I Sumy Kationów Wymiennych W Glebach. *Ecol. Chem. Eng. S* 21, 487–498.
- Katz A. K., Glusker J. P., Beebe S. A. and Bock C. W. (1996) Calcium Ion Coordination: A
 Comparison with That of Beryllium, Magnesium, and Zinc. *J. Am. Chem. Soc.* 118, 5752–
 5763.
- Koneshan S., Rasaiah J. C., Lynden-Bell R. M. and Lee S. H. (1998) Solvent Structure,
 Dynamics, and Ion Mobility in Aqueous Solutions at 25 °C. *J. Phys. Chem. B* 102, 4193–
 4204.
- Lanson B., Drits V. A., Gaillot A.-C., Silvester E., Plançon A. and Manceau A. (2002) Structure
 of heavy-metal sorbed birnessite: Part 1. Results from X-ray diffraction. *Am. Mineral.* 87,
 1631–1645.
- Lanson B., Drits V. A., Silvester E. and Manceau A. (2000) Structure of H-exchanged
 hexagonal birnessite and its mechanism of formation from Na-rich monoclinic buserite
 at low pH. *Am. Mineral.* 85, 826–838.
- Lehn G. O., Jacobson A. D., Douglas T. A., McClelland J. W., Barker A. J. and Khosh M. S.
 (2017) Constraining seasonal active layer dynamics and chemical weathering reactions
 occurring in North Slope Alaskan watersheds with major ion and isotope (δ³⁴SSO4,
 δ¹³CDIC, ⁸⁷Sr/⁸⁶Sr, δ^{44/40}Ca, and δ^{44/42}Ca) measurements. *Geochim. Cosmochim. Acta* 217, 399–420.
- Lehn G. O., Jacobson A. D. and Holmden C. (2013) Precise analysis of Ca isotope ratios
 (δ44/40Ca) using an optimized ⁴³Ca-⁴²Ca double-spike MC-TIMS method. *Int. J. Mass Spectrom.* 351, 69–75.
- Leleyter L. and Probst J.-L. (1999) A New Sequential Extraction Procedure for the Speciation
 of Particulate Trace Elements in River Sediments. *Int. J. Environ. Anal. Chem.* 73, 109–
 128.
- Li Y., Zhao X., Wu J. and Gu X. (2020) Surface complexation modeling of divalent metal
 cation adsorption on birnessite. *Chem. Geol.* 551, 119774.

- Lucash M. S., Yanai R. D., Blum J. D. and Park B. B. (2012) Foliar Nutrient Concentrations
 Related to Soil Sources across a Range of Sites in the Northeastern United States. *Soil Sci. Soc. Am. J.* 76, 674–683.
- Lu J., Tertre E. and Beaucaire C. (2014) Assessment of a predictive model to describe the migration of major inorganic cations in a Bt soil horizon. *Appl. Geochem.* 41, 151-162.
- Luo J., Zhang Q. and Suib S. L. (2000) Mechanistic and Kinetic Studies of Crystallization of
 Birnessite. *Inorg. Chem.* 39, 741–747.
- Manceau A., Lanson M. and Geoffroy N. (2007) Natural speciation of Ni, Zn, Ba, and As in
 ferromanganese coatings on quartz using X-ray fluorescence, absorption, and diffraction.
 Geochim. Cosmochim. Acta 71, 95–128.
- Manceau A., Marcus M. A., Grangeon S., Lanson M., Lanson B., Gaillot A.-C., Skanthakumar
 S. and Soderholm L. (2013) Short-range and long-range order of phyllomanganate
 nanoparticles determined using high-energy X-ray scattering. J. Appl. Crystallogr. 46,
 193–209.
- 817 Marafatto F. F., Lanson B. and Peña J. (2018) Crystal growth and aggregation in suspensions 818 of δ -MnO ₂ nanoparticles: implications for surface reactivity. *Environ. Sci.: Nano* 5, 497– 819 508.
- Marriott C. S., Henderson G. M., Belshaw N. S. and Tudhope A. W. (2004) Temperature
 dependence of δ7Li, δ⁴⁴Ca and Li/Ca during growth of calcium carbonate. *Earth Planet*.
 Sci. Lett. 222, 615–624.
- Marschner H. (1995) Mineral nutrition of higher plants 2nd Ed. Institute of Plant Nutrition
 University of Hohenheim: Germany.
- Mengel K. and Rahmatullah (1994) Exploitation of potassium by various crop species from
 primary minerals in soils rich in micas. *Biol. Fertil. Soils* 17, 75–79.
- Moore J., Jacobson A. D., Holmden C. and Craw D. (2013) Tracking the relationship between
 mountain uplift, silicate weathering, and long-term CO₂ consumption with Ca isotopes:
 Southern Alps, New Zealand. *Chem. Geol.* 341, 110–127.
- Morton J. D., Semrau J. D. and Hayes K. F. (2001) An X-ray absorption spectroscopy study of
 the structure and reversibility of copper adsorbed to montmorillonite clay. *Geochim. Cosmochim. Acta* 65, 2709–2722.
- Moynier F. and Fujii T. (2017) Calcium isotope fractionation between aqueous compounds
 relevant to low-temperature geochemistry, biology and medicine. *Sci. Rep.* 7, 44255.
- Murray J. W. (1975) The interaction of metal ions at the manganese dioxide-solution interface.
 Geochim. Cosmochim. Acta 39, 505–519.
- Murray J. W. (1974) The surface chemistry of hydrous manganese dioxide. *J. Colloid Interface Sci.* 46, 357–371.
- Nelson C. J., Jacobson A. D., Kitch G. D. and Weisenberger T. B. (2021) Large calcium isotope
 fractionations by zeolite minerals from Iceland. *Commun. Earth Environ.* 2, 1–12.
- Nelson Y. M., Lion L. W., Ghiorse W. C. and Shuler M. L. (1999) Production of Biogenic Mn
 Oxides by *Leptothrix discophora* SS-1 in a Chemically Defined Growth Medium and
 Evaluation of Their Pb Adsorption Characteristics. *Appl. Environ. Microbiol.* 65, 175–
 180.

- Nezat C. A., Blum J. D., Yanai R. D. and Hamburg S. P. (2007) A sequential extraction to
 determine the distribution of apatite in granitoid soil mineral pools with application to
 weathering at the Hubbard Brook Experimental Forest, NH, USA. *Appl. Geochem.* 22,
 2406–2421.
- Palumbo B., Bellanca A., Neri R. and Roe M. J. (2001) Trace metal partitioning in Fe–Mn
 nodules from Sicilian soils, Italy. *Chem. Geol.* 173, 257–269.
- Peña J., Bargar J. R. and Sposito G. (2015) Copper sorption by the edge surfaces of synthetic
 birnessite nanoparticles. *Chem. Geol.* 396, 196–207.
- Post J. E. and Veblen D. R. (1990) Crystal structure determinations of synthetic sodium,
 magnesium, and potassium birnessite using TEM and the Rietveld method. *Am. Mineral.*75, 477–489.
- Reinholdt M. X., Hubert F., Faurel M., Tertre E., Razafitianamaharavo A., Francius G., Prêt
 D., Petit S., Béré E., Pelletier M. and Ferrage E. (2013) Morphological properties of
 vermiculite particles in size-selected fractions obtained by sonication. *Appl. Clay Sci.* 77–
 78, 18–32.
- Rodionov A., Bauke S. L., von Sperber C., Hoeschen C., Kandeler E., Kruse J., Lewandowski
 H., Marhan S., Mueller C. W., Simon M., Tamburini F., Uhlig D., von Blanckenburg F.,
 Lang F. and Amelung W. (2020) Biogeochemical cycling of phosphorus in subsoils of
 temperate forest ecosystems. *Biogeochemistry* 150, 313–328.
- Schmitt A.-D. (2016) Earth-Surface Ca Isotopic Fractionations. In *Calcium Stable Isotope Geochemistry* Advances in Isotope Geochemistry. Springer Berlin Heidelberg, Berlin,
 Heidelberg. pp. 145–172.
- Schmitt A.-D., Borrelli N., Ertlen D., Gangloff S., Chabaux F. and Osterrieth M. (2018) Stable
 calcium isotope speciation and calcium oxalate production within beech tree (Fagus
 sylvatica L.) organs. *Biogeochemistry* 137, 197–217.
- Schmitt A.-D., Cobert F., Bourgeade P., Ertlen D., Labolle F., Gangloff S., Badot P.-M.,
 Chabaux F. and Stille P. (2013) Calcium isotope fractionation during plant growth under
 a limited nutrient supply. *Geochim. Cosmochim. Acta* 110, 70–83.
- Schmitt A.-D., Gangloff S., Labolle F., Chabaux F. and Stille P. (2017) Calcium
 biogeochemical cycle at the beech tree-soil solution interface from the Strengbach CZO
 (NE France): insights from stable Ca and radiogenic Sr isotopes. *Geochim. Cosmochim. Acta* 213, 91–109.
- Schmitt A.-D., Vigier N., Lemarchand D., Millot R., Stille P. and Chabaux F. (2012) Processes
 controlling the stable isotope compositions of Li, B, Mg and Ca in plants, soils and waters:
 A review. C. R. Geosci. 344, 704–722.
- Sherman D. M. and Peacock C. L. (2010) Surface complexation of Cu on birnessite (δ-MnO₂):
 Controls on Cu in the deep ocean. *Geochim. Cosmochim. Acta* 74, 6721–6730.
- Simanova A. A., Kwon K. D., Bone S. E., Bargar J. R., Refson K., Sposito G. and Peña J.
 (2015) Probing the sorption reactivity of the edge surfaces in birnessite nanoparticles
 using nickel(II). *Geochim. Cosmochim. Acta* 164, 191–204.
- Sparks D. L. (1987) Potassium Dynamics in Soils. In *Advances in Soil Science* (ed. B. A.
 Stewart). Advances in Soil Science. Springer, New York, NY. pp. 1–63.

