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Introduction

The dissemination of information in distributed systems has been an active area of research in recent years. With the rise of distributed applications, efficient and robust methods for information dissemination have become increasingly important. In a distributed system, the nodes are not necessarily synchronized, and can fail at any time. This makes the dissemination of information a challenging problem. This problem, often called rumor spreading or gossip spreading, is the process of sending a message to all the nodes in a network [START_REF] Demers | Epidemic algorithms for replicated database maintenance[END_REF][START_REF] Doerr | Randomized Rumor Spreading Revisited[END_REF]. The nodes in the network are anonymous, meaning that they can not be designated in advance, and any two nodes cannot tell whether they already interacted together or not. Different variants of randomized rumor spreading protocols have been studied. The push protocol provides a single operation, called the push operation, that allows an informed node to contact some randomly chosen node and sends it the rumor. The pull protocol, on the other hand allows, through the pull operation, an uninformed node to contact some random node to ask for the rumor. The same node can perform both operations according to whether it knows or not the rumor, which corresponds to the push-pull protocol.

One of the important questions raised by these randomized rumor spreading protocols is the spreading time, that is the time needed for all the nodes of the network to become informed.

Several models have been considered to answer this question. The synchronous model assumes that all the nodes of the network act in synchrony, which allows the algorithms designed in this model to divide time in synchronized rounds. During each synchronized round, each node i of the network selects at random one of its neighbors j and either sends to j the rumor if i knows it (push operation) or gets the rumor from j if j knows the rumor (pull operation). In this model, the spreading time of a rumor is defined as the number of synchronous rounds necessary for all the nodes to become informed. Analyses have been conducted when the underlying communication graph is complete (e.g., [START_REF] Frieze | The shortest-path problem for graphs with random arc-lengths[END_REF][START_REF] Giakkoupis | Tight bounds for rumor spreading in graphs of a given conductance[END_REF], and in different topologies (e.g., [START_REF] Chierichetti | Rumor spreading in social networks[END_REF][START_REF] Daum | Rumor spreading with bounded indegree[END_REF][START_REF] Fountoulakis | Rumor spreading on random regular graphs and expanders[END_REF][START_REF] Panagiotou | Randomized rumor spreading: the effect of the network topology[END_REF]), in the presence of link or nodes failures as in [START_REF] Feige | Randomized broadcast in networks[END_REF], in dynamic graphs as in [START_REF] Clementi | Rumor spreading in random evolving graphs[END_REF]. Another alternative consists for the nodes to make more than one call during the push-pull operations [START_REF] Panagiotou | Faster rumor spreading with multiple calls[END_REF]. In large scale and open networks, assuming that all nodes act in synchrony is a strong assumption since it requires that all the nodes have access to some global synchronization mechanism and that message delays are upper bounded. Several authors, including [START_REF] Acan | On the push & pull protocol for rumour spreading[END_REF][START_REF] Doerr | Experimental analysis of rumor spreading in social networks[END_REF][START_REF] Giakkoupis | How asynchrony affects rumor spreading time[END_REF][START_REF] Mocquard | Analysis of the propagation time of a rumour in large-scale distributed systems[END_REF][START_REF] Pourmiri | Brief announcement: Ultra-fast asynchronous randomized rumor spreading[END_REF], suppose that nodes asynchronously trigger operations with randomly chosen nodes. In this model, the spreading time of a rumor is defined as the number of operations necessary for all the nodes to know the rumor. In [START_REF] Pourmiri | Brief announcement: Ultra-fast asynchronous randomized rumor spreading[END_REF], the authors model a multiple call by tuning the clock rate of each node with a given probabilitity distribution.

Regarding the type of interaction, the pull algorithm has attracted very little attention because this algorithm was long considered inefficient to spread a rumor within a large scale network [START_REF] Sanghavi | Gossiping with multiple messages[END_REF]. However, it is very useful in systems fighting against message saturation (see for instance [START_REF] Yao | A pull model IPv6 duplicate address detection[END_REF]). The ineffectiveness of the pull protocol stems from the fact that it takes some time before the rumor reaches a phase of exponential growth. In the line of Panagiotou et al.'s work [START_REF] Panagiotou | Faster rumor spreading with multiple calls[END_REF], Robin et al [START_REF] Robin | Stochastic analysis of rumor spreading with multiple pull operations[END_REF] have extended the pull operation with the k-pull operation, which allows an uniformed node to ask for the rumor to a fixed number k -1 of other nodes in parallel.

