
HAL Id: hal-04166932
https://cnrs.hal.science/hal-04166932

Submitted on 20 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Extending The Boundaries and Exploring The Limits Of
Blockchain Compression

Anurag Jain, Emmanuelle Anceaume, Sujit Gujar

To cite this version:
Anurag Jain, Emmanuelle Anceaume, Sujit Gujar. Extending The Boundaries and Exploring The
Limits Of Blockchain Compression. SRDS 2023 - 42nd International Symposium on Reliable Dis-
tributed Systems, IEEE, Sep 2023, Marrackech, Morocco. pp.1-11. �hal-04166932�

https://cnrs.hal.science/hal-04166932
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Extending The Boundaries and Exploring The
Limits Of Blockchain Compression

Anurag Jain
International Institute of Information Technology (IIIT), Hyderabad, India

Emmanuelle Anceaume
CNRS, IRISA, Rennes, France

Sujit Gujar
International Institute of Information Technology (IIIT), Hyderabad, India

Abstract—The long-term feasibility of blockchain technology is
hindered by the inability of existing blockchain protocols to prune
the consensus data leading to constantly growing storage and
communication requirements. Kiayias et al. have proposed Non-
Interactive-Proofs-of-Proof-of-Works (NIPoPoWs) as a mecha-
nism to reduce the storage and communication complexity of
blockchains to O(poly log(n)). However, their protocol is only
resilient to an adversary that may control strictly less than a
third of the total computational power, which is a reduction from
the security guaranteed by Bitcoin and other existing Proof-of-
based blockchains. We present an improvement to the Kiayias
et al. proposal, which is resilient against an adversary that
may control less than half of the total computational power
while operating in O(poly log(n)) storage and communication
complexity. Additionally, we present a novel proof that establishes
a lower bound of O(log(n)) on the storage and communication
complexity of any PoW-based blockchain protocol.

Index Terms—Blockchains; Proof-of-work; NIPoPoWs.

I. INTRODUCTION

Blockchains are proposed as the panacea for developing
decentralized applications and handling decentralized finance.
Blockchain technology needs to be capable of handling the
entire world’s economic data for such lofty ambitions to
come true. The immutable nature of blockchain indicates that
the storage requirements are constantly growing, with every
block being retained for eternity. This further increases the
communication requirements for a new honest party to join
the system as it would need to download the entire blockchain
from the network in order to start mining1. In a blockchain
system, each party must independently maintain a copy of
the blockchain to mine new blocks and verify transactions.
The data stored by a party can be divided into two types:
Application data, which consists of all information required
to verify the validity of a transaction, e.g., UTXO (Un-
spent Transaction Output), account data, and smart contract
states, and Consensus data, which consists of all information
required, other than the application data, for the complete
participation of a party to maintain its copy of the blockchain.
A new honest party that joins the blockchain system must

1In a permissionless blockchain every party, i.e., miner and non miner must
download the full blockchain if they want to verify (non miner) and mine new
blocks (miner). The ones that do not need to download the full blockchain
are Simplified Payment Verification (SPV) parties, but such parties still need
to download block headers and cannot check the security of the blockchain.

synchronize with both types of data in order to initiate mining.
In a Proof-of-Work (PoW) blockchain protocol, the consensus
data can grow linearly with every new block mined. This
may cause issues with both storing the consensus data and
communicating the same for bootstrapping a new party into
the system. Multiple techniques exist to optimize application
data that may grow or shrink as time goes and have been well
deployed in practice. For instance, Ethereum uses snapshots,
with the SNAP protocol run in parallel with the consensus
protocol [19], that periodically summarize all active data,
discarding inactive data that has been overwritten or mutated.
Moving transactions and smart contract execution off-chain in
Layer 2 constructions (e.g., [18], [13]), side chains (e.g., [2],
[17], [10]) or compression of multiple transactions into smaller
ones, e.g., [6], are significant methods to compress transaction
data. However, these solutions do not compress consensus
data. All PoW headers must still be sent and stored. Com-
pressing consensus data is still an area of active research since
the consensus data in existing protocols increases linearly with
time.

Kiayias et al. [12] propose an elegant scheme to cre-
ate succinct proofs about the fact that proof-of-work took
place without presenting every proof-of-work nonce of the
blockchain. These succinct proofs are generated once, and
do not require multiple queries to convince any party. As
such, these proofs are non-interactive, and gave rise to Non-
Interactive Proofs-of-Proof-of-Works (NIPoPoWs). By relying
on NIPoPoWs, for a blockchain containing n blocks, any
party is only required to store consensus data corresponding
to O(poly log(n)) blocks, and for any party that wishes to
join the system, it only needs to download the consensus data
corresponding to O(poly log(n)) set of blocks to commence
the mining operation. To the best of our knowledge, Kiayias
et al.’s proposal [12] is state of the art in terms of the storage
and communication complexity. It promises to yield an order
of magnitude reduction in both storage and communication
requirements over existing PoW-based blockchain protocols.
Indeed, to create succinct representations of work, NIPoPoWs
rely on the probability distribution of the hash values of block
headers in the blockchain and use this a priori to sub-sample
the blocks: instead of sending the full chain, a party sends
sampled blocks as a representative of the underlying work.

Sampled blocks, also called superblocks, contain a PoW that
is “stronger than needed”: A superblock of level ℓ is a block
whose hash is less than T/2ℓ where T is the current target and
ℓ ≥ 1. To achieve secure reduction, Kiayias et al. [12] analyze
their solution against suppression attacks. The objective of
such an attack is to bias the succinct representation of the
total work devoted to the construction of the blockchain by
“suppressing” superblocks. This consists for the adversary in
trying to fork the honest sampled chain to prune superblocks.
As demonstrated in their paper, their succinct construction
creates a security threat and can only guarantee tolerance
against a Byzantine adversary that may control strictly less
than a third of the total computational power, reducing security
from the original Bitcoin protocol.

In this work, we address this important issue and present
Gems, a scheme to construct a succinct representation
of the blockchain using NIPoPoWs that also operates in
O(poly log(n)) storage complexity and O(poly log(n)) com-
munication complexity and which provably achieves security
against a Byzantine adversary that controls strictly less than
half of the total computational power. The main idea of our
solution is (i) to assign increasing weights to ℓ-superblocks for
ℓ > β, where β is a threshold parameter (such superblocks
are called ℓ-diamond blocks), and (ii) to modify the chain
selection rule so that the selected succinct chain is the one
that accumulates the largest weight. With the modified chain
selection rule, it is improbable for an attacker controlling less
than half of the total hashing power to bias the honest sub-
sample of the blockchain by suppressing ℓ-diamond blocks.
The crucial point of our solution in terms of security is
that an adversary cannot fake this set of diamond-blocks
without actually providing work. Because the adversary has
minority mining power, they cannot create a heavier sequence
of diamond blocks faster than the honest parties, for the
same reason that an adversary cannot create a longer regular
blockchain faster than the honest parties create one. This is
shown in Section VIII. We thereby improve the security of
Kiayias et al.’s scheme by tolerating a Byzantine adversary
that may control up to half of the total hashing power.

