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Abstract. The recent rise of interest in distributed applications has
highlighted the importance of effective information dissemination. The
challenge lies in the fact that nodes in a distributed system are not nec-
essarily synchronized, and may fail at any time. This has led to the
emergence of randomized rumor spreading protocols, such as push and
pull protocols, which have been studied extensively. The k-pull opera-
tion, which allows an uninformed node to ask for the rumor from a fixed
number of other nodes in parallel, has been proposed to improve the
pull algorithm’s effectiveness. This paper presents and studies the per-
formance of the k-pull operation in the presence of a certain fraction
f of non-cooperative nodes. Our goal is to understand the impact of k
on the propagation of the rumor despite the presence of a fraction f of
non-collaborative nodes.

1 Introduction

The dissemination of information in distributed systems has been an active area
of research in recent years. With the rise of distributed applications, efficient and
robust methods for information dissemination have become increasingly impor-
tant. In a distributed system, the nodes are not necessarily synchronized, and
can fail at any time. This makes the dissemination of information a challenging
problem. This problem, often called rumor spreading or gossip spreading, is the
process of sending a message to all the nodes in a network [5,7]. The nodes in the
network are anonymous, meaning that they can not be designated in advance,
and any two nodes cannot tell whether they already interacted together or not.
Different variants of randomized rumor spreading protocols have been studied.
The push protocol provides a single operation, called the push operation, that
allows an informed node to contact some randomly chosen node and sends it the
rumor. The pull protocol, on the other hand allows, through the pull operation,
an uninformed node to contact some random node to ask for the rumor. The
same node can perform both operations according to whether it knows or not
the rumor, which corresponds to the push-pull protocol.

One of the important questions raised by these randomized rumor spreading
protocols is the spreading time, that is the time needed for all the nodes of the
network to become informed.



Several models have been considered to answer this question. The synchronous
model assumes that all the nodes of the network act in synchrony, which allows
the algorithms designed in this model to divide time in synchronized rounds.
During each synchronized round, each node i of the network selects at random
one of its neighbors j and either sends to j the rumor if i knows it (push oper-
ation) or gets the rumor from j if j knows the rumor (pull operation). In this
model, the spreading time of a rumor is defined as the number of synchronous
rounds necessary for all the nodes to become informed. Analyses have been con-
ducted when the underlying communication graph is complete (e.g., [10,11], and
in different topologies (e.g., [2, 4, 9, 15]), in the presence of link or nodes fail-
ures as in [8], in dynamic graphs as in [3]. Another alternative consists for the
nodes to make more than one call during the push-pull operations [16]. In large
scale and open networks, assuming that all nodes act in synchrony is a strong
assumption since it requires that all the nodes have access to some global syn-
chronization mechanism and that message delays are upper bounded. Several
authors, including [1, 6, 12, 14, 17], suppose that nodes asynchronously trigger
operations with randomly chosen nodes. In this model, the spreading time of a
rumor is defined as the number of operations necessary for all the nodes to know
the rumor. In [17], the authors model a multiple call by tuning the clock rate of
each node with a given probabilitity distribution.

Regarding the type of interaction, the pull algorithm has attracted very little
attention because this algorithm was long considered inefficient to spread a rumor
within a large scale network [19]. However, it is very useful in systems fighting
against message saturation (see for instance [22]). The ineffectiveness of the pull
protocol stems from the fact that it takes some time before the rumor reaches a
phase of exponential growth. In the line of Panagiotou et al.’s work [16], Robin et
al [18] have extended the pull operation with the k-pull operation, which allows
an uniformed node to ask for the rumor to a fixed number k − 1 of other nodes
in parallel.

The objective of this paper is to push further this line of inquiry by presenting
and studying the performance of the k-pull operation in presence of a certain
fraction f of non collaborative nodes. A non-cooperative node is a node that
refuses to learn and thus to propagate the rumor. Our aim is to understand the
impact of k on the propagation of the rumor despite the presence of a proportion
f of non-collaborative nodes.