- Su Q., Pan B., Wan S., Zhang W. and Lv L. (2010) Use of hydrous manganese dioxide as a
 potential sorbent for selective removal of lead, cadmium, and zinc ions from water. J.
 Colloid Interface Sci. 349, 607–612.
- Tertre E., Prêt D. and Ferrage E. (2011) Influence of the ionic strength and solid/solution ratio
 on Ca(II)-for-Na⁺ exchange on montmorillonite. Part 1: Chemical measurements,
 thermodynamic modeling and potential implications for trace elements geochemistry. *J. Colloid Interface Sci.* 353, 248–256.
- Tertre E. Beaucaire C., Coreau N. and Juery A. (2009) Modeling of Zn sorption onto clayey
 sediments using a multi-site and multi-component ion-exchange model. *Appl. Geochem.*24, 1852-1861.
- Tessier A., Campbell P. G. C. and Bisson M. (1979) Sequential extraction procedure for the
 speciation of particulate trace metals. *Anal. Chem.* 51, 844–851.
- Tonkin J. W., Balistrieri L. S. and Murray J. W. (2004) Modeling sorption of divalent metal
 cations on hydrous manganese oxide using the diffuse double layer model. *Appl. Geochem.* 19, 29–53.
- 902 Uhlig D., Amelung W. and von Blanckenburg F. (2020) Mineral Nutrients Sourced in Deep
 903 Regolith Sustain Long-Term Nutrition of Mountainous Temperate Forest Ecosystems.
 904 Global Biogeochem. Cycles 34, 1–21.
- 905 Urey H. C. (1947) The thermodynamic properties of isotopic substances. J. Chem. Soc.
 906 Resumed. 7, 562–581.
- 907 Villalobos M. (2015) The Role of Surface Edge Sites in Metal(loid) Sorption to Poorly 908 Crystalline Birnessites. In Advances in the Environmental Biogeochemistry of Manganese
 909 Oxides ACS Symposium Series. American Chemical Society. pp. 65–87.
- Villalobos M., Lanson B., Manceau A., Toner B. and Sposito G. (2006) Structural model for
 the biogenic Mn oxide produced by Pseudomonas putida. *Am. Mineral.* 91, 489–502.
- Villalobos M., Toner B., Bargar J. and Sposito G. (2003) Characterization of the manganese
 oxide produced by pseudomonas putida strain MnB1. *Geochim. Cosmochim. Acta* 67,
 2649–2662.
- Wang K., Peucker-Ehrenbrink B., Chen H., Lee H. and Hasenmueller E. A. (2021) Dissolved
 potassium isotopic composition of major world rivers. *Geochim. Cosmochim. Acta* 294,
 145–159.
- Xu J., Fan Q., Niu Z., Li Y., Li P. and Wu W. (2012) Studies of Eu(III) sorption on TiO2:
 Effects of pH, humic acid and poly(acrylic acid). *Chem. Eng. J.* 179, 186–192.
- Yuan W., Saldi G. D., Chen J., Vetuschi Zuccolini M., Birck J.-L., Liu Y. and Schott J.
 (2018) Gallium isotope fractionation during Ga adsorption on calcite and goethite. *Geochim. Cosmochim. Acta* 223, 350–363.
- Zhao W., Feng X., Tan W., Liu F. and Ding S. (2009) Relation of lead adsorption on birnessites
 with different average oxidation states of manganese and release of Mn²⁺/H⁺/K⁺. J.
 Environ. Sci. 21, 520–526.
- 926
- 927

928 **Table captions**

929

Table 1: Parameters of the surface complexation model used to interpret Ca adsorption on δ -MnO₂ (E_i: equivalent fraction in charge of the CEC occupied by the "i" species (eq/eq), {i}: activity of the aqueous species "i", F: Faraday constant 96485 C/mol, R: ideal gas constant 8.314 J/mol/.K, T: temperature in K, φo : surface potential (V) in the surface plane (O – plane) and see section 3 in the text for details). * from Tonkin et al. (2004) and Van Guenuchten et Peña (2016), ** optimized values, determined by PEST option, allowing to interpret experimental data.

937

Table 2: Characteristics of studied δ -MnO₂ mineral and maximum amount of adsorbed Ca and associated ^{44/40}Ca isotopic fractionation measured in this study. Comparison of data with those previously obtained by Brazier et al. (2019) for clay minerals.

941

Table 3: Amount of adsorbed Ca and desorbed Na and Ca apparent isotopic fractionation between initial solution and supernatant measured after adsorption using 50 mg of δ -MnO₂ and initial Ca concentration of 0.10 mmol/mmol Mn for variable interaction time steps. LAA= liquid after adsorption, ini = initial, fin = final.

946

947 Table 4: Amount of desorbed Ca and Ca apparent isotopic fractionation between initial solution 948 and supernatant after desorption experiments uncorrected and corrected with respect to Ca 949 contributions in residual liquid (clay slurry) and desorbent at pH 7. LAA = liquid after 950 adsorption, LAD = liquid after desorption, ini = initial, LAD_corr = liquid after desorption 951 corrected from slurry and from desorbent Ca contributions.

952

Table 5: Amount of adsorbed Ca and H, desorbed Na and Ca apparent isotopic fractionation 953 between initial solution and supernatant and in solid after adsorption using 50 mg of δ -MnO₂, 954 955 initial Ca concentration of 0.124 mmol/mmol Mn at variable initial pH values and after 125 min of interaction time. Concentration of adsorbed Ca is calculated as the difference between 956 initial concentration of Ca (i.e., 0.124 mmol/mmol Mn) and concentration of Ca in supernatant 957 after adsorption experiment. Concentration of desorbed Na is calculated from the concentration 958 959 of Na in solution after adsorption minus the initial concentration of Na (i.e., 0.002 mmol/mmol Mn). LAA= liquid after adsorption, SAA= solid after adsorption, ini = initial, fin = final. 960

961

Table 6: Amount of adsorbed Ca and desorbed Na, and Ca apparent isotopic fractionation 962 between initial solution and supernatant and in solid after adsorption using 50 mg of δ -MnO₂ 963 at variable initial Ca concentrations and after 125 min of interaction time. Amount of adsorbed 964 Ca was calculated as the difference between initial amount of Ca and amount of Ca in 965 supernatant after adsorption experiment. Amount of desorbed Na was calculated from the 966 difference between the amount of Na in solution after adsorption and in the initial solution (i.e., 967 0.002 mmol/mmol Mn). LAA= liquid after adsorption, SAA= solid after adsorption, ini = 968 initial, fin = final, ads = adsorption, des = desorption. 969

970

971

972

973 Figure Captions

974

Fig. 1: Variation of (a) concentration of Ca and (b) $\Delta^{44/40}$ Ca in the liquid after adsorption (LAA) and desorption (LAD) experiments as function of interaction time. Experiments were conducted at pH 7 with Ca concentration of 0.1 mmol/mmol Mn. Desorption was performed using 0.1 M Cohex. LAA = liquid after adsorption, LAD = liquid after desorption.

979

Fig. 2: Variation of (a) percentage of Ca adsorbed (the 5% repeatability is comprised within the symbols) and (b) $\Delta^{44/40}$ Ca in liquid after desorption with different desorbents at different concentrations and at varying times. IS = initial solution. The weighted average value of the different 0.1 M Cohex extractions is -0.12 ± 0.24 ‰, which is equal, within propagated error, to the value of the initial solution used for the experiments ensuring mass balance comp. This value is represented by the orange straight line, and the error corresponds to the orange dashed lines.

987

Fig. 3: Variation of: (a) concentrations H+ and Ca²⁺ adsorbed and Na⁺ desorbed as a function of initial pH, (b) $\Delta^{44/40}$ Ca in liquid after adsorption (LAA) and solid after adsorption (SAA) as function of initial pH, (c) concentrations H⁺ and Ca²⁺ adsorbed and Na⁺ desorbed as function of initial Ca concentration , and (d) $\Delta^{44/40}$ Ca in liquid (LAA) and in solid (SAA) after adsorption as function of initial Ca concentration.

For (b) and (d), dotted circles correspond to weighted average isotopic value between LAA and
SAA. The dashed line shows that all the values are equal to zero, i.e., similar to that of initial
solution, pointing to isotopic mass balance (see text for explanation).

996

Fig. 4: (a) Amount of Ca²⁺ and H⁺ adsorbed and Na⁺ desorbed as function of initial pH, and
(b) Amount of Ca²⁺ and H⁺ adsorbed and Na⁺ desorbed as function of the initial concentration

999 of Ca (initial pH = 7). Our experimental data are shown with symbols while the SCM results1000 are depicted by dotted lines.

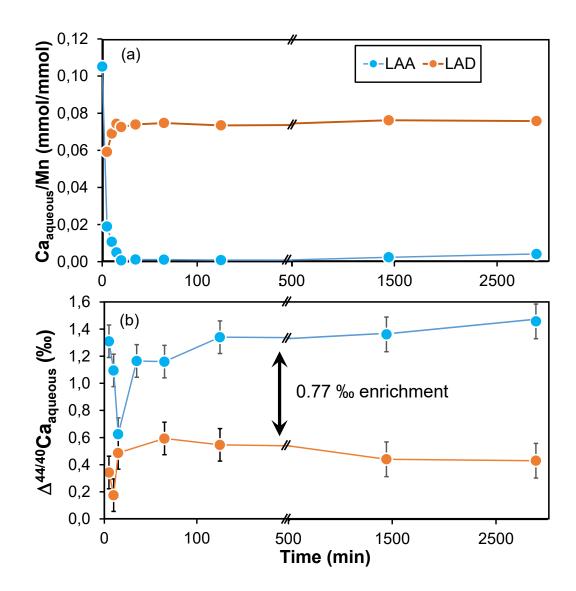
1001

1002 Fig. 5: Percentage of Ca adsorbed on interlayer and edge sites as a function of initial pH1003

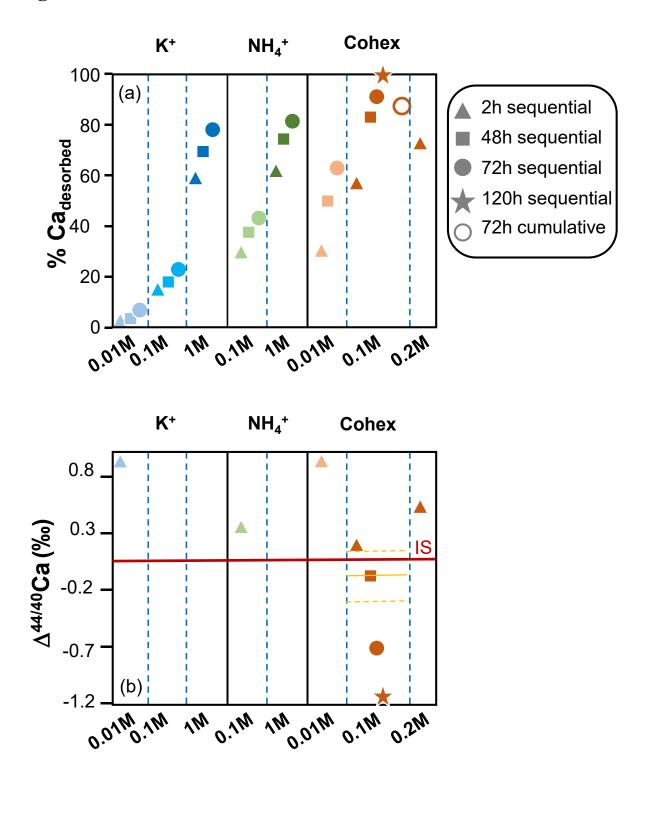
- 1004 **Fig. 6:** Evolution of Ca reservoirs in solution and corresponding δ -MnO₂ solid showing $\Delta^{44/40}$ Ca 1005 as a function of the fraction of remaining Ca in solution.
- 1006 The pH variation dataset corresponds to a fixed initial Ca^{2+} concentration of 0.124 mmol/mmol