The limitation of both our and Kiayias et al.’s solutions
is that they are only proven to operate securely in a setting
with constant difficulty. Tackling the problem of blockchain
compression operating in a O(poly log(n)) storage complexity
and O(poly log(n)) communication complexity with variable
difficulty is an open problem.

On the other hand, our scheme that achieves optimal se-
curity while still operating in O(poly log(n)) storage and
communication complexity leaves the open question raised by
Kiayias et al [12] of whether such a scheme is optimal or if
there is further room for improvement. We progress on this
by presenting a proof using information theory to establish a
lower bound on the limit of blockchain compression.
Contributions of this work.

• We propose Gems, a NIPoPoW protocol that operates in
O(poly log(n)) storage complexity and O(poly log(n))
communication complexity, which through a novel weight

assignment scheme, makes it resilient to a Byzantine
adversary that may control up to half of the total hashing
power;

• For the first time, we provide proofs of boundaries of
blockchain compression by showing that it is not possible
to compress a PoW blockchain beyond O(log(n)) stor-
age and communication complexity without introducing
additional trust assumptions.

Organization of the paper. Section II is dedicated to
related work, while Section III presents the assumptions on
the system, and Section IV presents the safety and liveness
properties of permissionless blockchains. Section V presents
the main lines of the Kiayias et al.’s approach to compress
PoW-blockchains with NIPoPoWs. Section VI firt shows why
selecting superblocks as a function of their weight guarantees
with overwhelming probability their unsuppressibility, and
second proposes a weight assignment schema. Section VII
presents Gems’ chain compression comparison algorithms.
Section VIII analyzes the security of Gems. In Section IX, we
present a lower bound on the storage space and communication
complexities for any permissionless PoW-based blockchain
protocol. Section X presents some future work.

II. RELATED WORK

The problem of blockchain becoming of considerable size
was initially predicted by Satoshi Nakomoto in the original pa-
per that introduced Bitcoin [16]. He offered a simple solution
of a Simplified Payment Verification (SPV) that only requires
a client to store the block headers and leave out transactions.
Still, the amount of data that needs to be downloaded from
the network grows linearly with the size of the blockchain.
An alternative would be for SPV clients to embed hardcoded
checkpoints but that would introduce additional trust assump-
tions. Flyclient [5] allows a succinct and secure construction
of proofs in a setting with variable difficulty. They make use
of Merkle mountain ranges to reference the whole previous
blockchain from every block. If a full node has a proof and
mines a new block on top of it, they cannot create a new proof
without holding the whole chain. Thus, logarithmic space
mining is not possible with this scheme. CoinPrune [15] still
requires to store the entire chain of block header prior to the
pruning point.

Another approach to built succinct proofs is to rely on
SNARKS (for Succinct Non-Interactive Argument of Knowl-
edge). Coda [4] is such a construction. Coda compresses a
chain to polylogarithmic size and updates the proof with new
blocks. However, leveraging SNARKs requires a trusted setup
for the common reference string.

Kiayias et al. [11] introduced and formalized an interactive
proof mechanism, Proofs-of-Proof-of-Work (PoPoW) based on
superblocks that allows a client to verify a chain in sublinear
time and communication complexity. The authors later showed
the existence of an attack on the scheme and proposed a
non-interactive alternative (NIPoPoWs) [12]. However, the
proposed solution did not address the size of the blockchain
that needed to be stored by any miner. The authors in [12]

2

further used NIPoPoWs to develop a scheme that also allows
the miners to operate in O(poly log(n)) storage and commu-
nication complexity while reducing the security tolerance to
a Byzantine adversary that controls strictly less than a third
of the total computation power and limiting itself to operate
in an environment with a fixed difficulty. We build upon their
solution to present a scheme with improved security.

III. MODEL OF THE SYSTEM

We consider a static setting where time is quantized into
discrete rounds [7], [12], during which each party can send
a message to each of its neighbours, receives the messages
sent to it during the round, and executes computational steps
based on the received messages. Note that computational
steps other than hashing are treated as instantaneous. This
reflects a synchronous network. We assume the presence of
a Byzantine or malicious adversary that may control strictly
less than half of the total amount of computational power
currently available in the system. This model, named the
“Computational Threshold Adversary” [1], is an alternative
to the common Threshold Adversary Model. Each party is
allowed to make q queries to a cryptographic hash function
in every round. The adversary controls up to t parties. For
this reason, the adversary can query the cryptographic hash
function up to t × q times per round [7]. We suppose that
the adversary is a rushing adversary in the sense that they
can observe what the honest parties have done during the
round before using their computational power at the end of
the round. The adversary is also a Sybil adversary as they can
inject as many additional messages as they wish by faking
multiple identities. We limit the adversary to a probabilistic
polynomial-time Turing machine that behaves arbitrarily but
remains computationally bounded. Hence, it cannot, in a
polynomial number of steps or time or space, forge honest
parties’ signatures or break the hash function and signature
scheme with all but negligible probability. Therefore, we term
our adversary as the 1/2-bounded PPT adversary. Any party
following the prescribed protocol is called a honest party.

IV. PROPERTIES OF PERMISSIONLESS BLOCKCHAINS

We consider proof-of-work (PoW) based permissionless
blockchains which achieve Nakamoto-based consensus [7],
[20] by requesting the parties to contribute a limited resource
such as hashing power. A robust blockchain protocol must
ensure the following safety and liveness properties [7]:

Common prefix with parameter k ∈ N: If any two honest
parties have a valid transaction that appears in a block that
is at least k blocks away from the end of their blockchain,
then this transaction will appear at the same position in both
blockchains, with overwhelming probability.

Chain growth with parameters u ∈ N: if all honest parties
try to insert a valid transaction in their blockchain for u
consecutive rounds, the transaction shall be accepted by any
honest party by the end of the last round of the set of u rounds
with overwhelming probability.

V. NON-INTERACTIVE PROOFS-OF-PROOF-OF-WORKS

A. Intuition

The proof-of-work schema requires to generate a “proof”
of investment of a limited resource such as hash power. Every
party that wants to append a valid block to the blockchain
is required to find a nonce, along with non-double spending
transactions, that hashes to a value below a given target.
The hash function H is modelled as a random oracle [3],
i.e., behaves likes an ideal random function, and produces
constant length output. Since the distribution of hash values is
stochastic, some blocks end up with hash values significantly
below the target. Such blocks are called superblocks.

Definition V.1 (ℓ-superblock ([12])). A block that hashes to
a value less than T/(2ℓ) is said to be a ℓ-superblock, where
T is the current target value and ℓ ≥ 0.

Note that every ℓ-superblock is also a ℓ′-superblock for any
ℓ′ ≤ ℓ. By convention the genesis block is an ∞-superblock.