The objective of this paper is to push further this line of inquiry by presenting and studying the performance of the k-pull operation in presence of a certain fraction f of non collaborative nodes. A non-cooperative node is a node that refuses to learn and thus to propagate the rumor. Our aim is to understand the impact of k on the propagation of the rumor despite the presence of a proportion f of non-collaborative nodes.

The remaining of the paper is organized as follows. Section 2 presents the kpull protocol in presence of non-cooperative nodes. Section 3 analyses the rumor spreading time when k = 2. Section 4 presents a numerical study of the influence of larger values of k on the expected spreading time and on the distribution of the k-pull operation. Finally Section 5 presents future works.

The k-pull protocol in presence of non-cooperative nodes

We consider a system with interacting subpopulations of informed, uninformed, and non-cooperative nodes. The total number of nodes is equal to n. The communication graph among the n nodes is complete. Nodes are anonymous meaning that that they do not use identifiers and thus cannot determine whether any two interactions have occurred with the same nodes or not. However, for ease of presentation the nodes are numbered 1, 2, . . . , n. We assume a thoroughly mixed population, so that nodes encounter each other at random, with uniform probability. Initially, a single node knows the rumor and wishes to propagate it (this is not a non-cooperative node) to uninformed nodes. However, among uninformed nodes, a constant fraction f of them are non-cooperative, i.e., they do not want to learn the rumor and thus to propagate it further. The k-pull protocol is defined as follows. At each discrete time t, a single uninformed node s contacts k -1 distinct nodes, chosen at random uniformly among the n -1 other nodes, and applies the following rule:

-If at least one of the k -1 contacted nodes knows the rumor and s is not non-cooperative then node s becomes informed.

Note that despite the fact that non-cooperative nodes do not want to learn the rumor, they trigger the k-pull operation. Their motivation is to increase the spreading time of the rumor. At any time we suppose that nf ≥ k, otherwise we come back to Robin et al.'s analysis [START_REF] Robin | Stochastic analysis of rumor spreading with multiple pull operations[END_REF]. Note that in practice, nf is an integer, but this is not necessary for the analysis. The protocol halts by itself once all the n(1 -f ) nodes are informed.

The k-pull protocol in absence of non-cooperative nodes

To analyze the k-pull protocol, the authors in [START_REF] Robin | Stochastic analysis of rumor spreading with multiple pull operations[END_REF] 

T k,n := inf{t ≥ 0 | Y t = n},
which represents the spreading time, that is the total number of k-pull operations needed for all the nodes in the network to know the rumor. The spreading time distribution can thus be expressed as a sum of independent random variables S k,n (i), where S k,n (i) is the sojourn time of Markov chain Y in state i. For all i = 1, . . . , n -k, S k,n (i) follows a geometric distribution with parameter P i,i+1 which we denote more simply by p k,n (i). It is shown in [START_REF] Robin | Stochastic analysis of rumor spreading with multiple pull operations[END_REF] that

p k,n (i) = 1 -P i,i = 1 - k-1 h=1 1 - i n -h . (1) 
2.2 The k-pull protocol in presence of nf non-cooperative nodes

We keep the same notation used in the previous subsection. We just suppose that when f ̸ = 0, we have nf ≥ k. In presence of a proportion f of non-cooperative node, when Y t = i, i.e. when i nodes are informed of the rumor at time t, we have Y t+1 = i if and only if, at time t+1, either the selected node is a non-cooperative node (with probability nf /(n -i)) or the selected node is not a non-cooperative node (with probability 1 -nf /(n -i)) and the set of k -1 chosen nodes (i.e. k -1 among n -1) must be chosen among the n -1 -i non informed nodes which corresponds to the situation where f = 0. More formally, if M t denotes the status of the selected node at time t (1 if it is non-cooperative and 0 otherwise), we have, for every t ≥ 0, using (1)