The remaining of the paper is organized as follows. Section 2 presents the k-
pull protocol in presence of non-cooperative nodes. Section 3 analyses the rumor
spreading time when k = 2. Section 4 presents a numerical study of the influence
of larger values of k on the expected spreading time and on the distribution of
the k-pull operation. Finally Section 5 presents future works.
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2 The k-pull protocol in presence of non-cooperative
nodes

We consider a system with interacting subpopulations of informed, uninformed,
and non-cooperative nodes. The total number of nodes is equal to n. The commu-
nication graph among the n nodes is complete. Nodes are anonymous meaning
that that they do not use identifiers and thus cannot determine whether any
two interactions have occurred with the same nodes or not. However, for ease of
presentation the nodes are numbered 1, 2, . . . , n. We assume a thoroughly mixed
population, so that nodes encounter each other at random, with uniform proba-
bility. Initially, a single node knows the rumor and wishes to propagate it (this is
not a non-cooperative node) to uninformed nodes. However, among uninformed
nodes, a constant fraction f of them are non-cooperative, i.e., they do not want
to learn the rumor and thus to propagate it further.

The k-pull protocol is defined as follows. At each discrete time t, a single
uninformed node s contacts k − 1 distinct nodes, chosen at random uniformly
among the n− 1 other nodes, and applies the following rule:

– If at least one of the k − 1 contacted nodes knows the rumor and s is not
non-cooperative then node s becomes informed.

Note that despite the fact that non-cooperative nodes do not want to learn the
rumor, they trigger the k-pull operation. Their motivation is to increase the
spreading time of the rumor. At any time we suppose that nf ≥ k, otherwise we
come back to Robin et al.’s analysis [18]. Note that in practice, nf is an integer,
but this is not necessary for the analysis. The protocol halts by itself once all
the n(1− f) nodes are informed.

2.1 The k-pull protocol in absence of non-cooperative nodes

To analyze the k-pull protocol, the authors in [18] have introduced the discrete-
time stochastic process Y = {Yt, t ≥ 0} where Yt represents the number of
informed nodes at time t. Stochastic process Y is a discrete-time homogeneous
Markov chain with n states where states 1, . . . , n− 1 are transient and state n is
absorbing. When the Markov chain Y is in state i at time t, then at time t+ 1,
either it remains in state i if none of the k − 1 chosen nodes know the rumor
or it transits to state i + 1 if at least one of the k − 1 chosen nodes know the
rumor. Let P be the transition probability matrix of Markov chain Y . The non
zero entries of matrix P are thus Pi,i and Pi,i+1, for any i = 1, . . . , n − 1. We
denote by Tk,n the random variable defined by

Tk,n := inf{t ≥ 0 | Yt = n},

which represents the spreading time, that is the total number of k-pull operations
needed for all the nodes in the network to know the rumor. The spreading time
distribution can thus be expressed as a sum of independent random variables
Sk,n(i), where Sk,n(i) is the sojourn time of Markov chain Y in state i. For all
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i = 1, . . . , n − k, Sk,n(i) follows a geometric distribution with parameter Pi,i+1

which we denote more simply by pk,n(i). It is shown in [18] that

pk,n(i) = 1− Pi,i = 1−
k−1∏
h=1

(
1− i

n− h

)
. (1)

2.2 The k-pull protocol in presence of nf non-cooperative nodes

We keep the same notation used in the previous subsection. We just suppose that
when f ̸= 0, we have nf ≥ k. In presence of a proportion f of non-cooperative
node, when Yt = i, i.e. when i nodes are informed of the rumor at time t, we have
Yt+1 = i if and only if, at time t+1, either the selected node is a non-cooperative
node (with probability nf/(n− i)) or the selected node is not a non-cooperative
node (with probability 1 − nf/(n − i)) and the set of k − 1 chosen nodes (i.e.
k − 1 among n − 1) must be chosen among the n − 1 − i non informed nodes
which corresponds to the situation where f = 0. More formally, if Mt denotes the
status of the selected node at time t (1 if it is non-cooperative and 0 otherwise),
we have, for every t ≥ 0, using (1)

Pi,i = P{Yt+1 = i | Yt = i}
= P{Yt+1 = i | Mt = 1, Yt = i}P{Mt = 1 | Yt = i}
+P{Yt+1 = i | Mt = 0, Yt = i}P{Mt = 0 | Yt = i}