Non-Interactive Proofs-of-Proof-of-Works (NIPoPoWs)
compress a PoW-based blockchain by subsampling its
blocks [11]. The working principle behind this compression
lies in the assumption that a sub-sample of the blocks, i.e.,
the ℓ-superblocks, with ℓ ≥ 0, can be sufficient to estimate
the size of the original distribution of block headers. In a long
enough execution of a PoW blockchain, on average, n/2ℓ of
the blocks are ℓ-superblocks, with ℓ ≥ 0 and n the number
of blocks of the original chain. The key idea is to sub-sample
the blocks in the blockchain such that the sub-sampled chain
represents the original chain; any difference in the original
blockchain results in different sub-sampled blockchains [9],
[12], [14]. The compression scheme requires every block
header to store pointers to the last ℓ-superblock that precedes
it at every level ℓ ≥ 0 in order to ensure that the subsampled
blocks also form a valid chain, i.e., a totally ordered sequence
of valid blocks. Figure 1a illustrates how blocks at each level
are linked together (note that we have omitted all the links
to the genesis block for clarity reasons). For instance the
32-th block points back to the 31-th, 30-th, 28-th, 24-th and
16-th blocks, each one representing the last ℓ-superblock with
ℓ = 0, 1, 2, 3 and 4 respectively. On the other hand, the 33-th
block points back solely to the 32-th block as this latter block
is a 4-superblock (and thus also a ℓ-superblock, with ℓ ≤ 4).
A chain of n blocks will contain superblocks at O(log(n))
levels in average. Hence, the space and communication
complexity of NIPoPoW is O(poly log(n)). The proposal by
Kiayias et al. [12] offers the best-known compression of PoW
blockchains so far. It achieves O(poly log(n)c + kd + a)
storage and communication costs while allowing parties to
mine new blocks based on this compressed blockchain, where
c is the block header size, k is the common prefix parameter,
d is the size of application data per block, and a is the
size of application data. In Section IX, we show that any
such compression needs at least O(log(n)) blocks without
additional trust assumptions.

3

B. Algorithmic Ingredients of the NIPoPoW

Any scheme for operating and compressing blockchains
requires to design (i) a chain compression algorithm and (ii)
a compressed chain comparison algorithm to determine which
compressed chain to be retained in the case of forks.

1) Chain Compression Algorithm: The Kiayias et al.’s
chain compression algorithm (see Algorithm 1 [12]) is pa-
rameterized by a security parameter m and the common prefix
parameter k. The algorithm compresses the blockchain except
for the k most recent blocks, called unstable blocks, which are
added to the compressed chain at the end of the compression
process. The compression algorithm works as follows: for the
highest levels ℓ that contain less than 2m ℓ-superblocks, it
retains all these ℓ-superblocks, but for each level µ, ℓ > µ ≥ 0,
it retains at least the 2m most recent µ-superblocks so that
m of them are both µ-superblocks and (µ + 1)-superblocks.
Figure 1b illustrates this algorithm, where χ is the unstable
part of the proof and D its stable part, i.e., all the ℓ-superblocks
that at some time t have been retained by the compression
algorithm at each level ℓ ≥ 0. Π represents an instance of
NIPoPoW proof, that is the chain made of D and χ.

2) Compressed Chain Comparison Algorithm: Let
Π1, . . . ,Πj be the different compressed blockchains that
a new party receives. This party applies the comparison
algorithm on Π1, . . . ,Πj pairwise. The algorithm first verifies
their syntactic validity, extracts for both of them the stable
parts Di and D′

i and the unstable ones χi and χ′
i, and then

selects the largest common part between Di and D′
i, i.e.,

the latest block that is common to both Di and D′
i at the

minimum level µ. If such a common block b exists, then the
proof with the greatest number of blocks after b wins the
comparison. Otherwise, if no such block b exists and the
greatest levels of Di and D′

i are different, then the algorithm
selects the one with the greatest level. Finally if their greatest
levels are equal, then they represent both a chain that has
involved the same computational power, consequently any of
them can be accepted as a correct proof.

C. Security

The high-level intuition behind the security of Kiayias et
al.’s proposal [12] is that the common prefix property holds
true not only for the proof but also at every level of the proof.
So the adversary cannot possibly produce a blockchain that
forks superblocks at a higher level. It is thus safe to accept
the chain having the greatest number of superblocks at the
level where we find the fork. However, the common prefix
property of Kiayias et al.’s proposal [12] only holds true if
the adversary cannot possibly produce a chain containing a
larger number of ℓ-superblocks than what the honest parties
can do. Since the security of the protocol relies heavily on
these superblocks, it can be shown that the optimal attack for
the adversary is to “suppress” these superblocks by forking
the chain. Lemma 6.7 of [12] shows that an adversary with at
least a third of the total hashing power can possibly suppress
all the superblocks. Hence, their protocol can be proven to be
secure only if the adversary is allowed to control less than one

third of the total hashing power, which is a reduction from the
security guaranteed by Bitcoin [7].

VI. GEMS BLOCKCHAIN: WEIGHT INTUITION

The notion of unsuppressible blocks is fundamental to
guarantee the quality of the compressed chain, i.e., to ensure
that the distribution of superblocks within the blockchain
has not been adversarially biased in the compressed chain.
Unfortunately, Kiayias’ proposal uses the default blockchain
selection rule that is oblivious to the presence of superblocks.
With Gems, suppression of superblocks is hindered. We des-
ignate a small fraction of the superblocks with level ℓ ≥ β as
ℓ−diamond blocks and assign increasing weight W (ℓ) to them
as per their level. The system parameter β quantifies the trade-
off between storage and communication costs and increasing
weights. The chain selection rule relies on block cumulative
weight. The intuition of unsuppressibility comes from the fact
that an adversary that does not control the majority of the
total hashing power cannot produce a sampled chain that has
more weight than the honest sampled chain containing a ℓ-
diamond block without including another ℓ-diamond block in
their adversarial sampled chain.

A. Typical Execution Constraints

Since the mining of blocks is a probabilistic process, it
can often happen that the adversary luckily manages to mine
more blocks than the honest network during short periods
of time. So similarly to Garay et al. [7], we consider long
enough executions, so that the adversary cannot be always
lucky during these long executions. Specifically, we consider
executions with at least λ consecutive rounds so that the honest
parties mine more blocks than the adversary with a probability
at least 1− e−Ω(ϵ2λf+κ), where ϵ ∈ (0, 1), κ is the length of
hash function outputs (i.e., κ = 256), λ satisfies λ ≥ 2/f , f
being the probability that at least one honest party successfully
mines a block during one round, and ϵ ∈ (0, 1). Let δ be
the advantage of honest parties, with δ ≤ 1 − t/(N − t),
where N represents the number of mining parties, out of
which t are controlled by the adversary. Both δ and f relate as
3(f + ϵ) < δ < 1. Now, for any set S of rounds, let Y (S) be
the random variable representing the number of rounds in S in
which the honest parties produced exactly one block. Let Z(S)
be the random variable representing the number of blocks
produced by the adversary in the set of rounds S. Lemma VI.1
provides guarantees on the power of the adversary during long
enough executions.