P i,i = P{Y t+1 = i | Y t = i} = P{Y t+1 = i | M t = 1, Y t = i}P{M t = 1 | Y t = i} + P{Y t+1 = i | M t = 0, Y t = i}P{M t = 0 | Y t = i} = nf n -i + 1 - nf n -i k-1 h=1 1 - i n -h
Observe that Y has now n(1 -f ) states where states 1, . . . , n(1 -f ) -1 are transient and state n(1 -f ) is absorbing. In the same way, we introduce the notation

p k,n (i) = 1 -P i,i = 1 - nf n -i 1 - k-1 h=1 1 - i n -h (2) 
and we have

T k,n = n(1-f )-1 i=1 S k,n (i), (3) 
where S k,n (i) has a geometric distribution with parameter p k,n (i).

It is well-known, see for instance [START_REF] Sericola | Markov Chains. Theory, Algorithms and Applications[END_REF], that the distribution of T k,n is given, for every integer t ≥ 0, by

P{T k,n > t} = αQ t 1, ( 4 
)
where α is the row vector containing the initial probabilities of states 1, . . . , n(1f ) -1, that is α i = P{Y 0 = i} = 1 {i=1} , Q is the matrix obtained from the transition matrix P by only keeping the transition probabilities between transient states, i.e. by removing the last line and the last column of P and 1 is the column vector of dimension n(1 -f ) -1 with all its entries equal to 1.

Analysis of the rumor spreading time when k = 2

In this section, we analyze the two first moments and the distribution of the rumor spreading time T 2,n and their asymptotic behavior when n goes to infinity. We denote by H n the harmonic series defined, for every n ≥ 1, by H n = n i=1 1/i and we recall that the Euler-Mascheroni constant γ is given by γ = lim n-→∞ (H n -ln(n)), which is approximately equal to 0.5772156649.

Asymptotic mean and variance of the rumor spreading time

In the case where k = 2, we have from relation (2),

p 2,n (i) = 1 - nf n -i i n -1 = (n(1 -f ) -i) i (n -1)(n -i) . (5) 
The asymptotic expected rumor spreading time is obtained in the following theorem.

Theorem 1.

E(T 2,n ) ∼ n-→∞ (1 + f )n ln(n) 1 -f and lim n-→∞ E(T 2,n ) n - (1 + f ) ln(n) 1 -f = (1 + f ) (γ + ln(1 -f )) 1 -f .
Proof. The expected value of the spreading time T 2,n is given, using Relation [START_REF] Clementi | Rumor spreading in random evolving graphs[END_REF], by

E(T 2,n ) = n(1-f )-1 i=1 1 p 2,n (i) = (n -1) n(1-f )-1 i=1 n -i (n(1 -f ) -i) i = (n -1)   n(1-f )-1 i=1 1 i + nf n(1-f )-1 i=1 1 (n(1 -f ) -i) i   . Observing that 1 (n(1 -f ) -i) i = 1 n(1 -f ) 1 i + 1 n(1 -f ) -i , (6) 
we obtain

E(T 2,n ) = (n -1)   n(1-f )-1 i=1 1 i + 2f 1 -f n(1-f )-1 i=1 1 i   = (1 + f )(n -1)H n(1-f )-1 1 -f ∼ n-→∞ (1 + f )n ln(n) 1 -f . (7) 
Moreover, we have

E(T 2,n ) n - (1 + f ) ln(n) 1 -f = 1 + f 1 -f (n -1)H n(1-f )-1 n -ln(n) = 1 + f 1 -f H n(1-f )-1 -ln(n) - H n(1-f )-1 n = 1 + f 1 -f H n(1-f )-1 -ln(n(1 -f ) -1) + 1 + f 1 -f ln(n(1 -f ) -1) -ln(n) - H n(1-f )-1 n = 1 + f 1 -f H n(1-f )-1 -ln(n(1 -f ) -1) + 1 + f 1 -f ln(1 -f -1/n) - H n(1-f )-1 n .
The second term in square brackets tends to ln(1 -f ) when n tends to infinity, so by definition of γ we have lim

n-→∞ E(T 2,n ) n - (1 + f ) ln(n) 1 -f = (1 + f ) (γ + ln(1 -f )) 1 -f ,
which completes the proof.