=
nf

n− i
+

(
1− nf

n− i

) k−1∏
h=1

(
1− i

n− h

)
Observe that Y has now n(1 − f) states where states 1, . . . , n(1 − f) − 1 are
transient and state n(1 − f) is absorbing. In the same way, we introduce the
notation

pk,n(i) = 1− Pi,i =

(
1− nf

n− i

)(
1−

k−1∏
h=1

(
1− i

n− h

))
(2)

and we have

Tk,n =

n(1−f)−1∑
i=1

Sk,n(i), (3)

where Sk,n(i) has a geometric distribution with parameter pk,n(i).
It is well-known, see for instance [20], that the distribution of Tk,n is given,

for every integer t ≥ 0, by

P{Tk,n > t} = αQt
1, (4)

where α is the row vector containing the initial probabilities of states 1, . . . , n(1−
f)−1, that is αi = P{Y0 = i} = 1{i=1}, Q is the matrix obtained from the tran-
sition matrix P by only keeping the transition probabilities between transient
states, i.e. by removing the last line and the last column of P and 1 is the column
vector of dimension n(1− f)− 1 with all its entries equal to 1.
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3 Analysis of the rumor spreading time when k = 2

In this section, we analyze the two first moments and the distribution of the
rumor spreading time T2,n and their asymptotic behavior when n goes to in-
finity. We denote by Hn the harmonic series defined, for every n ≥ 1, by
Hn =

∑n
i=1 1/i and we recall that the Euler-Mascheroni constant γ is given

by γ = limn−→∞ (Hn − ln(n)), which is approximately equal to 0.5772156649.

3.1 Asymptotic mean and variance of the rumor spreading time

In the case where k = 2, we have from relation (2),

p2,n(i) =

(
1− nf

n− i

)
i

n− 1
=

(n(1− f)− i) i

(n− 1)(n− i)
. (5)

The asymptotic expected rumor spreading time is obtained in the following
theorem.

Theorem 1.

E(T2,n) ∼
n−→∞

(1 + f)n ln(n)

1− f

and

lim
n−→∞

(
E(T2,n)

n
− (1 + f) ln(n)

1− f

)
=

(1 + f) (γ + ln(1− f))

1− f
.

Proof. The expected value of the spreading time T2,n is given, using Relation (3),
by

E(T2,n) =

n(1−f)−1∑
i=1

1

p2,n(i)
= (n− 1)

n(1−f)−1∑
i=1

n− i

(n(1− f)− i) i

= (n− 1)

n(1−f)−1∑
i=1

1

i
+ nf

n(1−f)−1∑
i=1

1

(n(1− f)− i) i

 .

Observing that

1

(n(1− f)− i) i
=

1

n(1− f)

(
1

i
+

1

n(1− f)− i

)
, (6)

we obtain

E(T2,n) = (n− 1)

n(1−f)−1∑
i=1

1

i
+

2f

1− f

n(1−f)−1∑
i=1

1

i


=

(1 + f)(n− 1)Hn(1−f)−1

1− f

∼
n−→∞

(1 + f)n ln(n)

1− f
. (7)
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Moreover, we have

E(T2,n)

n
− (1 + f) ln(n)

1− f
=

1 + f

1− f

[
(n− 1)Hn(1−f)−1

n
− ln(n)

]
=

1 + f

1− f

[
Hn(1−f)−1 − ln(n)−

Hn(1−f)−1

n

]
=

1 + f

1− f

[
Hn(1−f)−1 − ln(n(1− f)− 1)

]
+

1 + f

1− f

[
ln(n(1− f)− 1)− ln(n)−

Hn(1−f)−1

n

]
=

1 + f

1− f

[
Hn(1−f)−1 − ln(n(1− f)− 1)

]
+

1 + f

1− f

[
ln(1− f − 1/n)−

Hn(1−f)−1

n

]
.

The second term in square brackets tends to ln(1− f) when n tends to infinity,
so by definition of γ we have

lim
n−→∞

(
E(T2,n)

n
− (1 + f) ln(n)

1− f

)
=

(1 + f) (γ + ln(1− f))

1− f
,

which completes the proof.
We consider now the variance of T2,n and its limiting value when n goes to

infinity.