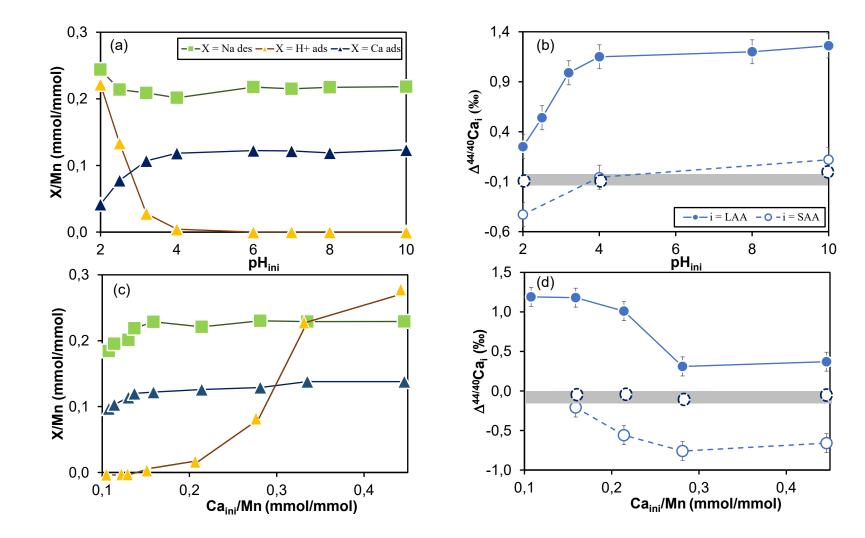
1007 Mn and variable pH values (i.e. $\Delta^{44/40}$ Ca_{LAA} & $\Delta^{44/40}$ Ca_{SAA} from Table 4).

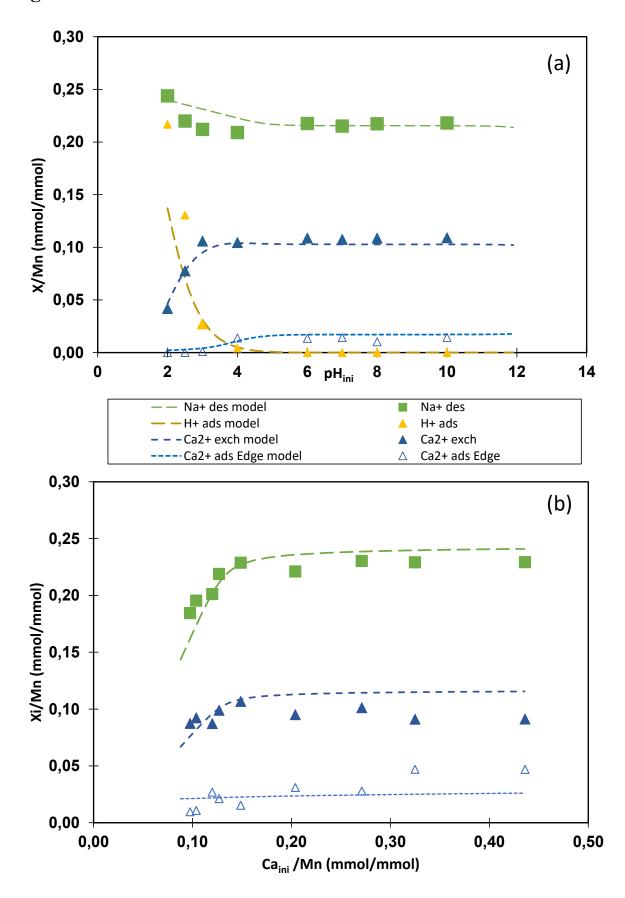
- 1008 The Conc. variation dataset corresponds to variable Ca^{2+} concentrations and fixed initial pH 1009 equal to 7 (i.e. $\Delta^{44/40}Ca_{LAA} \& \Delta^{44/40}Ca_{SAA}$ from Table 5).
- 1010 The Time var. dataset refers to a fixed initial Ca^{2+} concentration of 0.10 mmol/mmol Mn and
- 1011 fixed initial pH equal to 7 for experimental time over 65 min (i.e. $\Delta^{44/40}$ Ca_{LAA} from Table 2)

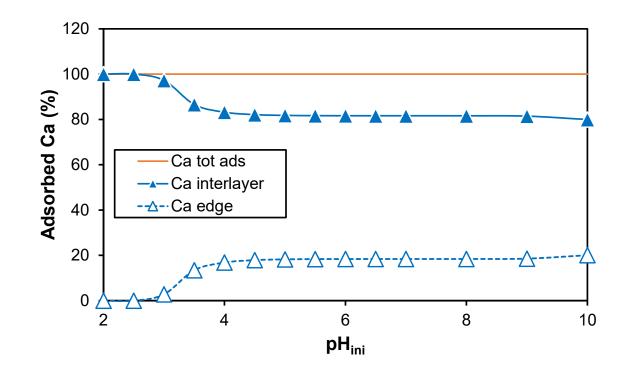

1012 Kinetic theoretical law was drawn from equation $\partial_{reactant} = [(\partial_{reactant0} + 1000) \times f^{\alpha-1}] -$ 1013 1000 (Ding et al., 2005). Equilibrium theoretical law was its part drawn from $\partial_{product} = \alpha \times$ 1014 $(\partial_{reactant0} + 1000) \times f^{\alpha-1} \times 1000$ (Black et al., 2008), with α fractionation factor 1015 (reactant/product) and f: fraction of Ca remaining in solution.

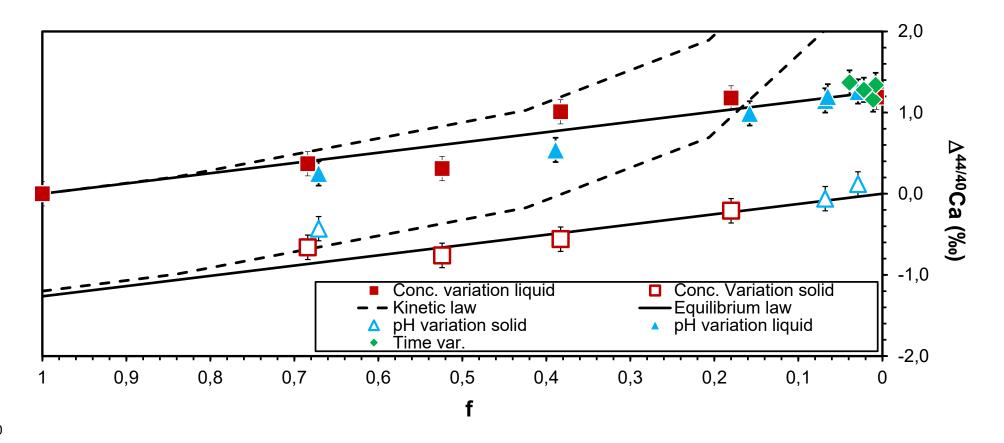
1016


1017


- 1018
- 1019
- 1020
- 1021


1022





Permanently charged sites (Vacancies)

Cation exchange reaction	Selectivity coefficients	K _{sel}
$2 > X - H + Ca^{2+} \leftrightarrow > X_2 Ca + 2H^+$	$K_{sel(2H^+/Ca^{2+})} = \frac{E_{Ca} \cdot \{H^+\}^2}{E_H^2 \cdot \{Ca^{2+}\}}$	0.33
$2 > X - Na + Ca^{2+} \leftrightarrow > X_2Ca + 2Na^+$	$K_{sel(2Na^+/Ca^{2+})} = \frac{E_{Ca} \cdot \{Na^+\}^2}{E_{Na}^2 \cdot \{Ca^{2+}\}}$	3.33
Sites concentration $2.15 \times 10^{-3} \text{ eq/g}$ (calculated from CEC)		

Variable charge site (edge sites)

Ca sorption reaction on edge for DLM	Surface complexation constants	Log K _{edge}
$>$ SOH + H ⁺ \leftrightarrow $>$ SOH ₂ ⁺	$K_{edge (SOH/SOH_{2}^{+})} = \frac{[SOH_{2}^{+}]}{[SOH] \cdot \{H^{+}\}} \cdot exp \left(\frac{F \cdot \varphi_{o}}{R \cdot T}\right)$	8*
$>$ SOH \leftrightarrow $>$ SO ⁻ + H ⁺	$K_{edge (SOH/SO^{-})} = \frac{[SO^{-}] \cdot \{H^{+}\}}{[SOH]} \cdot exp\left(\frac{F \cdot \varphi_{o}}{R \cdot T}\right)$	- 6.1*
$2 > SOH + Ca^{2+} \leftrightarrow > Ca(SOH)_2 + 2H^+$	$K_{edge\ (2SOH/Ca(SOH)_2)} = \frac{[Ca(SOH)_2].\{H^+\}^2}{[SOH]^2.\{Ca^{2+}\}} \cdot exp\ \left(\frac{2F.\varphi_o}{R.T}\right)$	-0.689**

Sites concentration $0.54 \ge 10^{-3} \text{ eq/g}$

(edge concentration = 0.25 x vacancies concentration according to Marafatto et al. (2018))

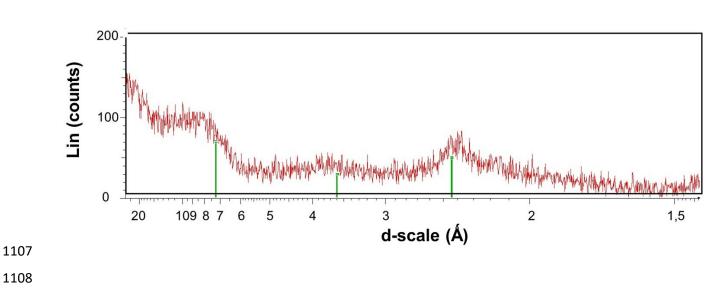
Table 2

Mineral	Grain size	CEC	CEC represented by Na ⁺ in initial solid	BET (N ₂)	Layer charge	Interlayer open	pН	Ca _{ads_max}	$\Delta^{44/40}$ Ca	Reference
	(µm)	(meq/100g)	(%)	(m ² /g)	(/cell)			(mmol/g)	(‰)	
δ-MnO ₂	0.1-1	215	99.2	27.6	0.29	yes	4	1.06	1.15	this study
"	"	"	"	"	"	"	7	1.16	1.19	"
										Brazier et al.
Kaolinite (KGa-2)	0.1-1	3.74	94.5	20.14	0	no	4	4.26	0.00	(2019)
"	"	"	"	"	"	"	7	9.66	"	"
Montmorillonite (Swy-2)	0.1-1	74.6	90.1	28.6	0.6	yes	4	292.9	0.10	"
"	"	"	"	"	"	, ,	7	293.7	"	"
Tuftane muscovite	0.1-1	46.7	94.2	62.23	2	no	4	57.95	0.22	"
"	"	"	"	"	"	"	7	63.79	0.27	"
	50-						,			
"	200	0.42	92.7	0.07	2	no	7	0.209	0.00	"