Lemma VI.1 ([7], Lemma 11). For any set S of at least λ
consecutive rounds, we have

(a) (1− δ

3
)f |S| < (1− ϵ)f(1− f)|S| < Y (S),

(b) Z(S) <
t

n− t

f

1− f
|S|+ ϵf |S| ≤ (1− 2

δ

3
)f |S|,

(c) Z(S) < Y (S).

4

(a) The probabilistic hierarchical blockchain. Higher levels have achieved a higher difficulty during mining.

(b) View of the blockchain after compression at time t.

Figure 1: Illustration of Kiayias et al.’s [12] compression scheme. Note that we have omitted a link from each block to the
genesis block for clarity reason. All blocks are labelled by their level. Remember that a block at level ℓ, for any ℓ > 0 is also
a block at level ℓ− 1. Compression parameters are m = 3 and k = 2 (Figure (b)). Level 3 is the highest level ℓ that contains
at least 2m ℓ-superblocks. The set of 3-superblocks = {0, 8, 16, 24, 32, 40}, the one of 2-superblocks = {20, 24, 28, 36, 40},
1-superblocks = {30, 32, 34, 38, 40} and the set of 0-superblocks = {35, 36, 37, 38, 39, 40}.

B. Warm-up: Assigning common weight to superblocks

We show that attaching a large enough weight to blocks
essentially makes them “unsuppressible”. Prior to discussing
how blocks are assigned weight, we present a series of lemmas
that demonstrate the positive effect of attaching weights to
blocks on their security. In the next section, we shall generalize
these results to devise a weight assignment policy specific to
each level of superblocks. Lemma VI.2 provides an upper-
bound on the number of blocks mined by the adversary in an
execution that contains less than λ rounds.

Lemma VI.2. For any set S of consecutive rounds such that
|S| ≤ λ, Z(S) < (1− (2δ)/3)fλ.

Proof. We prove this lemma by contradiction. Let U be a
typical execution with |U | = λ, and let S ⊂ U , i.e., |S| < λ.
Suppose by contradiction that Z(S) ≥ (1− (2δ)/3)fλ.
By Lemma VI.1, we have

Z(U) <
(
1− 2δ

3

)
f |U |.

By definition of execution U , we have

Z(U) = Z(S) + Z(U \ S)
≥ Z(S).

By assumption of the proof, we get

Z(U) ≥
(
1− 2δ

3

)
fλ

=
(
1− 2δ

3

)
f |U |.

However, from Lemma VI.1 we have that for any set of con-
secutive rounds S′ with |S′| ≥ λ, Z(S′) < (1− (2δ)/3)f |S′|.

Hence, execution U cannot be a typical execution, which
contradicts the assumption, and completes the proof.

Lemma VI.3. If S is a sequence of consecutive rounds, then,
Y (S \ {r}) ≥ Y (S)− 1 for any round r ∈ S.

Proof. The set S \ {r} only discards the round r which can
contribute a maximum of one uniquely successful round in
Y (S).

Y (S) = Y (S \ {r}) + Y ({r}),

and thus

Y (S \ {r}) = Y (S)− Y ({r})
≥ Y (S)− 1,

as by definition Y ({r}) ≤ 1. This completes the proof.

Lemma VI.4 provides an upper bound on the number of
blocks the adversary can successfully mine in addition to the
ones mined by the honest parties.

Lemma VI.4. For any sequence S of rounds, |S| ≥ 1, and
for any round r ∈ S, we have

max
∀ S

(
Z(S)− Y (S \ {r})

)
<

(
1− δ

3

)
fλ.

Proof. Two cases exist:
Case I: |S| < λ.
From Lemma VI.2, Z(S) < (1 − (2δ)/3)fλ. By definition,
Y (S) ≥ 0. Hence,

(
Z(S)− Y (S \ {r}) <

(
1− δ

3

)
fλ.

Case II: |S| ≥ λ.
From the conditions of typical executions we know that for

5

|S| ≥ λ, Z(S) < (1−δ/3)f |S| and by Lemmas VI.3 and VI.1,
we have Y (S \ {r}) ≥ (1− δ/3)f |S| − 1. Thus,

Z(S)− Y (S \ {r}) ≤
(
1− 2δ

3

)
f |S| −

(
1− δ

3

)
f |S|+ 1

≤ 1− δ

3
f |S|.

By definition of λ, i.e., λ ≥ 2/f , we thus have

1− δ

3
f |S| <

(
1− δ

3

)
fλ.

Thus, across both cases, the maximum value that the expres-
sion can take is (1− δ/3)fλ. This completes the proof.

From Lemma VI.4, we can infer the minimum weight value
blocks must be assigned to so that the adversary will not
possibly be able to suppress them. Specifically, the following
theorem gives a lower bound w0 on the weight assigned to
superblocks guaranteeing their unsupressibility. Let us denote
by (w0, ℓ)-block a ℓ-superblock with a weight equal to w0.

Theorem VI.5 ((w0, ℓ)-superblocks are unsuppressible). If
a (w0, ℓ)-superblock is attached a weight w0 with w0 ≥(
1 − δ

3

)
fλ, then for any blockchain C adopted by an honest

party such that C contains a (w0, ℓ)-superblock b, then with
overwhelming probability, the adversary cannot replace C by
another blockchain C′ such that |C| = |C′| and C′ does not
contain a (w0, ℓ)-superblock b′.

Proof. Any block mined by the honest parties has a probability
1/2ℓ to be a ℓ-superblock. Let w0 be the weight attached
to any such (w0, ℓ)-superblock. Consider the case where
the adversary tries to produce a blockchain C′ alternative
to blockchain C produced by the honest parties such that
C contains a (w0, ℓ)-superblock b but C′ does not contain
any (w0, ℓ)-superblocks. The adversary can suppress (w0, ℓ)-
superblock b mined in round r if for any S we have

w0 + Y (S \ {r}) ≤ Z(S)(1− 1

2ℓ
). (1)

So, if we want to prevent (w0, ℓ)-block b from being sup-
pressed, we must have that

w0 ≥ max
∀ S

(
Z(S)− Y (S \ {r})

)
. (2)

From Lemma VI.4, we get

w0 ≥
(
1− δ

3

)
fλ, (3)

which completes the proof of the theorem.

C. Gems’ Block Weight Assignment

The Gems’ block weight assignment policy relies on The-
orem VI.5. It assigns unitary weights to the large majority of
superblocks, and non-unitary ones to a small fraction of ℓ-
superblocks that we call ℓ-diamond blocks. We propose the
following weight assignment with the system parameter β
assumed to be known by all the parties in advance.

Figure 2: Wβ(ℓ) as a function of ℓ with β = 5 and parameters
f = 0.03, δ = 0.1, ϵ = 10−5, and λ = 1, 000.