Theorem 2.

V(T2,n) ∼
n−→∞

(1 + f2)π2n2

6(1− f)2
,

Proof. Using Relation (3), the variance of T2,n is given by

V(T2,n) =

n(1−f)−1∑
i=1

1− p2,n(i)

(p2,n(i))
2

= (n− 1)2
n(1−f)−1∑

i=1

(
n− i

i (n(1− f)− i)

)2

−E(T2,n). (8)

Using relation (6), we write

n− i

i (n(1− f)− i)
=

1

i
+

nf

i (n(1− f)− i)
=

1

i
+

f

1− f

(
1

i
+

1

n(1− f)− i

)
=

(
1

1− f

)
1

i
+

(
f

1− f

)
1

n(1− f)− i

and thus(
n− i

i (n(1− f)− i)

)2

=
1

(1− f)2

(
1

i2
+

f2

(n(1− f)− i)
2 +

2f

i (n(1− f)− i)

)
.
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Using again relation (6) for the third term of this last expression, we get(
n− i

i (n(1− f)− i)

)2

=
1

(1− f)2

(
1

i2
+

f2

(n(1− f)− i)
2

)

+
2f

(1− f)3n

(
1

i
+

1

n(1− f)− i

)
.

It follows that

n(1−f)−1∑
i=1

(
n− i

i (n(1− f)− i)

)2

=
1 + f2

(1− f)2

n(1−f)−1∑
i=1

1

i2
+

4f

(1− f)3n

n(1−f)−1∑
i=1

1

i
.

Inserting this result in (8), we obtain using (7)

V(T2,n) =
(1 + f2)(n− 1)2

(1− f)2

n(1−f)−1∑
i=1

1

i2

+

(
4f(n− 1)

(1− f)3n
− (1 + f)

1− f

)
(n− 1)Hn(1−f)−1.

The second term of this sum is in O(n ln(n)), thus

V(T2,n) ∼
n−→∞

(1 + f2)π2n2

6(1− f)2
,

which completes the proof.

3.2 Asymptotic distribution of the rumor spreading time

This section provides the explicit limiting distribution of (T2,n −E(T2,n)) /n
when n tends to infinity. To prove the main result of this section, we need the
following lemma.

Lemma 1.

lim
m−→∞

lim sup
ℓ−→∞

(1− f)2

(2ℓ+ 1)2

ℓ∑
i=m

1

p22,(2ℓ+1)/(1−f)(i)
= 0.

and

lim
m−→∞

lim sup
ℓ−→∞

(1− f)2

(2ℓ+ 1)2

ℓ∑
i=m

1

p2k,(2ℓ+1)/(1−f)(2ℓ+ 1− i)
= 0.

Proof. From (5), we have, by taking n = (2ℓ+ 1)/(1− f),

p2,(2ℓ+1)/(1−f)(i) =
(2ℓ+ 1− i) i(

2ℓ+ 1

1− f
− 1

)(
2ℓ+ 1

1− f
− i

) .
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Introducing the notation

∆ℓ,m =
(1− f)2

(2ℓ+ 1)2

ℓ∑
i=m

1

p22,(2ℓ+1)/(1−f)(i)

we obtain, after some algebra, and since f ≤ 1,

∆ℓ,m =
(2ℓ+ f)2

(1− f)2(2ℓ+ 1)2

ℓ∑
i=m

(
1

i
+

f

2ℓ+ 1− i

)2

≤ 1

(1− f)2

ℓ∑
i=m

(
1

i
+

1

2ℓ+ 1− i

)2

(9)

=
1

(1− f)2

(
2ℓ+1−m∑

i=m

1

i2
+

2

2ℓ+ 1

2ℓ+1−m∑
i=m

1

i

)

≤ 1

(1− f)2

(
2ℓ+1−m∑

i=m

1

i2
+

2(1 + ln(2ℓ+ 1−m)

2ℓ+ 1

)
.

The limm−→∞ lim supℓ−→∞ of both terms is 0 because
∑

i≥1 1/i
2 is a converging

series. This proves the first relation.