Table 3

Reference	pHini	pH _{fin}	Interaction time	Calaa	Caads	Calaa/Mn	Nalaa	Nalaa/Mn	$\Delta^{44/40} Ca_{\rm LAA_1}$	$\Delta^{44/40} Ca_{LAA_2}$	$\Delta^{44/40}$ Calaa_mean
			(min)	(mmol)	(%)	(mmol/mmol)	(mmol)	(mmol/mmol)		(‰)	
AdsMnO-0.1 pH7											
0m	7	-	5	0.00852	82.0	0.01893	0.078	0.174	1.29	1.33	1.31
AdsMnO-0.1 pH7											
5m	"	-	10	0.00482	89.8	0.01072	0.084	0.187	1.00	1.19	1.10
AdsMnO-0.1 pH7											
10m	"	-	15	0.00225	95.2	0.00500	0.088	0.196	0.55	0.70	0.63
AdsMnO-0.1 pH7											
15m	"	-	20	0.00032	99.3	0.00072	0.092	0.204	-	-	-
AdsMnO-0.1 pH7											
30m	"	-	35	0.00052	98.9	0.00116	0.094	0.210	1.08	1.25	1.17
AdsMnO-0.1 pH7											
60m	"	-	65	0.00050	98.9	0.00111	0.093	0.207	1.11	1.21	1.16
AdsMnO-0.1 pH7											
120m	"	-	125	0.00038	99.2	0.00084	0.091	0.203	1.34	-	1.34
AdsMnO-0.1 pH7											
7h	"	-	425	0.00036	99.2	0.00080	0.087	0.193	-	-	-
AdsMnO-0.1 pH7											
24h	"	-	1445	0.00104	97.8	0.00231	0.086	0.192	1.28	-	1.28
AdsMnO-0.1 pH7											
48h	"	6.8	2885	0.00184	96.1	0.00409	0.090	0.200	1.37	-	1.37

Reference	Desorbe nt	Concentrat ion (mol.L- 1)	Interactio n time (h:min)	Dead volum e (g)	Ca _{LAA} (mmol)	Ca in slurry (mmol)	Ca in desorbe nt (mmol)	Ca _{ini} (mmol)	Ca _{LAD} (mmol)	Ca _{LAD_co} rr (mmol)	Ca _{LAD_corr} (cumulated %)	Ca _{LAD_corr} / Mn (mmol/mm ol)	∆ ^{44/40} Ca ^{LAD_1} (‰)	∆ ^{44/40} Ca ^{LAD_2} (‰)	Δ ^{44/40} Ca LAD_mean (‰)	Slurry and desorbent contributio n (‰)	a _{LAD_m}
aC2pH7	K^+	0.01	2:00	0.31	3.78	0.058	0.03	57.2	0.825	0.73	1.5	0.0016	0.87	-	0.87	0.01	0.86
	"		48:00				"		1.34	1.31	4.0	0.0029	-	-	-		
			72:00						1.04	1.00	5.9	0.0022	-	-	-		
C2pH7		0.1	2:00	0.22	3.78	0.042			7.89	7.81	14.6	0.0174	-	-	-		
C2-117E			48:00 72:00						2.70 1.93	2.67 1.90	19.6 23.2	0.0059 0.0042	-	-	-		
C2pH7F aC2pH7		1	2:00	0.34	3.78	0.065			29.46	29.36	23.2 54.5	0.0653	-	-	-		
" " "		"	48:00	0.54	5.78	0.005			6.26	6.23	66.1	0.0138	_	_	_		
aC2pH7F			72:00				"	"	3.64	3.60	72.9	0.0080	-	-	-		
bC2pH7	$\mathrm{NH_4^+}$	0.1	2:00	0.20	3.78	0.039	0.05	"	15.95	15.86	29.5	0.0352	-	-	-		
ii ii	"		48:00				"	"	4.64	4.59	38.1	0.0102	-	-	-		
"	"		72:00				"	"	2.79	2.74	43.3	0.0061	-	-	-		
cC2pH7		1	2:00	0.21	3.78	0.040	"	"	33.29	33.20	61.6	0.0738	0.30	-	0.30	0.01	0.29
"	"		48:00				"	"	7.45	7.40	75.4	0.0165	-	-	-		
"	"		72:00				"	"	3.55	3.50	82.0	0.0078	-	-	-		
dC2pH7	Cohex	0.01	2:00	0.07	3.78	0.014	0.03	"	16.64	16.59	30.8	0.0369	0.90	-	0.90	0.00	0.90
			48:00						11.26	11.23	51.7	0.0250	-	-	-		
dC2pH7F			72:00	0.20	2 70	0.020			6.00	5.96	62.8	0.0133	-	-	-	0.01	0.12
eC2pH7		0.1	2:00 48:00	0.20	3.78	0.039			30.58 14.17	30.50 14.14	56.6 82.8	0.0678 0.0314	0.13 -0.12	-	0.13 -0.12	0.01 0.00	0.12 -0.12
			72:00						4.54	4.50	82.8 91.2	0.0314	-0.12	-	-0.12	0.00	-0.12
eC2pH7F			120:00						4.49	4.45	99.5	0.0099	-1.17	-	-1.17	0.00	-1.17
Cc2pH7D 4			72:00	0.22					47.0	46.96	87.0	0.1043	1.17		-	0.00	1.17
DesMnO- 0.1 pH7 0min	"	0.02	0:05	0.18	8.11	0.072		39.2	26.7	26.62	67.9	0.0592	0.35	0.34	0.35	0.01	0.34
DesMnO- 0.1 pH7																	
5min DesMnO- 0.1 pH7	"	"	0:10	0.12	4.74	0.028	"	42.6	31.12	31.06	73.0	0.0690	0.18	0.19	0.18	0.01	0.17
10min DesMnO- 0.1 pH7	"	"	0:15	0.08	2.37	0.009	"	44.9	33.47	33.43	74.4	0.0743	0.49	0.51	0.49	0.00	0.49
15min DesMnO-	"	"	0:20	0.24	0.57	0.007	"	46.7	32.70	32.66	69.9	0.0726	-	-	-		
0.1 pH7 30min DesMnO-	"	"	0:35	0.12	0.58	0.003		46.7	33.31	33.27	71.2	0.0739	-	-	-		
0.1 pH7 60min DesMnO-	"		1:05	0.16	0.48	0.004		46.8	33.67	33.64	71.8	0.0747	0.60	-	0.60	0.01	0.59
0.1 pH7 120min DesMnO-	"		2:05	0.09	0.44	0.002	"	46.9	33.08	33.04	70.5	0.0734	0.55	0.60	0.55	0.00	0.55
0.1 pH7 7h DesMnO-	"	"	7:05	0.11	0.12	0.001	"	47.2	33.46	33.42	70.8	0.0743	-	-	-		
0.1 pH7 24h DesMnO-	"	"	24:05	0.09	0.81	0.004	"	46.5	34.29	34.26	73.7	0.0761	0.42	0.41	0.42	0.00	0.42
0.1 pH7 48h	"		48:05	0.09	1.66	0.007		45.6	34.11	34.07	74.6	0.0757	0.41	-	0.41	0.00	0.41


Reference	C2pH2	С2рН2.5	C2pH3	C2pH4	C2pH6	C2pH7	C2pH8	C2pH10
pHini	2.0	2.5	3.2	4.0	6.0	7.0	8.0	10.0
pH _{fin}	2.3	3.8	5.2	5.6	6.1	6.2	6.1	6.7
ΔH^+ (mmol/L)	5.0E+00	3.0E+00	6.2E-01	9.7E-02	2.1E-04	6.9E-04	7.3E-04	2.0E-04
Ca _{ads} (mmol)	0.019	0.035	0.048	0.053	0.055	0.055	0.054	0.056
Ca ads (%)	32.9	61.1	84.2	93.2	96.3	95.9	93.5	97.1
[A]: Ca _{ads} /Mn (mmol/mmol)	0.042	0.078	0.107	0.118	0.122	0.122	0.119	0.123
H ⁺ ini (mmol)	2.0E-01	6.3E-02	1.3E-02	2.0E-03	2.0E-05	2.0E-06	2.0E-07	2.0E-09
H ⁺ _{ini} /Mn (mmol/mmol)	4.4E-01	1.4E-01	2.8E-02	4.4E-03	4.4E-05	4.4E-06	4.4E-07	4.4E-09
H ⁺ ads (mmol)	1.0E-01	6.0E-02	1.2E-02	1.9E-03	4.1E-06	1.4E-05	1.5E-05	4.0E-06
H+ _{ads} /Mn (mmol/mmol)	2.2E-01	1.3E-01	2.8E-02	4.3E-03	9.1E-06	3.1E-05	3.2E-05	8.9E-06
Na _{des} (mmol)	0.110	0.096	0.094	0.091	0.098	0.097	0.098	0.098
[B] : Na _{des} /Mn (mmol/mmol)	0.244	0.214	0.209	0.202	0.218	0.215	0.217	0.218
[A] – [B] (meq/mmol)	<0	<0	0.005	0.035	0.027	0.029	0.020	0.029
$\Delta^{44/40}$ Calaa (‰)	0.25	0.54	0.99	1.15	-	-	1.20	1.26
$\Delta^{44/40}$ CasAA_1 (‰)	-0.43	-	-	-0.06	-	-	-	0.12
$\Delta^{44/40}$ CasAA_2 (‰)				-0.05				
$\Delta^{44/40}$ CasAA_mean (%)	-0.43			-0.06				0.12

Reference	C8pH7	С6рН7	C1pH7	C2pH7	С3рН7	C4pH7	C5pH7	ADS300pH7	ADS400pH7
pHini	7	7	7	7	7	7	7	7	7
pH _{fin}	6.36	6.32	6.31	6.22	5.92	5.55	5.00	4.56	4.48
ΔH^+ (mmol/L)	6.7E-06	7.6E-06	7.8E-06	1.0E-05	2.2E-05	5.4E-05	2.0E-04	5.5E-04	6.6E-04
H ⁺ des/Mn (mmol/mmol)	1.5E-05	1.7E-05	1.7E-05	2.2E-05	4.9E-05	1.2E-04	4.4E-04	1.2E-03	1.5E-03
Caini (mmol)	0.044	0.047	0.054	0.057	0.067	0.092	0.122	0.146	0.196
[A] : Ca ini/Mn (mmol/mmol)	0.098	0.104	0.120	0.127	0.149	0.204	0.271	0.325	0.436
Ca _{ads} (mmol)	0.044	0.046	0.051	0.054	0.055	0.057	0.058	0.062	0.062
Caads (%)	99.3	99.2	95.0	94.5	82.0	61.7	47.6	42.5	31.6
[B]: Ca _{ads} /Mn (mmol/mmol)	0.097	0.103	0.114	0.120	0.122	0.126	0.129	0.138	0.138
Nades (mmol)	0.083	0.084	0.087	0.092	0.094	0.093	0.092	0.107	0.107
Na _{des} /Mn (mmol/mmol)	0.184	0.195	0.201	0.219	0.229	0.221	0.230	0.229	0.229
[A] – [B] (meq/mmol)	0.010	0.011	0.027	0.021	0.015	0.031	0.028	0.047	0.047
$\Delta^{44/40}$ Calaa (‰)	1.19	-	-	-	1.18	1.01	0.31	-	0.37
$\Delta^{44/40}$ Ca _{SAA} (‰)	-	-	-	-	-0.21	-0.56	-0.76	-	-0.66