Definition VI.1. Gems’ blocks weight assignment

Wβ(ℓ) =

{ 1 ℓ < β

(1 + ϵ)
(∑ℓ−1

i=0
Wβ(i)

2i

)(
1− δ

3

)
fλ ℓ ≥ β

The weight assignment scheme, parameterized by β, does
not grow exponentially if β is set appropriately. Considering a
value of β = 5, we obtain the plot depicted in Figure 2 where
parameters f , δ, ϵ, and λ are the ones used by Garay et al [7]
in their proof of Bitcoin’s security.

Definition VI.2 (ℓ-diamond-block). We define a ℓ-diamond-
block as a block that contains a hash whose value is less than
T/(2ℓ) where ℓ ≥ β, and T is the target value.

VII. GEMS’ ALGORITHMS

Notations. We borrow the notation and the mathematical
framework introduced by Kiayias et al. in [12]. C[i] denotes a
block in the chain C with zero-based indexing, while C[i : j]
denotes the blocks from the index i (inclusive) to j (exclusive),
omitting any of the two implies taking all the blocks that
follow. A negative i or j means to take blocks from the end of
the chain instead of from the beginning, so C[−1] is the tip of
the chain. If i and j are replaced by blocks A and Z instead
of block indices, we write C{A : Z} to designate blocks of
C from block A (inclusive) to block Z (exclusive), and again
any end can be omitted. C ↑µ refers to only the subsequence
of µ-superblocks in the entire chain C. By definition of µ-
superblocks, (C ↑µ) ↑µ+i= C ↑µ+i.

A. Chain Compression Algorithm

The chain compression algorithm requires each block
header to maintain pointers to the last superblock at every
level to form an interlinked blockchain. The algorithm works
by only keeping sufficiently many diamond blocks at every
level and discarding the rest of the blocks. These samples
evolve with time, i.e., a diamond block once selected may
be discarded later, but vice-versa does not hold. Pseudo-
code of the algorithm is presented in Algorithm 2. The
chain compression algorithm is parameterized by a security
parameter m and the common prefix parameter k (whose value
is derived in Lemma VIII.8), and the system parameter β.

6

The algorithm compresses the blockchain except for the k
most recent diamond blocks (see Line 2), which are called
unstable blocks. The compression works as follows: For the
highest levels ℓ that contain less than 2m superblocks, keep
all these ℓ-superblocks but for each level µ, ℓ > µ ≥ β, the
algorithm retains the most recent µ-superblocks: let b be the
2m-th most recent µ-superblock and b′ be the m-th most recent
µ + 1-superblock. Then all the µ-superblocks that follow the
earlier of b and b′ are retained. Proof Π is made of the set
of superblocks that are retained after compression and of the
blocks of the unstable part χ, containing the sequence of the
k most recent diamond blocks (see Line 14).

Algorithm 1 Chain compression algorithm: Given a full chain,
it compresses it into a logspace state.

1: function DISSOLVE m,k,β(C)
2: C∗ ← C{: C ↑β [−k]}
3: D ← ∅
4: if |C∗| ≥ 2m then
5: ℓ← max {µ : |C∗ ↑µ| ≥ 2m}
6: D[ℓ]← C∗ ↑ℓ
7: for µ← ℓ− 1 down to β do
8: b← C∗ ↑µ+1 [−m]
9: D[µ]← C∗ ↑µ [−2m :] ∪ C∗ ↑µ {b :}

10: end for
11: else
12: D[0]← C∗
13: end if
14: χ← C{C ↑β [−k] :}
15: return (D, ℓ, χ)
16: end function
17: function COMPRESS m,k,β(C)
18: (D, ℓ, χ)← Dissolve m,k,β(C)
19: π ←

⋃ℓ
µ=0D[µ]

20: return πχ
21: end function

B. Compressed Chain Comparison Algorithm

Any new party that seeks to join the network and starts
mining new blocks must first synchronize with other parties in
the network by identifying the longest chain. Given multiple
compressed chains, the compressed chain comparison algo-
rithm identifies the one with the “largest” PoW. Given multiple
compressed chains, Π1,Π2, . . . ,Πn, pairwise compare each
chain to obtain the chain that captures the most proof-of-
work. We describe the pseudo-code of our chain selection
algorithm in Algorithm ??. After having performed a syntactic
validity check (Lines 1-7) on two compressed chains Πi and
Πj , first, separate the last k diamond blocks as χi and χj

from the rest of the chains as Di and Dj respectively. Note
that the Dissolve function is invoked with compressed chains
and not full chains. If Di = Dj then select the chain having
greater weight among χi or χj else compare Di and Dj in
the same manner as Kiayias et al.’s proposal. It is important to
notice that our modification applies solely to the case where

the provided stable portions of the compressed chain D are
identical. In that case we compare the unstable portions of
the chains χ and χ′ using their weights (Lines 17-21). Our
modification is minor however, the security analysis is non-
trivial (see Section VIII).

Algorithm 2 Chain compression algorithm: Given a full chain,
it compresses it into a logspace state.

1: function DISSOLVE m,k,β(C)
2: C∗ ← C{: C ↑β [−k]}
3: D ← ∅
4: if |C∗| ≥ 2m then
5: ℓ← max {µ : |C∗ ↑µ| ≥ 2m}
6: D[ℓ]← C∗ ↑ℓ
7: for µ← ℓ− 1 down to β do
8: b← C∗ ↑µ+1 [−m]
9: D[µ]← C∗ ↑µ [−2m :] ∪ C∗ ↑µ {b :}

10: end for
11: else
12: D[0]← C∗
13: end if
14: χ← C{C ↑β [−k] :}
15: return (D, ℓ, χ)
16: end function
17: function COMPRESS m,k,β(C)
18: (D, ℓ, χ)← Dissolve m,k,β(C)
19: π ←

⋃ℓ
µ=0D[µ]

20: return πχ
21: end function

VIII. GEMS SECURITY ANALYSIS

A. Preliminary results

Let Σ(S) be the function that returns the total weight of all
the blocks (see Definition VI.1) appended to the blockchain
in a set of rounds S. Similarly, let ΣY (S) and ΣZ(S) be
the functions that respectively represent the weights of the
uniquely successful honest blocks and adversarial ones in
S rounds. Let Σℓ

Z(S) be the function that returns the total
weight of adversarial superblocks at level ℓ and Σℓ−

Z (S) be
the function that returns the weight of adversarial blocks in S
rounds considering only blocks with level strictly less than ℓ.
Σℓ

Y (S) and Σℓ−

Y (S) are similarly defined but for uniquely suc-
cessful honest blocks. By extension, random variable Yℓ(S),
for any ℓ ≥ 0, represents the number of uniquely successful ℓ-
superblocks mined in S rounds. Lemma VIII.1 uses Chernoff
Bounds to provide lower bounds on the number of superblocks
in a set of rounds S.

Lemma VIII.1. For any set S of consecutive rounds such that
|S| ≥ λ and ϵ ∈ (0, 1], we have (1 − ϵ)Y (S)

2ℓ
≤ Yℓ(S) with

overwhelming probability.