We consider now the variance of T 2,n and its limiting value when n goes to infinity.

Theorem 2. V(T 2,n ) ∼ n-→∞ (1 + f 2 )π 2 n 2 6(1 -f ) 2 ,
Proof. Using Relation (3), the variance of T 2,n is given by

V(T 2,n ) = n(1-f )-1 i=1 1 -p 2,n (i) (p 2,n (i)) 2 = (n -1) 2 n(1-f )-1 i=1 n -i i (n(1 -f ) -i) 2 -E(T 2,n ). (8) 
Using relation ( 6), we write

n -i i (n(1 -f ) -i) = 1 i + nf i (n(1 -f ) -i) = 1 i + f 1 -f 1 i + 1 n(1 -f ) -i = 1 1 -f 1 i + f 1 -f 1 n(1 -f ) -i and thus n -i i (n(1 -f ) -i) 2 = 1 (1 -f ) 2 1 i 2 + f 2 (n(1 -f ) -i) 2 + 2f i (n(1 -f ) -i) .
Using again relation [START_REF] Doerr | Experimental analysis of rumor spreading in social networks[END_REF] for the third term of this last expression, we get

n -i i (n(1 -f ) -i) 2 = 1 (1 -f ) 2 1 i 2 + f 2 (n(1 -f ) -i) 2 + 2f (1 -f ) 3 n 1 i + 1 n(1 -f ) -i .
It follows that

n(1-f )-1 i=1 n -i i (n(1 -f ) -i) 2 = 1 + f 2 (1 -f ) 2 n(1-f )-1 i=1 1 i 2 + 4f (1 -f ) 3 n n(1-f )-1 i=1 1 i .
Inserting this result in (8), we obtain using ( 7)

V(T 2,n ) = (1 + f 2 )(n -1) 2 (1 -f ) 2 n(1-f )-1 i=1 1 i 2 + 4f (n -1) (1 -f ) 3 n - (1 + f ) 1 -f (n -1)H n(1-f )-1 .
The second term of this sum is in O(n ln(n)), thus

V(T 2,n ) ∼ n-→∞ (1 + f 2 )π 2 n 2 6(1 -f ) 2 ,
which completes the proof.

Asymptotic distribution of the rumor spreading time

This section provides the explicit limiting distribution of (T 2,n -E(T 2,n )) /n when n tends to infinity. To prove the main result of this section, we need the following lemma.

Lemma 1. lim m-→∞ lim sup ℓ-→∞ (1 -f ) 2 (2ℓ + 1) 2 ℓ i=m 1 p 2 2,(2ℓ+1)/(1-f ) (i) = 0. and lim m-→∞ lim sup ℓ-→∞ (1 -f ) 2 (2ℓ + 1) 2 ℓ i=m 1 p 2 k,(2ℓ+1)/(1-f ) (2ℓ + 1 -i) = 0.
Proof. From (5), we have, by taking n = (2ℓ + 1)/(1 -f ),

p 2,(2ℓ+1)/(1-f ) (i) = (2ℓ + 1 -i) i 2ℓ + 1 1 -f -1 2ℓ + 1 1 -f -i .
Introducing the notation

∆ ℓ,m = (1 -f ) 2 (2ℓ + 1) 2 ℓ i=m 1 p 2 2,(2ℓ+1)/(1-f ) (i)
we obtain, after some algebra, and since f ≤ 1,

∆ ℓ,m = (2ℓ + f ) 2 (1 -f ) 2 (2ℓ + 1) 2 ℓ i=m 1 i + f 2ℓ + 1 -i 2 ≤ 1 (1 -f ) 2 ℓ i=m 1 i + 1 2ℓ + 1 -i 2 (9) = 1 (1 -f ) 2 2ℓ+1-m i=m 1 i 2 + 2 2ℓ + 1 2ℓ+1-m i=m 1 i ≤ 1 (1 -f ) 2 2ℓ+1-m i=m 1 i 2 + 2(1 + ln(2ℓ + 1 -m) 2ℓ + 1 .
The lim m-→∞ lim sup ℓ-→∞ of both terms is 0 because i≥1 1/i 2 is a converging series. This proves the first relation.