1080	Supplementary materials for
1081	Calcium isotope fractionation associated with adsorption and
1082	desorption on/from δ-MnO ₂
1083	Schmitt Anne-Désirée ¹ , Gangloff Sophie ¹ , Brazier Jean-Michel ^{1,2} , Nuvoli Nicolas ¹ , Tertre
1084	Emmanuel ³
1085	¹ Université de Strasbourg, CNRS, ENGEES, ITES UMR 7063, 5, rue Descartes, 67084 Strasbourg
1086	Cédex, France
1087	² Present address: Institute of Applied Geosciences, Graz University of Technology, Rechbauerstrasse
1088	12, 8010 Graz, Austria
1089	³ Université de Poitiers/CNRS, UMR 7285 IC2MP (équipe HydrASA), B8 rue Albert Turpain, 86073
1090	Poitiers, France
1091	
1092	
1093	
1094	This file includes:
1095	(1) X-ray data of the studied δ -MnO ₂ : X-ray diffractogram (S1) and XRD raw data (S2)
1096	(2) Comparison of initial and final pH values for experimental and modelled data (S3)
1097	(3) Calculation of $\Delta^{44/40}$ Ca isotope signatures in the interlayer and on the edges
1098	
1099	
1100	
1101	
1102	
1103	
1104	

1105 X-ray diffractogram of the studied δ-MnO₂ sample

S1: δ -MnO₂ diffractogram after particle size sorting and Na saturation. The attenuation of basal

1110 reflections is due to the small size of the coherent domains of δ -MnO₂ and is underlined by the

- 1111 vertical green lines.

1125 S2: XRD raw data

(degrees)	X conversion to	Y						
(degrees)	conversion to	-	4.92	17.940	122	6.88	12.833	137
	d (Angström)	Intensity (shots)	4.96	17.795	124	6.92	12.759	112
3.04	29.028	224	5	17.653	129	6.96	12.685	129
3.08	28.651	192	5.04	17.513	114	7	12.613	111
3.12	28.284	222	5.08	17.375	114	7.04	12.541	109
3.16	27.926	205	5.12	17.239	128	7.08	12.471	121
3.2	27.577	186	5.16	17.106	124	7.12	12.401	125
3.24	27.237	172	5.2	16.974	131	7.16	12.331	130
3.28	26.905	175	5.24	16.845	119	7.2	12.263	112
3.32	26.581	162	5.28	16.717	111	7.24	12.195	126
3.36	26.264	211	5.32	16.592	128	7.28	12.128	107
3.4	25.955	172	5.36	16.468	118	7.32	12.062	133
3.44	25.654	157	5.4	16.346	114	7.36	11.997	122
3.48	25.359	164	5.44	16.226	124	7.4	11.932	126
3.52	25.071	163	5.48	16.108	121	7.44	11.868	116
3.56	24.789	150	5.52	15.991	115	7.48	11.805	118
3.6	24.514	157	5.56	15.876	141	7.52	11.742	141
3.64	24.245	149	5.6	15.763	123	7.56	11.680	106
3.68	23.981	147	5.64	15.651	123	7.6	11.618	120
3.72	23.723	141	5.68	15.541	108	7.64	11.558	112
3.76	23.471	168	5.72	15.432	117	7.68	11.498	133
3.8	23.224	164	5.76	15.325	116	7.72	11.438	112
3.84	22.982	144	5.8	15.220	127	7.76	11.379	121
3.88	22.745	146	5.84	15.115	118	7.8	11.321	126
3.92	22.513	132	5.88	15.013	125	7.84	11.263	119
3.96	22.286	157	5.92	14.911	115	7.88	11.206	135
4	22.063	123	5.96	14.811	107	7.92	11.150	127
4.04	21.845	138	6	14.713	114	7.96	11.094	124
4.08	21.631	167	6.04	14.615	109	8	11.038	106
4.12	21.421	130	6.08	14.519	127	8.04	10.984	132
4.16	21.215	133	6.12	14.424	117	8.08	10.929	122
4.2	21.013	121	6.16	14.331	124	8.12	10.876	92
4.24	20.815	132	6.2	14.238	104	8.16	10.822	105
4.28	20.621	131	6.24	14.147	121	8.2	10.770	110
4.32	20.430	120	6.28	14.057	134	8.24	10.717	136
4.36	20.242	132	6.32	13.968	114	8.28	10.666	128
4.4	20.058	110	6.36	13.881	113	8.32	10.615	116
4.44	19.878	146	6.4	13.794	123	8.36	10.564	120
4.48	19.700	140	6.44	13.708	120	8.4	10.514	120
4.52	19.526	115	6.48	13.624	134	8.44	10.314	128
4.56	19.355	137	6.52	13.540	119	8.48	10.415	120
4.6	19.187	141	6.56	13.458	102	8.52	10.366	116
4.64	19.021	129	6.6	13.376	102	8.56	10.317	139
4.68	18.859	131	6.64	13.296	128	8.6	10.270	139
4.72	18.699	109	6.68	13.290	120	8.64	10.222	120
4.72	18.542	109	6.72	13.138	121	8.68	10.222	119
4.70	18.388	121	6.76	13.060	127	8.72	10.173	116
4.84	18.236	121	6.8	12.983	127	8.76	10.129	144
4.84	18.236	143	6.84	12.983	120	8.76	10.082	144

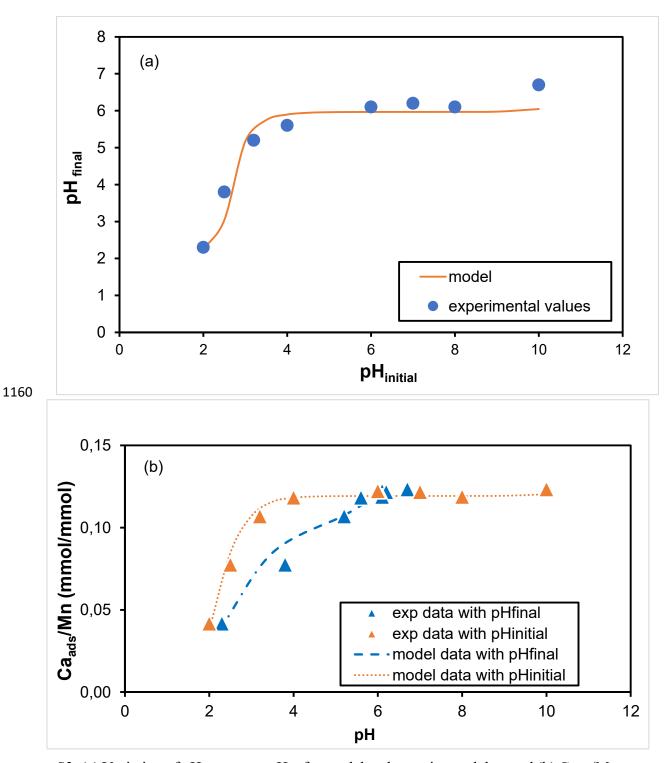
8.84	9.991	122	10.8	8.182	123	12.76	6.929	109
8.88	9.946	126	10.84	8.152	136	12.8	6.908	110
8.92	9.902	138	10.88	8.122	141	12.84	6.886	93
8.96	9.858	129	10.92	8.092	117	12.88	6.865	90
9	9.814	114	10.96	8.063	109	12.92	6.844	93
9.04	9.771	125	11	8.034	124	12.96	6.823	96
9.08	9.728	126	11.04	8.005	117	13	6.802	97
9.12	9.685	128	11.08	7.976	131	13.04	6.781	77
9.16	9.643	104	11.12	7.947	147	13.08	6.761	75
9.2	9.601	129	11.16	7.919	143	13.12	6.740	94
9.24	9.560	116	11.2	7.891	133	13.16	6.720	87
9.28	9.519	112	11.24	7.863	120	13.2	6.699	93
9.32	9.478	121	11.28	7.835	125	13.24	6.679	96
9.36	9.437	136	11.32	7.807	96	13.28	6.659	116
9.4	9.397	124	11.36	7.780	115	13.32	6.639	90
9.44	9.358	116	11.4	7.753	132	13.36	6.619	99
9.48	9.318	123	11.44	7.726	114	13.4	6.600	122
9.52	9.279	108	11.48	7.699	116	13.44	6.580	93
9.56	9.240	125	11.52	7.672	119	13.48	6.561	89
9.6	9.202	144	11.56	7.646	118	13.52	6.541	88
9.64	9.164	136	11.6	7.620	143	13.56	6.522	101
9.68	9.126	114	11.64	7.593	115	13.6	6.503	83
9.72	9.089	120	11.68	7.568	124	13.64	6.484	81
9.76	9.051	133	11.72	7.542	129	13.68	6.465	94
9.8	9.015	128	11.76	7.516	141	13.72	6.447	76
9.84	8.978	111	11.8	7.491	134	13.72	6.428	82
9.88	8.942	143	11.84	7.466	115	13.8	6.409	75
9.92	8.906	143	11.88	7.440	120	13.84	6.391	93
9.96	8.870	107	11.92	7.416	120	13.88	6.373	91
10	8.835	130	11.92	7.391	122	13.00	6.354	93
10.04	8.800	130	12	7.366	111	13.92	6.336	78
10.04	8.765	137	12.04	7.342	132	13.50	6.318	68
10.00	8.730	124	12.04	7.318	101	14.04	6.300	79
10.12	8.696	124	12.00	7.294	105	14.04	6.283	79
10.10	8.662	134	12.12	7.270	103	14.00	6.265	76
10.24	8.628	131	12.10	7.246	113	14.12	6.247	89
10.24	8.595	138	12.24	7.223	104	14.10	6.230	91
10.20	8.562	148	12.24	7.199	104	14.24	6.212	86
10.32	8.529	140	12.20	7.199	100	14.24	6.195	79
10.30	8.496	102	12.32	7.176	102	14.28	6.195	68
	8.463	102	12.30	7.133	99			
10.44						14.36	6.161	84
10.48	8.431	118	12.44	7.107	93	14.4	6.144	100
10.52	8.399	134	12.48	7.084	115	14.44	6.127	82
10.56	8.367	131	12.52	7.062	116	14.48	6.110	66
10.6	8.336	111	12.56	7.039	119	14.52	6.093	77
10.64	8.305	136	12.6	7.017	87	14.56	6.076	77
10.68	8.274	123	12.64	6.995	113	14.6	6.060	88
10.72	8.243	104	12.68	6.973	98	14.64	6.043	83