Proof. Let xj be the random variable that is equal to 1 if the
jth block appended to the blockchain in the set S of rounds

7

is a ℓ superblock, and is equal to 0 otherwise. We have,

xj =

{
1 with probability 1/2ℓ

0 otherwise with probability 1− 1/2ℓ.

We have E[xj] = 1/2ℓ, and µ = E[Yℓ(S)] = Y (S)
2ℓ

. From
Chernoff Bounds,

P {Yℓ(S) ≥ (1− ϵ)µ} ≥ 1− e−
2ϵ2µ2

Y (S) ,

which completes the proof.

Lemma VIII.2. For any set S of consecutive rounds such that
|S| ≥ λ, and ϵ ∈ (0, 1], we have Zℓ(S) ≤ (1 + ϵ)Z(S)

2ℓ
with

overwhelming probability.

Proof. Let xj be the random variable that is equal to 1 if the
jth block appended to the blockchain in the set S of rounds
is a ℓ superblock, and is equal to 0 otherwise. We have,

xj =

{
1 with probability 1/2ℓ

0 otherwise with probability 1− 1/2ℓ.

By definition of xj , E[xj] = 1/2ℓ. Let µ be the expectation
of random variable Zℓ(S). We have

µ = E[Zℓ(S)] =
Z(S)

2ℓ

Then from Chernoff Bounds,

P {Zℓ(S) ≤ (1 + ϵ)µ} ≥ 1− e−
2ϵ2µ2

Z(S) ,

which completes the proof.

The following lemma from [12] ensures that in a typical
execution, the honest parties not only produce a greater
number of blocks than what the adversary does, but also a
greater number of superblocks. Lemma VIII.4 further proves
that the advantage of honest parties also applies to weights.

Lemma VIII.3 ([12] Lemma 1(d)). Yℓ(S) > Zℓ(S) for any
set S of consecutive rounds such that |S| ≥ λ and ℓ ∈ Z+.

Lemma VIII.4. For any set S of consecutive rounds such that
|S| ≥ λ, we have ΣY (S) > ΣZ(S).

Proof. By definition of ΣY (S) we have,

ΣY (S) =

∞∑
i=0

Σi
Y (S)

=

∞∑
i=0

Wβ(i)Yi(S)

≥
∞∑
i=0

Wβ(i)Zi(S) (from Lemma VIII.3)

≥ ΣZ(S),

which completes the proof.

A block mined by honest parties and belonging to the chain
currently adopted by honest parties will be forked by the
adversary if and only if the adversary is capable of providing

a chain whose total weight is larger than the one adopted by
the honest parties. Lemma VIII.5 captures this condition.

Lemma VIII.5. If r is a uniquely successful round and the
corresponding block does not belong to the chain of an honest
party at a later round, then there is a set of consecutive rounds
S such that r ∈ S and ΣY (S) ≤ ΣZ(S).

Proof. Let C be the chain of the honest party that was uniquely
successful at round r and u be the depth of the corresponding
block. Let r′ be the first round after r in which an honest party
has a chain C′, which does not contain the block at depth u.
Let r∗ be the round in which the last block common to both
C and C′ was mined. Now for the set S = {i : r∗ < i < r′},
we have ΣY (S) ≤ ΣZ(S). Indeed, if this is not the case, one
of the honest parties adopted a chain that was not the heaviest
chain available which contradicts our assumption that the party
was honest. This completes the proof.

The following lemma provides an upper-bound on the
weight of blocks mined by the adversary.

Lemma VIII.6. for any set of rounds S such that |S| ≤ λ,
Σℓ−

Z (S) < (1 + ϵ)
(∑l−1

i=0
Wβ(i)

2i

)(
1− δ

3

)
fλ.

Proof. Let xj be the random variable that is equal to 1 if the
jth block appended to the blockchain is a ℓ superblock, which
occurs with probability 1/ℓ, and 0 otherwise, which occurs
with probability 1− 1/ℓ. We have E[xj] = 1/2ℓ. Then,

Σℓ
Z(S) = Wβ(ℓ)

j=Z(S)∑
j=0

xj

 ,

and
µ = E[Σℓ

Z(S)] = Wβ(ℓ)
Z(S)

2ℓ
.

Then from Chernoff Bounds,

P
{
Σℓ

Z(S) < (1 + ϵ)µ
}
≥ 1− e−

2ϵ2µ2

Z(S) .

Now, let S ⊆ U such that |U | = λ. By definition of function
Σ(), we have Σℓ

Z(S) ≤ Σℓ
Z(U), thus

P

{
Σℓ

Z(U) < Wβ(ℓ)
(3− δ)λ

3

1

2ℓ

}
≥ 1− e

−
(

2ϵ2(3−δ)λ
3

)
(1

2ℓ
)
.

Therefore, Σℓ
Z(S) ≤ Σℓ

Z(U) < Wβ(ℓ)((3−δ)λ/3)(1/2ℓ) with
overwhelming probability. Therefore

Σℓ−

Z (S) =

ℓ−1∑
i=0

Σℓ
Z(S) < (1 + ϵ)

(
l−1∑
i=0

Wβ(i)

2i

)(
1− δ

3

)
fλ,

holds with overwhelming probability.

Theorem VIII.7 states that the proposed block weight as-
signment prevents the adversary from suppressing diamond
blocks. The proof of the theorem is analogous to the proof of
Theorem VI.5.

Theorem VIII.7 (ℓ-diamond blocks unsuppressibility). If ℓ-
diamond blocks are attached a weight Wβ(ℓ), then for any

8

chain C adopted by an honest party such that C contains
a ℓ-diamond block, then with overwhelming probability, the
adversary cannot replace C by another chain C′ such that
|C| = |C′| and C′ does not contain any ℓ-diamond block.

Proof. Let us assume by contradiction that the adversary has
replaced chain C with chain C′ such that C′ does not contain
any diamond blocks. From Lemma VIII.5, it must exist S such
that ΣY (S) ≤ Σℓ−

Z (S). Let us consider two cases:
Case I: |S| ≤ λ.
From Lemma VIII.6, the maximum value Σℓ−

Z (S) can take is
(1 + ϵ)

(∑l−1
i=0

Wβ(i)
2i

)(
1− 2δ

3

)
fλ for |S| ≤ λ. By definition,

we have ΣY (S) ≥Wβ(ℓ) > (1+ϵ)
(∑l−1

i=0
Wβ(i)

2i

)(
1− 2δ

3

)
fλ.

Hence, no such S exists.
Case II: |S| > λ.
Consider the set of rounds S \{r} where r is the round during
which bℓ is mined. We have

ΣY (S \ {r}) = ΣY (S)−Wβ(ℓ),

and by definition of Wβ(ℓ), we have

Σℓ−

Z (S \ {r}) ≥ Σℓ−

Z (S)− (1 + ϵ)
(ℓ−2∑

i=0

Wβ(i)

2i

)(
1− δ

3

)
fλ.