Concerning the second one, from (5), we have, by taking n = (2ℓ+1)/(1−f),

p2,(2ℓ+1)/(1−f)(2ℓ+ 1− i) =
i (2ℓ+ 1− i)(

2ℓ+ 1

1− f
− 1

)(
2ℓ+ 1

1− f
− (2ℓ+ 1− i)

) .

Introducing the notation

Λℓ,m =
(1− f)2

(2ℓ+ 1)2

ℓ∑
i=m

1

p2k,(2ℓ+1)/(1−f)(2ℓ+ 1− i)

we obtain as we did for ∆ℓ,m,

Λℓ,m =
(2ℓ+ f)2

(1− f)2(2ℓ+ 1)2

ℓ∑
i=m

(
f

i
+

1

2ℓ+ 1− i

)2

≤ 1

(1− f)2

ℓ∑
i=m

(
1

i
+

1

2ℓ+ 1− i

)2

,

which is exactly (9). This completes the proof.

We are now able to prove the following theorem, where
L−−→ means the con-

vergence in law.
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Theorem 3. Let (Zi)i≥1 be a sequence of i.i.d. random variables exponentially
distributed with rate 1 and let W be defined by

W =

∞∑
i=1

Zi − 1

i
.

We then have

T2,n −E(T2,n)

n

L−−→ 1

1− f
W (1) +

f

1− f
W (2) as n −→ ∞

where W (1) and W (2) are i.i.d. with the same distribution as W .

Proof. For a fixed value of i, we have limn−→∞ p2,n(i) = 0. It follows that for
every x ≥ 0, we have

P{p2,n(i)Sk,n > x} = P{S2,n > x/p2,n(i) > x} = (1− p2,n(i))
⌊x/pk,n(i)⌋

which tends to e−x when n tends to infinity, since p2,n(i) tends to 0. If Zi is
a random variable exponentially distributed with rate 1, we have shown that

p2,n(i)S2,n
L−−→ Zi when n −→ ∞. Moreover since the (S2,n(i))i=1,...,n(1−f)−1

are independent, the (Zi)i=1,...,n(1−f)−1 are also independent. In the same way,
we have limn−→∞ np2,n(i) = (1 − f)i. Defining R2,n(i) = S2,n(i) − E (S2,n(i))
we obtain, since E (S2,n(i)) = 1/p2,n(i),

R2,n(i)

n
=

S2,n(i)−E (S2,n(i))

n
=

p2,n(i)S2,n(i)− 1

np2,n(i)

L−−→ Zi − 1

(1− f)i
. (10)

In the same way, replacing i by n(1− f)− i in (2) leads to

p2,n (n(1− f)− i) =
i (n(1− f)− i)

(n− 1)(nf + i)
.

It follows that

lim
n−→∞

p2,n(n(1− f)− i) = 0 and lim
n−→∞

np2,n(n(1− f)− i) =
i(1− f)

f

and thus

R2,n(n(1− f)− i)

n
=

p2,n(n(1− f)− i)S2,n(n(1− f)− i)− 1

np2,n(n(1− f)− i)

L−−→ (Zi − 1)f

(1− f)i
.

(11)
Suppose that n(1− f) is odd, i.e. n(1− f) = 2ℓ+ 1. We then have from (3)

T2,n −E(T2,n)

n
=

1− f

2ℓ+ 1

(
ℓ∑

i=1

R2,n(i) +

2ℓ∑
i=ℓ+1

R2,n(i)

)

=
1− f

2ℓ+ 1

(
ℓ∑

i=1

R2,n(i) +

ℓ∑
i=1

R2,n(2ℓ+ 1− i)

)
= Vℓ + V ℓ, (12)
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where

Vℓ =
1− f

2ℓ+ 1

ℓ∑
i=1

R2,n(i) and V ℓ =
1− f

2ℓ+ 1

ℓ∑
i=1

R2,n(2ℓ+ 1− i).

Observe that the random variables V2,ℓ and V 2,ℓ are independent. The rest of
the proof consists in checking the hypothesis of the principle of accompanying
laws of Theorem 3.1.14 of [24]. We introduce the notation

Vℓ,m =
1− f

2ℓ+ 1

m−1∑
i=1

R2,n(i) and V ℓ,m =
1− f

2ℓ+ 1

m−1∑
i=1

R2,n(2ℓ+ 1− i).