14.72	6.011	74	16.68	5.309	74	18.64	4.755	70
14.76	5.995	70	16.72	5.296	75	18.68	4.745	84
14.8	5.978	77	16.76	5.283	83	18.72	4.734	82
14.84	5.962	80	16.8	5.271	67	18.76	4.724	82
14.88	5.947	60	16.84	5.259	74	18.8	4.714	64
14.92	5.931	68	16.88	5.246	85	18.84	4.705	77
14.96	5.915	75	16.92	5.234	83	18.88	4.695	83
15	5.899	69	16.96	5.222	75	18.92	4.685	71
15.04	5.884	79	17	5.209	65	18.96	4.675	65
15.08	5.868	82	17.04	5.197	72	19	4.665	67
15.12	5.853	75	17.08	5.185	80	19.04	4.656	69
15.16	5.837	79	17.12	5.173	71	19.08	4.646	75
15.2	5.822	76	17.16	5.161	69	19.12	4.636	56
15.24	5.807	82	17.2	5.149	67	19.16	4.627	57
15.28	5.792	58	17.24	5.137	76	19.2	4.617	69
15.32	5.777	85	17.28	5.126	77	19.24	4.608	76
15.36	5.762	78	17.32	5.114	82	19.28	4.598	64
15.4	5.747	74	17.36	5.102	64	19.32	4.589	68
15.44	5.732	86	17.4	5.091	82	19.36	4.579	67
15.48	5.717	79	17.44	5.079	64	19.4	4.570	77
15.52	5.703	80	17.48	5.067	68	19.44	4.561	64
15.56	5.688	64	17.52	5.056	75	19.48	4.551	80
15.6	5.674	79	17.56	5.045	66	19.52	4.542	78
15.64	5.659	85	17.6	5.033	73	19.56	4.533	83
15.68	5.645	75	17.64	5.022	78	19.6	4.524	64
15.72	5.631	76	17.68	5.011	70	19.64	4.515	72
15.76	5.616	58	17.72	4.999	85	19.68	4.506	67
15.8	5.602	73	17.76	4.988	64	19.72	4.497	73
15.84	5.588	63	17.8	4.977	65	19.76	4.488	84
15.88	5.574	73	17.84	4.966	72	19.8	4.479	76
15.92	5.560	65	17.88	4.955	81	19.84	4.470	78
15.96	5.546	68	17.92	4.944	61	19.88	4.461	69
16	5.533	79	17.96	4.933	61	19.92	4.452	79
16.04	5.519	70	18	4.922	71	19.96	4.443	79
16.08	5.505	74	18.04	4.911	79	20	4.434	66
16.12	5.492	56	18.08	4.901	72	20.04	4.425	75
16.16	5.478	82	18.12	4.890	75	20.08	4.417	71
16.2	5.465	75	18.16	4.879	77	20.12	4.408	69
16.24	5.451	77	18.2	4.869	74	20.16	4.399	84
16.28	5.438	62	18.24	4.858	72	20.2	4.391	63
16.32	5.425	85	18.28	4.847	53	20.24	4.382	101
16.36	5.412	57	18.32	4.837	69	20.28	4.374	82
16.4	5.399	73	18.36	4.826	79	20.32	4.365	74
16.44	5.386	83	18.4	4.816	70	20.36	4.357	79
16.48	5.373	63	18.44	4.806	74	20.4	4.348	59
16.52	5.360	68	18.48	4.795	69	20.44	4.340	80
16.56	5.347	93	18.52	4.785	81	20.48	4.331	69
16.6	5.334	80	18.56	4.775	68	20.52	4.323	94
16.64	5.321	70	18.6	4.765	81	20.56	4.315	78

00.0	1 000	0.4	00.50	0.007	400	04.50	0.000	70
20.6	4.306	64	22.56	3.937	103	24.52	3.626	79
20.64	4.298	82	22.6	3.930	91	24.56	3.620	97
20.68	4.290	83	22.64	3.923	91	24.6	3.615	68
20.72	4.282	57	22.68	3.916	77	24.64	3.609	74
20.76	4.274	70	22.72	3.909	92	24.68	3.603	80
20.8	4.265	78	22.76	3.902	81	24.72	3.597	74
20.84	4.257	79	22.8	3.896	75	24.76	3.592	82
20.88	4.249	83	22.84	3.889	74	24.8	3.586	82
20.92	4.241	84	22.88	3.882	72	24.84	3.580	74
20.96	4.233	61	22.92	3.876	74	24.88	3.574	67
21	4.225	79	22.96	3.869	74	24.92	3.569	75
21.04	4.217	71	23	3.862	75	24.96	3.563	86
21.08	4.209	66	23.04	3.856	86	25	3.558	69
21.12	4.202	77	23.08	3.849	85	25.04	3.552	94
21.16	4.194	78	23.12	3.842	74	25.08	3.546	82
21.2	4.186	68	23.16	3.836	92	25.12	3.541	79
21.24	4.178	85	23.2	3.829	77	25.16	3.535	74
21.28	4.170	71	23.24	3.823	81	25.2	3.530	62
21.32	4.163	92	23.28	3.816	87	25.24	3.524	82
21.36	4.155	79	23.32	3.810	84	25.28	3.519	78
21.4	4.147	86	23.36	3.803	92	25.32	3.513	72
21.44	4.140	75	23.4	3.797	81	25.36	3.508	72
21.48	4.132	75	23.44	3.791	75	25.4	3.502	71
21.52	4.124	63	23.48	3.784	85	25.44	3.497	80
21.56	4.117	68	23.52	3.778	71	25.48	3.492	79
21.6	4.109	66	23.56	3.772	70	25.52	3.486	69
21.64	4.102	80	23.6	3.765	64	25.56	3.481	76
21.68	4.094	83	23.64	3.759	84	25.6	3.476	81
21.72	4.087	81	23.68	3.753	80	25.64	3.470	74
21.76	4.079	87	23.72	3.747	100	25.68	3.465	84
21.8	4.072	80	23.76	3.740	77	25.72	3.460	74
21.84	4.065	79	23.8	3.734	74	25.76	3.454	59
21.88	4.057	72	23.84	3.728	81	25.8	3.449	61
21.92	4.050	75	23.88	3.722	88	25.84	3.444	75
21.96	4.043	84	23.92	3.716	88	25.88	3.439	78
22	4.035	85	23.96	3.710	79	25.92	3.433	78
22.04	4.028	68	24	3.703	92	25.96	3.428	79
22.08	4.021	84	24.04	3.697	78	26	3.423	74
22.12	4.014	66	24.08	3.691	66	26.04	3.418	85
22.12	4.007	82	24.12	3.685	75	26.08	3.413	82
22.2	4.000	73	24.16	3.679	80	26.12	3.408	71
22.24	3.992	65	24.10	3.673	72	26.16	3.402	64
22.24	3.985	74	24.24	3.667	74	26.2	3.397	71
22.20	3.978	81	24.24	3.661	65	26.24	3.392	69
22.32	3.970	75	24.20	3.655	89	26.24	3.387	81
22.30	3.964	79	24.32	3.650	83	26.32	3.382	74
22.4	3.964	81			97	26.32		80
			24.4	3.644			3.377	
22.48	3.950	76	24.44	3.638	86	26.4	3.372	75
22.52	3.943	76	24.48	3.632	80	26.44	3.367	73

06.40	2.260	00	00.44	2 425	76	20.4	0.027	70
26.48	3.362	88 67	28.44	3.135	75	30.4	2.937	72 65
26.52	3.357		28.48 28.52	3.130 3.126	70 78	30.44	2.933	60
26.56	3.352 3.347	67 71			56	30.48	2.929	71
26.6 26.64	3.347	68	28.56 28.6	3.122	75	30.52	2.926	77
				3.117		30.56	2.922 2.918	
26.68	3.337	80	28.64	3.113	67	30.6		60
26.72	3.332	79	28.68	3.109	72	30.64	2.914	85
26.76	3.327	61	28.72	3.105	73	30.68	2.911	70
26.8	3.323	79	28.76	3.100	82	30.72	2.907	63
26.84	3.318	54	28.8	3.096	78	30.76	2.903	65
26.88	3.313	75	28.84	3.092	60	30.8	2.900	70
26.92	3.308	87	28.88	3.088	75	30.84	2.896	74
26.96	3.303	71	28.92	3.084	67	30.88	2.892	79
27	3.298	60	28.96	3.079	53	30.92	2.889	78
27.04	3.294	94	29	3.075	56	30.96	2.885	86
27.08	3.289	71	29.04	3.071	61	31	2.881	73
27.12	3.284	71	29.08	3.067	78	31.04	2.878	67
27.16	3.279	66	29.12	3.063	80	31.08	2.874	60
27.2	3.275	80	29.16	3.059	78	31.12	2.870	60
27.24	3.270	79	29.2	3.055	61	31.16	2.867	74
27.28	3.265	61	29.24	3.051	74	31.2	2.863	72
27.32	3.261	68	29.28	3.047	85	31.24	2.860	59
27.36	3.256	85	29.32	3.042	69	31.28	2.856	76
27.4	3.251	72	29.36	3.038	63	31.32	2.853	71
27.44	3.247	76	29.4	3.034	77	31.36	2.849	77
27.48	3.242	80	29.44	3.030	64	31.4	2.846	74
27.52	3.237	78	29.48	3.026	67	31.44	2.842	63
27.56	3.233	68	29.52	3.022	61	31.48	2.838	68
27.6	3.228	68	29.56	3.018	63	31.52	2.835	71
27.64	3.223	74	29.6	3.014	72	31.56	2.831	56
27.68	3.219	84	29.64	3.010	70	31.6	2.828	62
27.72	3.214	81	29.68	3.006	74	31.64	2.824	61
27.76	3.210	70	29.72	3.002	78	31.68	2.821	72
27.8	3.205	60	29.76	2.998	62	31.72	2.818	72
27.84	3.201	65	29.8	2.995	64	31.76	2.814	73
27.88	3.196	66	29.84	2.991	72	31.8	2.811	73
27.92	3.192	66	29.88	2.987	84	31.84	2.807	61
27.96	3.187	81	29.92	2.983	72	31.88	2.804	70
28	3.183	79	29.96	2.979	78	31.92	2.800	64
28.04	3.178	59	30	2.975	72	31.96	2.797	75
28.08	3.174	70	30.04	2.971	74	32	2.794	63
28.12	3.170	77	30.08	2.967	67	32.04	2.790	58
28.16	3.165	82	30.12	2.963	71	32.08	2.787	67
28.2	3.161	57	30.16	2.960	72	32.12	2.783	62
28.24	3.156	65	30.2	2.956	67	32.16	2.780	80
28.28	3.152	72	30.24	2.952	74	32.2	2.777	82
28.32	3.148	85	30.28	2.948	68	32.24	2.773	79
28.36	3.143	70	30.32	2.944	56	32.28	2.770	67
28.4	3.139	75	30.36	2.941	60	32.32	2.767	71