Now, from case (c) of Lemma VI.1, we get

ΣY (S \ {r}) ≥ Σℓ−

Z (S \ {r}) (since |S| − 1 ≥ λ)

ΣY (S)−Wβ(ℓ) ≥ Σℓ−

Z (S)− (1+ϵ)
(ℓ−2∑

i=0

Wβ(i)

2i

)(
1− δ

3

)
fλ.

Replacing Wβ(ℓ) by its value, we get

ΣY (S) ≥ Σℓ−

Z (S) + (1 + ϵ)
(ℓ−1∑

i=0

Wβ(i)

2i

)(
1− δ

3

)
fλ

− (1 + ϵ)
(ℓ−2∑

i=0

Wβ(i)

2i

)(
1− δ

3

)
fλ

≥ Σℓ−

Z (S) +
Wβ(l − 1)

2l−1
(1 + ϵ)

(
1− δ

3

)
fλ.

Thus, we cannot find a set S of rounds such that ΣY (S) <
Σℓ−

Z (S). This completes the proof of the theorem.

B. Safety Property

The common prefix property states that once a block b has
been inserted more than k blocks deep into the blockchain,
every honest blockchain will contain block b in its chain.

Lemma VIII.8 (ℓ-diamond block common-prefix). Assume
t <

(
1
2 − δ

)
N with δ > 3(ϵ + f) and a typical execution.

Suppose that at round r of the typical execution an honest
party receives two chains, C and C′ where C′ \ (C ∩C′) has at
least k = λf blocks at level ℓ ≥ β, then C has more ℓ-diamond
blocks than C′ has.

Proof. By Theorem VIII.7, if the honest blockchain C contains
a ℓ-diamond block, the adversary cannot fork the ℓ-diamond

block with a chain C′ that does not contain a ℓ-diamond block
in a typical execution. Let us assume by contradiction that
C ′ has more ℓ-diamond blocks than C has. This implies that
Yℓ(S) > Zℓ(S) for some set of rounds S, which is not possible
in a typical execution by Lemma VIII.3. This contradicts the
assumption and completes the proof.

We can now devise the transaction acceptance rule as
follows:

Rule VIII.9 (Transaction Acceptance Rule). In Gems, one
can safely accept a transaction once it has been validated by
k ℓ-diamond blocks, with k ≥ λf .

Soundness of the transaction acceptance rule is given by
Theorem VIII.10, whose proof appears in the full version of
the paper [8].

Theorem VIII.10. Consider an arbitrary 1/2-bounded PPT
adversary in a typical execution. Let Π be a proof generated
by an honest party at round r using Algorithm 2 with chain C
as parameter. Let Π′ be an arbitrary proof generated by the
adversary at round r. Let Π∗ be the proof accepted by an hon-
est party using Algorithm ??. Then |Π∗ {(Π∗ ∩ C) [−1] :}| ≥
|C {(Π∗ ∩ C) [−1] :}| with overwhelming probability.

C. Liveness property

The Liveness property states that it does not take more
than u rounds to insert transactions of honest parties in the
blockchain.

Theorem VIII.11. If all honest parties try to insert a transac-
tion in a blockchain for u consecutive rounds, the transaction
shall be accepted by any honest party by the end of the
last round of the set of rounds u with probability at least
1− e−Ω(βu).

Proof. The theorem can be easily proved using the Chain
Growth Lemma from [7] which states that the longest chain
will have at least (1− ϵ)f |S| blocks in |S| rounds and using
Chernoff bounds to bound the probability of obtaining ℓ-
diamond blocks. Once a ℓ-diamond block is mined in the u
rounds, the transaction is accepted by every honest party since
with a probability at least 1−2−β either it is inserted in the ℓ-
diamond block itself or a block preceding the ℓ-diamond block.
Therefore, the probability of the transaction being accepted
by all honest parties is at least

(
1−

(
f
2β

)u)
(1 − 2−β) =

1+
(

f
22β

)u
−2−β−

(
f
2β

)u
. For decently large β (i.e., β ≥ 10),

2−β → 0 and
(

f
22·β

)u
→ 0 as u increases and the desired

probability ∈ 1− e−Ω(βu)

IX. LIMITS OF BLOCKCHAIN COMPRESSION

We present a lower bound on the storage and communi-
cation complexity for any PoW-based blockchain protocol.
Unlike the proofs presented in the previous sections, this proof
is based on information theory and operates independently
of the previously described communication and adversary

9

model. Furthermore, to derive a result for any general PoW-
based blockchain protocol, we consider generalised versions of
blockchains, that is block-DAG, in which blocks are arranged
in the form of a Directed Acyclic Graph (DAG). Let C a block-
DAG. C is said to be valid if ∀b ∈ C, predecessors of b also
lie in C except for the genesis block that has no predecessors.
Additionally, there is at least one Byzantine adversary in the
system along with at least two honest parties. We provide the
parties with the following abstract functionalities:

• Topological Sort S(C). The topological sort functionality
takes in a valid block-DAG C and returns a list L of
blocks in C such that ∀i ∈ [n], C \L[1 : i] is also a valid
block-DAG, where n is the number of blocks in C.

• PoPoW P(C). The Proof-of-Proof-of-Work functionality
takes in a valid block-DAG C and returns a PoPoW P(C)
such that P(C) ̸= P(C′) for all C′ ⊊ C.

• Compress C(C). The Compress functionality takes in a
block-DAG C and returns an output of at most ℓ bits.

• Equivalent PoPoW U(C(C)). This functionality produces
a PoPoW from a compressed block-DAG such that
U(C(C)) = P(C).

A. Communication Complexity

The communication complexity refers to the number of bits
required to transmit a PoPoW to an uninitiated party. We start
by showing a property of topological sort that claims that
subsets of the block-DAG obtained by removing the blocks
from the end can be nested like a russian doll.

Lemma IX.1. C \ L[1 : i] ⊊ C \ L[1 : j] ∀j < i

Proof. (C \ L[1 : j]) \ (C \ L[1 : i]) = L[j : i]

Based on this preliminary lemma, theorem IX.2 proves the
lower bound on the communication complexity.

Theorem IX.2. The PoPoW P(C) must contain at least
⌊log2(n)⌋ bits where n is the number of blocks in B.

Proof. Let us assume by contradiction that there exists a
PoPoW P that produces an output of at most l bits, where
l < ⌊log2(n)⌋. Consider an adversary that obtains an ordering
of blocks L via the functionality S and produces n PoPoWs
P1, P2, . . . , Pn corresponding to C \ L[1 : i] ∀i ∈ [n]. From
Lemma IX.1,

(C \ L[1 : n]) ⊊ (C \ L[1 : n− 1]) ⊊ . . . ⊊ (C \ L[1 : 1])

By definition, Pi ̸= Pj ∀i ̸= j, therefore each PoPoW Pi

needs to be mapped to a distinct sequence of l bits. However,
there are only 2l < n sequences possible. Therefore, by the
Pigeonhole Principle at least two Pi, Pj must be mapped to the
same sequence of bits. A contradiction. Thus our assumption
that there exists a P that produces an output of at most l bits,
where l < ⌊log2(n)⌋ is incorrect.