Concerning the second one, from ( 5), we have, by taking n = (2ℓ+1)/(1-f ),

p 2,(2ℓ+1)/(1-f ) (2ℓ + 1 -i) = i (2ℓ + 1 -i) 2ℓ + 1 1 -f -1 2ℓ + 1 1 -f -(2ℓ + 1 -i)
.

Introducing the notation

Λ ℓ,m = (1 -f ) 2 (2ℓ + 1) 2 ℓ i=m 1 p 2 k,(2ℓ+1)/(1-f ) (2ℓ + 1 -i)
we obtain as we did for ∆ ℓ,m ,

Λ ℓ,m = (2ℓ + f ) 2 (1 -f ) 2 (2ℓ + 1) 2 ℓ i=m f i + 1 2ℓ + 1 -i 2 ≤ 1 (1 -f ) 2 ℓ i=m 1 i + 1 2ℓ + 1 -i 2 ,
which is exactly [START_REF] Fountoulakis | Rumor spreading on random regular graphs and expanders[END_REF]. This completes the proof.

We are now able to prove the following theorem, where L --→ means the convergence in law.

Theorem 3. Let (Z i ) i≥1 be a sequence of i.i.d. random variables exponentially distributed with rate 1 and let W be defined by

W = ∞ i=1 Z i -1 i .
We then have

T 2,n -E(T 2,n ) n L --→ 1 1 -f W (1) + f 1 -f W (2) as n -→ ∞
where W (1) and W (2) are i.i.d. with the same distribution as W .

Proof. For a fixed value of i, we have lim n-→∞ p 2,n (i) = 0. It follows that for every x ≥ 0, we have

P{p 2,n (i)S k,n > x} = P{S 2,n > x/p 2,n (i) > x} = (1 -p 2,n (i)) ⌊x/p k,n (i)⌋
which tends to e -x when n tends to infinity, since p 2,n (i) tends to 0. If Z i is a random variable exponentially distributed with rate 1, we have shown that

p 2,n (i)S 2,n L --→ Z i when n -→ ∞.
Moreover since the (S 2,n (i)) i=1,...,n(1-f )-1 are independent, the (Z i ) i=1,...,n(1-f )-1 are also independent. In the same way,

we have lim n-→∞ np 2,n (i) = (1 -f )i. Defining R 2,n (i) = S 2,n (i) -E (S 2,n (i)) we obtain, since E (S 2,n (i)) = 1/p 2,n (i), R 2,n (i) n = S 2,n (i) -E (S 2,n (i)) n = p 2,n (i)S 2,n (i) -1 np 2,n (i) L --→ Z i -1 (1 -f )i . (10) 
In the same way, replacing i by n(1 -f ) -i in (2) leads to

p 2,n (n(1 -f ) -i) = i (n(1 -f ) -i) (n -1)(nf + i) .
It follows that lim

n-→∞ p 2,n (n(1 -f ) -i) = 0 and lim n-→∞ np 2,n (n(1 -f ) -i) = i(1 -f ) f and thus R 2,n (n(1 -f ) -i) n = p 2,n (n(1 -f ) -i)S 2,n (n(1 -f ) -i) -1 np 2,n (n(1 -f ) -i) L --→ (Z i -1)f (1 -f )i . ( 11 
) Suppose that n(1 -f ) is odd, i.e. n(1 -f ) = 2ℓ + 1. We then have from (3) T 2,n -E(T 2,n ) n = 1 -f 2ℓ + 1 ℓ i=1 R 2,n (i) + 2ℓ i=ℓ+1 R 2,n (i) = 1 -f 2ℓ + 1 ℓ i=1 R 2,n (i) + ℓ i=1 R 2,n (2ℓ + 1 -i) = V ℓ + V ℓ , (12) 
where

V ℓ = 1 -f 2ℓ + 1 ℓ i=1 R 2,n (i) and V ℓ = 1 -f 2ℓ + 1 ℓ i=1 R 2,n (2ℓ + 1 -i).
Observe that the random variables V 2,ℓ and V 2,ℓ are independent. The rest of the proof consists in checking the hypothesis of the principle of accompanying laws of Theorem 3.1.14 of [24]. We introduce the notation