32.36	2.763	64	34.32	2.610	76	36.28	2.473	105
32.30	2.760	73	34.36	2.607	68	36.32	2.473	85
32.44	2.757	83	34.4	2.604	82	36.36	2.468	110
32.44	2.753	70	34.44	2.604	70	36.4	2.465	98
32.52	2.750	74	34.48	2.598	69	36.44	2.463	86
32.52	2.747	82	34.52	2.595	83	36.48	2.460	99
32.6	2.743	87	34.56	2.595	63	36.52	2.400	91
32.64	2.740	99	34.6	2.589	82	36.56	2.457	116
32.68	2.740	77	34.64	2.586	66	36.6	2.455	120
32.72	2.734	58	34.68	2.584	89	36.64	2.452	108
32.72	2.734	55	34.72	2.581	80	36.68	2.430	100
32.8	2.727	77	34.72	2.578	81	36.72	2.447	103
32.84	2.724	82	34.8	2.575	58	36.76	2.443	110
32.88	2.724	70	34.84	2.572	88	36.8	2.442	96
32.92	2.718	73	34.88	2.569	74	36.84	2.435	112
32.92	2.714	75	34.92	2.566	85	36.88	2.437	105
33	2.714	70	34.92	2.563	80	36.92	2.434	103
33.04	2.708	70	34.90	2.561	70	36.96	2.432	106
33.04		72	35.04	2.558	76	37		118
33.12	2.705	69	35.04	2.555	76	37.04	2.427 2.424	
	2.702	65			57	37.04		109
33.16	2.698		35.12	2.552	74	37.00	2.422	102
33.2 33.24	2.695	87 54	35.16	2.549			2.419	118
	2.692		35.2	2.547	80	37.16	2.417	99
33.28 33.32	2.689 2.686	68 79	35.24 35.28	2.544 2.541	104 73	37.2 37.24	2.414	111
33.36	2.683	68	35.32	2.538	90	37.24	2.412 2.409	117 111
33.4	2.680	78		2.535		37.32	2.409	
33.44	2.676	82	35.36 35.4	2.535	90 89	37.36	2.407	126 104
33.44	2.673	85	35.44	2.533	90	37.30	2.404	104
33.52	2.670	82	35.44	2.530	81	37.44	2.399	90
33.56	2.667	67	35.52	2.524	87	37.44	2.399	112
33.6	2.664	86	35.52	2.524	81	37.52	2.397	12
33.64	2.661	78	35.6	2.522	97	37.56	2.394	102
33.68	2.658	73	35.64	2.519	82	37.6	2.392	102
33.72	2.655	74	35.68	2.513	81	37.64	2.389	120
33.76	2.652	82	35.72	2.513	76	37.68	2.384	98
33.8	2.649	71	35.76	2.508	97	37.72	2.382	108
33.84	2.649	88	35.8	2.505	111	37.76	2.380	108
33.88	2.643	86	35.84	2.503	99	37.8	2.300	111
33.92	2.640	60	35.88	2.503	104	37.84	2.377	124
33.92	2.637	78	35.00	2.300	92	37.88	2.375	124
33.90	2.634	81	35.96	2.497	85		2.372	
34.04	2.631	83	35.90		75	37.92 37.96	2.370	112 110
34.04	2.628	68	36.04	2.492		37.96		
34.08				2.489	86		2.365	111
	2.625	80	36.08	2.486	98	38.04	2.363	108
34.16	2.622	68	36.12	2.484	93 72	38.08	2.360	101
34.2	2.619	68 76	36.16	2.481	72	38.12	2.358	124
34.24	2.616	76	36.2	2.478	116	38.16	2.356	99
34.28	2.613	81	36.24	2.476	84	38.2	2.353	105


38.24	2.351	92	40.2	2.241	81	42.16	2.141	87
38.28	2.348	99	40.24	2.238	73	42.2	2.139	63
38.32	2.346	98	40.28	2.236	78	42.24	2.137	76
38.36	2.344	90	40.32	2.234	97	42.28	2.135	75
38.4	2.341	91	40.36	2.232	98	42.32	2.133	65
38.44	2.339	92	40.4	2.230	72	42.36	2.131	83
38.48	2.337	101	40.44	2.228	90	42.4	2.129	91
38.52	2.334	104	40.48	2.226	72	42.44	2.127	76
38.56	2.332	87	40.52	2.224	92	42.48	2.125	77
38.6	2.330	128	40.56	2.222	91	42.52	2.124	85
38.64	2.327	98	40.6	2.219	87	42.56	2.122	80
38.68	2.325	100	40.64	2.217	64	42.6	2.120	85
38.72	2.323	89	40.68	2.215	89	42.64	2.118	65
38.76	2.320	112	40.72	2.213	65	42.68	2.116	69
38.8	2.318	95	40.76	2.211	87	42.72	2.114	86
38.84	2.316	97	40.8	2.209	85	42.76	2.112	69
38.88	2.314	83	40.84	2.207	81	42.8	2.110	81
38.92	2.311	116	40.88	2.205	72	42.84	2.108	70
38.96	2.309	91	40.92	2.203	97	42.88	2.107	80
39	2.307	97	40.96	2.201	91	42.92	2.105	79
39.04	2.304	99	41	2.199	97	42.96	2.103	78
39.08	2.302	103	41.04	2.197	90	43	2.101	76
39.12	2.300	107	41.08	2.195	88	43.04	2.099	69
39.16	2.298	97	41.12	2.193	75	43.08	2.097	89
39.2	2.295	79	41.16	2.191	88	43.12	2.095	89
39.24	2.293	81	41.2	2.188	83	43.16	2.094	78
39.28	2.291	81	41.24	2.186	69	43.2	2.092	62
39.32	2.289	93	41.28	2.184	76	43.24	2.090	59
39.36	2.286	94	41.32	2.182	94	43.28	2.088	73
39.4	2.284	95	41.36	2.180	83	43.32	2.086	78
39.44	2.282	97	41.4	2.178	88	43.36	2.084	70
39.48	2.280	96	41.44	2.176	69	43.4	2.083	79
39.52	2.278	78	41.48	2.174	85	43.44	2.081	54
39.56	2.275	87	41.52	2.172	83	43.48	2.079	80
39.6	2.273	84	41.56	2.170	72	43.52	2.077	65
39.64	2.271	98	41.6	2.168	82	43.56	2.075	80
39.68	2.269	90	41.64	2.166	82	43.6	2.073	71
39.72	2.267	100	41.68	2.164	85	43.64	2.072	68
39.76	2.264	91	41.72	2.162	87	43.68	2.070	89
39.8	2.262	98	41.76	2.160	99	43.72	2.068	69
39.84	2.260	81	41.8	2.158	75	43.76	2.066	67
39.88	2.258	89	41.84	2.156	79	43.8	2.064	83
39.92	2.256	94	41.88	2.155	78	43.84	2.063	69
39.96	2.253	88	41.92	2.153	70	43.88	2.061	76
40	2.251	90	41.96	2.151	81	43.92	2.059	68
40.04	2.249	78	42	2.149	79	43.96	2.057	71
40.08	2.247	94	42.04	2.147	75	44	2.055	72
40.12	2.245	85	42.08	2.145	81	44.04	2.054	65
40.12	2.243	96	42.12	2.143	81	44.08	2.054	78

44.12	2.050	70	46.08	1.967	81	48.04	1.892	51
44.16	2.048	64	46.12	1.966	59	48.08	1.890	67
44.2	2.047	96	46.16	1.964	61	48.12	1.889	74
44.24	2.045	70	46.2	1.963	75	48.16	1.887	62
44.28	2.043	69	46.24	1.961	64	48.2	1.886	60
44.32	2.041	65	46.28	1.959	60	48.24	1.884	70
44.36	2.040	70	46.32	1.958	62	48.28	1.883	70
44.4	2.038	62	46.36	1.956	67	48.32	1.881	69
44.44	2.036	88	46.4	1.955	84	48.36	1.880	61
44.48	2.034	71	46.44	1.953	59	48.4	1.878	69
44.52	2.033	67	46.48	1.951	64	48.44	1.877	65
44.56	2.031	60	46.52	1.950	63	48.48	1.875	64
44.6	2.029	89	46.56	1.948	81	48.52	1.874	66
44.64	2.027	76	46.6	1.947	72	48.56	1.873	74
44.68	2.026	71	46.64	1.945	73	48.6	1.871	67
44.72	2.024	71	46.68	1.944	64	48.64	1.870	58
44.76	2.022	70	46.72	1.942	72	48.68	1.868	60
44.8	2.021	65	46.76	1.940	68	48.72	1.867	66
44.84	2.019	67	46.8	1.939	63	48.76	1.865	64
44.88	2.017	72	46.84	1.937	81	48.8	1.864	57
44.92	2.016	85	46.88	1.936	67	48.84	1.863	57
44.96	2.014	75	46.92	1.934	84	48.88	1.861	65
45	2.012	80	46.96	1.933	73	48.92	1.860	72
45.04	2.010	59	47	1.931	51	48.96	1.858	72
45.08	2.009	50	47.04	1.929	66	49	1.857	69
45.12	2.007	63	47.08	1.928	68	49.04	1.855	68
45.16	2.005	63	47.12	1.926	76	49.08	1.854	60
45.2	2.004	57	47.16	1.925	71	49.12	1.853	63
45.24	2.002	72	47.2	1.923	65	49.16	1.851	61
45.28	2.000	54	47.24	1.922	61	49.2	1.850	61
45.32	1.999	70	47.28	1.920	76	49.24	1.848	76
45.36	1.997	66	47.32	1.919	55	49.28	1.847	68
45.4	1.995	71	47.36	1.917	58	49.32	1.845	66
45.44	1.994	60	47.4	1.916	50	49.36	1.844	64
45.48	1.992	80	47.44	1.914	59	49.4	1.843	66
45.52	1.990	84	47.48	1.913	66	49.44	1.841	55
45.56	1.989	88	47.52	1.911	60	49.48	1.840	59
45.6	1.987	65	47.56	1.910	71	49.52	1.839	43
45.64	1.985	53	47.6	1.908	56	49.56	1.837	62
45.68	1.984	76	47.64	1.907	64	49.6	1.836	60
45.72	1.982	67	47.68	1.905	72	49.64	1.834	70
45.76	1.980	74	47.72	1.904	70	49.68	1.833	78
45.8	1.979	71	47.76	1.902	54	49.72	1.832	68
45.84	1.977	68	47.8	1.901	63	49.76	1.830	63
45.88	1.976	57	47.84	1.899	73	49.8	1.829	68
45.92	1.974	74	47.88	1.898	63	49.84	1.827	50
45.96	1.972	76	47.92	1.896	61	49.88	1.826	60
46	1.971	51	47.96	1.895	61	49.92	1.825	53
46.04	1.969	64	48	1.893	58	49.96	1.823	54