B. Storage Complexity

The storage complexity refers to number of bits required to
store a block-DAG C such that a party can transmit a valid
PoPoW P = P(C) to another party.

Lemma IX.3. For any two block-DAG Ci and Cj such that
Ci ⊊ Cj , then C(Ci) ̸= C(Cj).

Proof. Let us assume by contradiction that there are two
parties that maintain Ci and Cj such that Ci ⊊ Cj and
C(Ci) = C(Cj) = s. By definition of PoPoW,

P(Ci) = U(s) = U(s) = P(Cj).

We reach our contradiction, which completes the proof.

Theorem IX.4. A party that can transmit a valid PoPoW for
a block-DAG C must store at least ⌊log2(n)⌋ bits where the n
is the number of blocks in C.

Proof. Let us assume by contradiction that the Compress
functionality allows a party to store the block-DAG C with
solely ℓ bits, with ℓ < ⌊log2(n)⌋. Consider the list L produced
with the topological sort functionality. From Lemma IX.1,
(C \L[1 : n]) ⊊ (C \L[1 : n−1]) ⊊ . . . ⊊ (C \L[1 : 1]). From
Lemma IX.3, we know that ∀C′ ⊊ C, C(C′) ̸= C(C). There
are at least n subsets of C that must be mapped to a unique
sequence of l-bits. However, there are only 2l < n sequences
in the codomain of the compression functionality C. By the
Pigeonhole Principle, at least two subsets must be mapped to
the same output. A contradiction that completes the proof.

X. DISCUSSION AND FUTURE WORK

Bünz et al. [5] present a bribing attack against superblocks
used in NIPoPoWs in a model with the rational majority. We
leave it to future work to determine an appropriate reward
scheme to make the blockchain protocol incentive compatible.

Superblock-based NIPoPoWs have only been shown to
work in a setting with constant difficulty. We leave it to
future work to propose a new design of NIPoPoWs that
works in a setting with variable difficulty. The challenge is to
properly handle decreasing difficulties as an adversary might
propose a slightly more difficult adversarial proof than what
should be the honest one. A possible defense might require
to increase the footprint of the proof during such periods of
decreasing difficulty. We forecast that new blockchains will
adopt our construction, while existing ones, such as Bitcoin,
can also benefit our construction to allow miners to operate in
O(poly log(n)) storage and communication complexity with
theoretically proven security guarantees. In the latter case this
would require as suggested by Kiayias et al. [12] a velvet
fork, i.e., an upgrade that does not require any modification
to the consensus layer, but only a different interpretation of
the data [21]. For instance, the interlink data structure could
appear in the coinbase data of newly created blocks.

Finally, our ⌈log(n)⌉ lower bound on storage and com-
munication complexities show that no optimal blockchain
compression scheme has been discovered yet. We leave it for
future work.

10

REFERENCES

[1] I. Abraham and D. Malkhi. The blockchain consensus layer and bft.
Bulletin of the European Association for Theoretical Computer Science,
(123), 2017.

[2] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller,
A. Poelstra, J. Timón, and P. Wuille. Enabling blockchain innovations
with pegged sidechains. 2014.

[3] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In ACM conference on Computer and
Communications Security (CCS), 1993.

[4] J. Bonneau, I. Meckler, V. Rao, and E. Shapiro. Coda: Decentralized
cryptocurrency at scale. https://eprint.iacr.org/2020/352.pdf, 2020.

[5] B. Bünz, L. Kiffer, L. Luu, and M. Zamani. Flyclient: Super-light clients
for cryptocurrencies. In IEEE Symposium on Security and Privacy
(S&P), 2020.

[6] A. Chepurnoy, S. Srinivasan, and Y. Zhang. EDRAX: A cryptocurrency
with stateless transaction validation. https://eprint.iacr.org/2018/968.pdf,
2018.

[7] J. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol:
Analysis and applications. In E. Oswald and M. Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015, pages 281–310, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[8] A. Jain, E. Anceaume, and S. Gujar. Extending The Bound-
aries and Exploring The Limits Of Blockchain Compression.
https://cnrs.hal.science/hal-03866741, 2023. Full version.

[9] K. Karantias, A. Kiayias, and D. Zindros. Compact storage of su-
perblocks for nipopow applications. In Mathematical Research for
Blockchain Economy, pages 77–91. Springer, 2020.

[10] A. Kiayias, P. Gazi, and D. Zindros. Proof-of-stake sidechains. In IEEE
Symposium on Security and Privacy (S&P, 2019.

[11] A. Kiayias, N. Lamprou, and A.-P. Stouka. Proofs of proofs of work
with sublinear complexity. In J. Clark, S. Meiklejohn, Peter Y.A. R.,

D. Wallach, M. Brenner, and K. Rohloff, editors, Financial Cryptogra-
phy and Data Security. Springer Berlin Heidelberg, 2016.

[12] A. Kiayias, N. Leonardos, and D. Zindros. Mining in logarithmic space.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security (CCS), page 3487–3501, New York, NY, USA,
2021. Association for Computing Machinery.

[13] A. Kiayias and O. S. Thyfronitis Litos. A composable security treatment
of the lightning network. In IEEE Computer Security Foundations
Symposium (CSF), 2020.

[14] A. Kiayias, A. Miller, and D. Zindros. Non-interactive proofs of
proof-of-work. In J. Bonneau and N. Heninger, editors, Financial
Cryptography and Data Security, pages 505–522, Cham, 2020. Springer
International Publishing.

[15] R. Matzutt, B. Kalde, J. Pennekamp, A. Drichel, M. Henze, and
K. Wehrle. Shrinking bitcoin’s blockchain retrospectively. IEEE
Transactions on Network and Service Management, 18(3), 2021.

[16] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
http://www.bitcoin.org/bitcoin.pdf, 2009.

[17] J. Nick, A. Poelstra, and G. Sanders. Liquid: A bitcoin sidechain.
https://blockstream.com/assets/downloads/pdf/liquid-whitepaper.pdf,
2020.

[18] J. Poon and T. Dryja. The bitcoin lightning network: Scalable off-chain
instant payments. https://lightning.network/lightning-network-paper.pdf,
2016.

[19] SNAP. Ethereum snapshot protocol.
https://github.com/ethereum/devp2p/blob/master/caps/snap.md, 2020.

[20] R. Wattenhofer. The Science of the Blockchain. CreateSpace Independent
Publishing Platform, North Charleston, SC, USA, 1st edition, 2016.

[21] A. Zamyatin, N. Stifter, A. Judmayer, P. Schindler, E. Weippl, and W.J.
Knottenbelt. A wild velvet fork appears! inclusive blockchain protocol
changes in practice. In Financial Cryptography and Data Security, 2019.

11