V ℓ,m = 1 -f 2ℓ + 1 m-1 i=1 R 2,n (i) and V ℓ,m = 1 -f 2ℓ + 1 m-1 i=1 R 2,n (2ℓ + 1 -i).
Using the fact that E(R 2,n (i)) = 0 and the R 2,n (i) are independent, we have

E (V ℓ -V ℓ,m ) 2 = V 1 -f 2ℓ + 1 ℓ i=m R 2,n (i) = (1 -f ) 2 (2ℓ + 1) 2 ℓ i=m V(R 2,n (i)) = (1 -f ) 2 (2ℓ 1) 2 ℓ i=m V(S 2,n (i)) = (1 -f ) 2 (2ℓ + 1) 2 ℓ i=m 1 -p 2,(2ℓ+1)/(1-f ) (i) p 2 2,(2ℓ+1)/(1-f ) (i) ≤ (1 -f ) 2 (2ℓ + 1) 2 ℓ i=m 1 p 2 2,(2ℓ+1)/(1-f ) (i)
and, in the same way,

E (V ℓ -V ℓ,m ) 2 ≤ (1 -f ) 2 (2ℓ + 1) 2 ℓ i=m 1 p 2 2,(2ℓ+1)/(1-f ) (2ℓ + 1 -i)
.

Using Lemma 1, we have lim

m-→∞ lim sup ℓ-→∞ E((V ℓ -V ℓ,m ) 2 ) = lim m-→∞ lim sup ℓ-→∞ E((V ℓ -V ℓ,m ) 2 ) = 0.
Using now the Markov inequality, we obtain, for all ε > 0,

P{|V ℓ -V ℓ,m | ≥ ε} = P{(V ℓ -V ℓ,m ) 2 ≥ ε 2 } ≤ E((V ℓ -V ℓ,m ) 2 ) ε 2
and

P{ V ℓ -V ℓ,m ≥ ε} = P{(V ℓ -V ℓ,m ) 2 ≥ ε 2 } ≤ E((V ℓ -V ℓ,m ) 2 ) ε 2 .
Putting together these results, we deduce that for all ε > 0, we have lim

m-→∞ lim sup ℓ-→∞ P{|V ℓ -V ℓ,m | ≥ ε} = 0 (13) lim m-→∞ lim sup ℓ-→∞ P{ V ℓ -V ℓ,m ≥ ε} = 0. ( 14 
)
Let us introduce the notation

W m = 1 1 -f m-1 i=1 Z i -1 i and W m = f 1 -f m-1 i=1 Z i -1 i .
Using [START_REF] Frieze | The shortest-path problem for graphs with random arc-lengths[END_REF] and [START_REF] Giakkoupis | Tight bounds for rumor spreading in graphs of a given conductance[END_REF] and the fact that the R k,n (i) are independent, we have

V ℓ,m L --→ W m and V ℓ,m L --→ W m as ℓ -→ ∞. ( 15 
)
The hypothesis of the principle of accompanying laws of Theorem 3.1.14 of [START_REF] Stroock | Probability Theory: An Analytic View[END_REF] are properties ( 13), ( 14) and [START_REF] Panagiotou | Randomized rumor spreading: the effect of the network topology[END_REF]. We can thus conclude that

V ℓ L --→ 1 1 -f W and V ℓ L --→ f 1 -f W as ℓ -→ ∞.
This means, from relation [START_REF] Giakkoupis | How asynchrony affects rumor spreading time[END_REF], that

T 2,n -E(T 2,n ) n L --→ 1 1 -f W (1) + f 1 -f W (2) as n -→ ∞,
where W (1) and W (2) are independent and identically distributed as W . The same reasoning applies in the case where n(1 -f ) = 2ℓ.

Corollary 1. For all x ∈ R we have

lim n-→∞ P T 2,n -E(T 2,n ) n ≤ x = ∞ 0 exp -t -t -f e -(1-f )x-γ(1+f ) dt.
Proof. L. Gordon has proved in [START_REF] Gordon | Bounds for the distribution of the generalized variance[END_REF] that

-γ + +∞ i=1 1 -Z i i L = ln(Z 1 ),
where (Z i ) are i.i.d. exponential with rate 1. Thus, by definition of W in Theorem 3, we have W L = -γ -ln(Z 1 ).