50	1.822	66	51.96	1.758	49	53.88	1.700	61
50.04	1.821	67	52	1.757	63	53.92	1.698	54
50.08	1.819	61	52.04	1.755	55	53.96	1.697	52
50.12	1.818	56	52.08	1.754	69	54	1.696	55
50.16	1.817	57	52.12	1.753	53	54.04	1.695	47
50.2	1.815	65	52.16	1.751	37	54.08	1.694	65
50.24	1.814	58	52.2	1.750	40	54.12	1.693	51
50.28	1.812	50	52.24	1.749	68	54.16	1.691	63
50.32	1.811	80	52.28	1.748	45	54.2	1.690	63
50.36	1.810	78	52.32	1.747	61	54.24	1.689	53
50.4	1.808	59	52.36	1.745	62	54.28	1.688	63
50.44	1.807	70	52.4	1.744	58	54.32	1.687	65
50.48	1.806	51	52.44	1.743	65	54.36	1.686	68
50.52	1.804	63	52.48	1.742	70	54.4	1.685	57
50.56	1.803	53	52.52	1.740	65	54.44	1.683	63
50.6	1.802	62	52.56	1.739	54	54.48	1.682	55
50.64	1.800	58	52.6	1.738	60	54.52	1.681	58
50.68	1.799	60	52.64	1.737	53	54.56	1.680	49
50.72	1.798	53	52.68	1.735	62	54.6	1.679	50
50.76	1.796	67	52.72	1.734	52	54.64	1.678	51
50.8	1.795	60	52.76	1.733	51	54.68	1.677	45
50.84	1.794	76	52.8	1.732	61	54.72	1.675	57
50.88	1.793	56	52.84	1.731	59	54.76	1.674	46
50.92	1.791	62	52.88	1.729	64	54.8	1.673	62
50.96	1.790	46	52.92	1.728	59	54.84	1.672	54
51	1.789	63	52.96	1.727	61	54.88	1.671	41
51.04	1.787	47	53	1.726	55	54.92	1.670	48
51.08	1.786	62	53.04	1.724	54	54.96	1.669	61
51.12	1.785	64	53.08	1.723	62	55	1.668	54
51.16	1.783	53	53.12	1.722	59	55.04	1.666	60
51.2	1.782	61	53.16	1.721	66	55.08	1.665	49
51.24	1.781	57	53.2	1.720	59	55.12	1.664	50
51.28	1.779	55	53.24	1.718	65	55.16	1.663	52
51.32	1.778	57	53.28	1.717	71	55.2	1.662	51
51.36	1.777	61	53.32	1.716	56	55.24	1.661	44
51.4	1.776	56	53.36	1.715	46	55.28	1.660	64
51.44	1.774	59	53.4	1.714	57	55.32	1.659	60
51.48	1.773	70	53.44	1.713	69	55.36	1.658	49
51.52	1.772	55	53.48	1.711	78	55.4	1.656	43
51.56	1.770	66	53.52	1.710	61	55.44	1.655	55
51.6	1.769	60	53.56	1.709	63	55.48	1.654	44
51.64	1.768	58	53.6	1.708	61	55.52	1.653	44
51.68	1.767	62	53.64	1.707	67	55.56	1.652	35
51.72	1.765	63	53.68	1.705	48	55.6	1.651	56
51.76	1.764	52	53.72	1.704	58	55.64	1.650	62
51.8	1.763	58	53.76	1.703	55	55.68	1.649	63
51.84	1.762	56	53.8	1.702	57	55.72	1.648	55
51.88	1.760	47	53.84	1.701	60	55.76	1.647	68
51.92	1.759	57	53.88	1.759	61	55.8	1.646	44

55.84	1.644	64	57.8	1.593	53	59.76	1.546	55
55.88	1.643	52	57.84	1.592	73	59.8	1.545	48
55.92	1.642	54	57.88	1.591	53	59.84	1.544	44
55.96	1.641	43	57.92	1.590	54	59.88	1.543	53
56	1.640	60	57.96	1.589	51	59.92	1.542	56
56.04	1.639	59	58	1.588	49	59.96	1.541	51
56.08	1.638	48	58.04	1.587	47	60	1.540	48
56.12	1.637	46	58.08	1.586	46	60.04	1.539	49
56.16	1.636	65	58.12	1.585	39	60.08	1.538	45
56.2	1.635	52	58.16	1.584	59	60.12	1.537	71
56.24	1.634	63	58.2	1.583	48	60.16	1.536	49
56.28	1.633	57	58.24	1.582	61	60.2	1.535	48
56.32	1.632	61	58.28	1.581	63	60.24	1.534	47
56.36	1.631	43	58.32	1.580	44	60.28	1.534	53
56.4	1.629	57	58.36	1.579	41	60.32	1.533	65
56.44	1.628	53	58.4	1.578	54	60.36	1.532	58
56.48	1.627	46	58.44	1.577	59	60.4	1.531	56
56.52	1.626	50	58.48	1.576	52	60.44	1.530	56
56.56	1.625	49	58.52	1.575	57	60.48	1.529	43
56.6	1.624	61	58.56	1.574	37	60.52	1.528	44
56.64	1.623	46	58.6	1.573	39	60.56	1.527	65
56.68	1.622	46	58.64	1.572	59	60.6	1.526	52
56.72	1.621	42	58.68	1.571	52	60.64	1.525	54
56.76	1.620	53	58.72	1.570	60	60.68	1.524	36
56.8	1.619	40	58.76	1.570	39	60.72	1.523	60
56.84	1.618	50	58.8	1.569	39	60.76	1.523	52
56.88	1.617	50	58.84	1.568	56	60.8	1.522	59
56.92	1.616	58	58.88	1.567	53	60.84	1.521	42
56.96	1.615	62	58.92	1.566	44	60.88	1.520	39
57	1.614	61	58.96	1.565	46	60.92	1.519	38
57.04	1.613	50	59	1.564	43	60.96	1.518	37
57.08	1.612	57	59.04	1.563	55	61	1.517	52
57.12	1.611	55	59.08	1.562	56	61.04	1.516	58
57.16	1.610	45	59.12	1.561	50	61.08	1.515	48
57.2	1.609	61	59.16	1.560	47	61.12	1.514	51
57.24	1.608	68	59.2	1.559	45	61.16	1.514	68
57.28	1.606	41	59.24	1.558	52	61.2	1.513	36
57.32	1.605	56	59.28	1.557	57	61.24	1.512	42
57.36	1.604	53	59.32	1.556	47	61.28	1.511	56
57.4	1.603	43	59.36	1.555	49	61.32	1.510	46
57.44	1.602	46	59.4	1.554	59	61.36	1.509	52
57.48	1.601	45	59.44	1.553	46	61.4	1.508	55
57.52	1.600	57	59.48	1.552	51	61.44	1.507	48
57.56	1.599	49	59.52	1.551	48	61.48	1.506	60
57.6	1.598	57	59.56	1.550	52	61.52	1.506	46
57.64	1.597	59	59.6	1.549	39	61.56	1.505	54
57.68	1.596	58	59.64	1.548	54	61.6	1.504	58
57.72	1.595	41	59.68	1.547	50	61.64	1.503	57
57.76	1.594	49	59.72	1.547	54	61.68	1.502	52

61.72	1.501	59	63.68	1.460	59
61.76	1.500	55	63.72	1.459	55
61.8	1.499	48	63.76	1.458	52
61.84	1.499	54	63.8	1.457	45
61.88	1.498	47	63.84	1.456	51
61.92	1.497	50	63.88	1.455	48
61.96	1.496	38	63.92	1.455	50
62	1.495	48	63.96	1.454	42
62.04	1.494	48	64	1.453	64
62.08	1.493	56	64.04	1.452	56
62.12	1.492	45	64.08	1.451	78
62.16	1.492	50	64.12	1.451	52
62.2	1.491	43	64.16	1.450	47
62.24	1.490	50	64.2	1.449	59
62.28	1.489	48	64.24	1.448	63
62.32	1.488	48	64.28	1.447	50
62.36	1.487	52	64.32	1.447	65
62.4	1.486	51	64.36	1.446	58
62.44	1.486	61	64.4	1.445	67
62.48	1.485	62	64.44	1.444	60
62.52	1.484	49	64.48	1.443	65
62.56	1.483	53	64.52	1.443	60
62.6	1.482	43	64.56	1.442	60
62.64	1.481	60	64.6	1.441	51
62.68	1.480	48	64.64	1.440	58
62.72	1.480	65	64.68	1.439	63
62.76	1.479	54	64.72	1.439	63
62.8	1.478	53	64.76	1.438	70
62.84	1.477	50	64.8	1.437	57
62.88	1.476	52	64.84	1.436	68
62.92	1.475	64	64.88	1.435	68
62.96	1.475	37	64.92	1.435	67
63	1.474	39	64.96	1.434	65
63.04	1.473	45	65	1.433	67
63.08	1.472	56			
63.12	1.471	48			
63.16	1.470	55			
63.2	1.470	47			
63.24	1.469	59			
63.28	1.468	49			
63.32	1.467	55			
63.36	1.466	64			
63.4	1.465	46			
63.44	1.405	52			
63.44	1.405	46			
63.52	1.463	40			
63.52		66			
	1.462	53			
63.6	1.461				
63.64	1.460	53			

S3: (a) Variation of pH_{final} versus pH_{ini} for model and experimental data and (b) Ca_{ads}/Mn versus
pH for model and experimental data (data are plotted for initial and final pH)

Final pH calculated by the model and final experimental ones were plotted in figure S3 (a) as a function of initial pH (input of the model and fixed experimentally). As seen in the figure, a good agreement is observed between the two data sets (modeled/experimental). Then, representation of the Ca-data can be done by using either initial or final pH (figure (b); by using obviously the same convention for both calculated and measured datasets).

1170 Calculation of $\Delta^{44/40}Ca$ isotope signature in the interlayer and on the edges

1171 $\Delta^{44/40}Ca_{total}$ of the δ -MnO₂ solid at stationary state corresponds to a mixture between the Ca 1172 in the interlayer and the Ca bound to the edges:

1173
$$\Delta^{44/40}Ca_{total} = \%_{interlayer} \times \Delta^{44/40}Ca_{interlayer} + \%_{edge} \times \Delta^{44/40}Ca_{edge} (eq. A.1)$$

- 1174 With $\%_{interlayer}$ and $\%_{edge}$ the respective proportions of Ca in the interlayer and on the edges, and 1175 $\Delta^{44/40}$ Ca_{interlayer} and $\Delta^{44/40}$ Ca_{edge} the apparent isotope fractionation of Ca in the interlayer and on 1176 the edges, respectively
- 1177 From Table 5, if we consider that for pH <4 Ca is mainly adsorbed in the interlayer, we have

1178
$$\Delta^{44/40} Ca_{interfoliar} \sim -0.43 \%_0$$

1179 We can therefore propose that at pH 10, the Ca is distributed between the two sites and still 1180 using the Ca proportions obtained from the model (c.f. paragraph 4.5), from equation A.1 we 1181 obtain

1182
$$\Delta^{44/40} Ca_{edge} \sim 3.5 \%_0$$

- 1183
- 1184