Using the fact that E(R2,n(i)) = 0 and the R2,n(i) are independent, we have

E
(
(Vℓ − Vℓ,m)2

)
= V

(
1− f

2ℓ+ 1

ℓ∑
i=m

R2,n(i)

)

=
(1− f)2

(2ℓ+ 1)2

ℓ∑
i=m

V(R2,n(i)) =
(1− f)2

(2ℓ+ 1)2

ℓ∑
i=m

V(S2,n(i))

=
(1− f)2

(2ℓ+ 1)2

ℓ∑
i=m

1− p2,(2ℓ+1)/(1−f)(i)

p22,(2ℓ+1)/(1−f)(i)
≤ (1− f)2

(2ℓ+ 1)2

ℓ∑
i=m

1

p22,(2ℓ+1)/(1−f)(i)

and, in the same way,

E
(
(V ℓ − V ℓ,m)2

)
≤ (1− f)2

(2ℓ+ 1)2

ℓ∑
i=m

1

p22,(2ℓ+1)/(1−f)(2ℓ+ 1− i)
.

Using Lemma 1, we have

lim
m−→∞

lim sup
ℓ−→∞

E((Vℓ − Vℓ,m)2) = lim
m−→∞

lim sup
ℓ−→∞

E((V ℓ − V ℓ,m)2) = 0.

Using now the Markov inequality, we obtain, for all ε > 0,

P{|Vℓ − Vℓ,m| ≥ ε} = P{(Vℓ − Vℓ,m)2 ≥ ε2} ≤ E((Vℓ − Vℓ,m)2)

ε2

and

P{
∣∣V ℓ − V ℓ,m

∣∣ ≥ ε} = P{(V ℓ − V ℓ,m)2 ≥ ε2} ≤ E((V ℓ − V ℓ,m)2)

ε2
.

Putting together these results, we deduce that for all ε > 0, we have

lim
m−→∞

lim sup
ℓ−→∞

P{|Vℓ − Vℓ,m| ≥ ε} = 0 (13)

lim
m−→∞

lim sup
ℓ−→∞

P{
∣∣V ℓ − V ℓ,m

∣∣ ≥ ε} = 0. (14)
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Let us introduce the notation

Wm =
1

1− f

m−1∑
i=1

Zi − 1

i
and Wm =

f

1− f

m−1∑
i=1

Zi − 1

i
.

Using (10) and (11) and the fact that the Rk,n(i) are independent, we have

Vℓ,m
L−−→ Wm and V ℓ,m

L−−→ Wm as ℓ −→ ∞. (15)

The hypothesis of the principle of accompanying laws of Theorem 3.1.14 of [21]
are properties (13), (14) and (15). We can thus conclude that

Vℓ
L−−→ 1

1− f
W and V ℓ

L−−→ f

1− f
W as ℓ −→ ∞.

This means, from relation (12), that

T2,n −E(T2,n)

n

L−−→ 1

1− f
W (1) +

f

1− f
W (2) as n −→ ∞,

where W (1) and W (2) are independent and identically distributed as W . The
same reasoning applies in the case where n(1− f) = 2ℓ.

Corollary 1. For all x ∈ R we have

lim
n−→∞

P

{
T2,n −E(T2,n)

n
≤ x

}
=

∫ ∞

0

exp
(
−t− t−fe−(1−f)x−γ(1+f)

)
dt.

Proof. L. Gordon has proved in [13] that

−γ +

+∞∑
i=1

1− Zi

i

L
= ln(Z1),

where (Zi) are i.i.d. exponential with rate 1. Thus, by definition of W in Theo-
rem 3, we have

W
L
= −γ − ln(Z1).

Introducing W (1) L
= −γ − ln(Z1) and W (2) L

= −γ − ln(Z2), we obtain from
Theorem 3, for all x ∈ R,

lim
n−→∞

P

{
T2,n −E(T2,n)

n
≤ x

}
= P

{
1

1− f
W (1) +

f

1− f
W (2) ≤ x

}
= P {− ln(Z1)− f ln(Z2) ≤ (1− f)x+ γ(1 + f)}

= P
{
Z1Z

f
2 ≥ e−(1−f)x−γ(1+f)

}
=

∫ ∞

0

P

{
Z1 ≥ t−fe−(1−f)x−γ(1+f)

}
e−tdt

=

∫ ∞

0

exp
(
−t− t−fe−(1−f)x−γ(1+f)

)
dt,

which completes the proof.
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(a) k = 5. (b) k = ln (n).

Fig. 1: Expected spreading time Tk,n as a function of the number n of nodes in
the system for different values of f , when k = 5 on the left, and k = ln(n) on
the right.

4 General case

Generalizing to higher values of k has shown to be more difficult. Indeed, as
a node can interact with a parameterized number of other nodes, its behavior
during an interaction becomes harder to predict. This can be observed in (1)
where k has an influence on the number of terms in the product of the relation.
Consequently, we numerically study the influence of larger values of k on the
expected spreading time and on its distribution.

Fig. 2: Expected spreading time Tk,n as a function of the number n of nodes in
the system for different values of k when f = 0.1.

As expected, Figure 1a shows that the mean spreading time increases with
the proportion f . A realistic assumption would be to have k as a function of n.
Figure 1b shows that having k as a function of n does not provide significant

12



(a) f = 0.1. (b) f = 0.2.

Fig. 3:

i∑
j=1

E(Tk,j): Expected spreading time to reach i informed nodes, as a

function of i, with n = 10, 000 nodes.

improvement for small values of n. More interestingly, k has a significant influ-
ence on the spreading time, independently from the size of the network, which
is illustrated by Figure 2. Using a k-pull operation helps to mitigate the influ-
ence of non-cooperative node compared to a regular asynchronous pull protocol
(k = 2).

One of the major caveats of the pull operation is that the diffusion of the
rumor during the first interactions is very slow. This phenomenon is made worse
with the presence of non-cooperative nodes. This is due to the fact that the
few informed and cooperative nodes need to be selected to be able to propagate
the rumor, as opposed to the push operation. This is highlighted in Figure 3a
for k = 2, where we can see that the propagation is quite slow during the first
interactions. On the other hand, when k > 2, the k-pull operation mitigates
this problem as shown in Figures 3a and 3b for different proportions f of non-
cooperative nodes.

Figure 4 shows the cumulative distribution of Tk,n (see (4)). This distribu-
tion shows not only that higher values of k lead to faster spreading times, but
also that this spreading time is more predictable. Indeed, the decrease of the
function P{Tk,n > t} is significantly faster for higher values of k. Moreover, the
influence of the non-cooperative nodes is weaker for high values of k. Figure 4a
and Figure 4b provide this intuition, which is confirmed in Table 1. This table
gives the smallest value of t such that P{Tk,n > t} < ε.

5 Discussion

In this paper, we have considered the presence of non-cooperative nodes. Such
nodes have an impact on the spreading time of a rumor, but do not endanger
the content of the rumor. We are currently studying the impact of a proportion
f of malicious nodes whose objective is to modify the rumor and propagate this

13



(a) f = 0.1. (b) f = 0.2.

Fig. 4: P{Tk,n > t} with n = 100 nodes.

ε = 0.1 ε = 0.01 ε = 0.001

k f = 0.1 f = 0.2 f = 0.1 f = 0.2 f = 0.1 f = 0.2

k = 2 790 928 1020 1099 1131 1146
k = 3 448 536 582 689 699 829
k = 5 283 347 345 426 410 496
k = 10 200 258 232 313 264 354

Table 1: Values of t = inf{t ≥ 0 | P{Tk,n > t} < ε} for different values of k, f
and ε with n = 100 nodes.

modified rumor further. Concretely, when a malicious node is chosen during a
k-pull operation, if this node knows the rumor, it will modify it and send it to
the initiator of the k-pull operation. The objective is to analyze the necessary
(and sufficient) conditions for the propagation of the initial rumor in presence of
a fraction f of malicious nodes. The value of k should be predominant to enable
the initiator of a k-pull operation to choose which rumor to learn during a k-pull
operation.
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