Introducing W (1) L = -γ -ln(Z 1 ) and W (2) L = -γ -ln(Z 2 ), we obtain from Theorem 3, for all x ∈ R,

lim n-→∞ P T 2,n -E(T 2,n ) n ≤ x = P 1 1 -f W (1) + f 1 -f W (2) ≤ x = P {-ln(Z 1 ) -f ln(Z 2 ) ≤ (1 -f )x + γ(1 + f )} = P Z 1 Z f 2 ≥ e -(1-f )x-γ(1+f ) = ∞ 0 P Z 1 ≥ t -f e -(1-f )x-γ(1+f ) e -t dt = ∞ 0 exp -t -t -f e -(1-f )x-γ(1+f ) dt,
which completes the proof. 

General case

Generalizing to higher values of k has shown to be more difficult. Indeed, as a node can interact with a parameterized number of other nodes, its behavior during an interaction becomes harder to predict. This can be observed in [START_REF] Acan | On the push & pull protocol for rumour spreading[END_REF] where k has an influence on the number of terms in the product of the relation. Consequently, we numerically study the influence of larger values of k on the expected spreading time and on its distribution. As expected, Figure 1a shows that the mean spreading time increases with the proportion f . A realistic assumption would be to have k as a function of n. Figure 1b shows that having k as a function of n does not provide significant improvement for small values of n. More interestingly, k has a significant influence on the spreading time, independently from the size of the network, which is illustrated by Figure 2. Using a k-pull operation helps to mitigate the influence of non-cooperative node compared to a regular asynchronous pull protocol (k = 2).

One of the major caveats of the pull operation is that the diffusion of the rumor during the first interactions is very slow. This phenomenon is made worse with the presence of non-cooperative nodes. This is due to the fact that the few informed and cooperative nodes need to be selected to be able to propagate the rumor, as opposed to the push operation. This is highlighted in Figure 3a for k = 2, where we can see that the propagation is quite slow during the first interactions. On the other hand, when k > 2, the k-pull operation mitigates this problem as shown in Figures 3a and3b for different proportions f of noncooperative nodes.

Figure 4 shows the cumulative distribution of T k,n (see ( 4)). This distribution shows not only that higher values of k lead to faster spreading times, but also that this spreading time is more predictable. Indeed, the decrease of the function P{T k,n > t} is significantly faster for higher values of k. Moreover, the influence of the non-cooperative nodes is weaker for high values of k. Figure 4a and Figure 4b provide this intuition, which is confirmed in Table 1. This table gives the smallest value of t such that P{T k,n > t} < ε.

Discussion

In this paper, we have considered the presence of non-cooperative nodes. Such nodes have an impact on the spreading time of a rumor, but do not endanger the content of the rumor. We are currently studying the impact of a proportion f of malicious nodes whose objective is to modify the rumor and propagate this modified rumor further. Concretely, when a malicious node is chosen during a k-pull operation, if this node knows the rumor, it will modify it and send it to the initiator of the k-pull operation. The objective is to analyze the necessary (and sufficient) conditions for the propagation of the initial rumor in presence of a fraction f of malicious nodes. The value of k should be predominant to enable the initiator of a k-pull operation to choose which rumor to learn during a k-pull operation.

(a) k = 5 .

 5 (b) k = ln (n).

Fig. 1 :

 1 Fig. 1: Expected spreading time T k,n as a function of the number n of nodes in the system for different values of f , when k = 5 on the left, and k = ln(n) on the right.

Fig. 2 :

 2 Fig. 2: Expected spreading time T k,n as a function of the number n of nodes in the system for different values of k when f = 0.1.

  (a) f = 0.1. (b) f = 0.2.

Fig. 3 :

 3 Fig. 3:

  (a) f = 0.1. (b) f = 0.2.

Fig. 4 :

 4 Fig. 4: P{T k,n > t} with n = 100 nodes.ε = 0.1 ε = 0.01 ε = 0.001 k f = 0.1 f = 0.2 f = 0.1 f = 0.2 f = 0.1 f = 0.2 k =2 790 928 1020 1099 1131 1146 k = 3 448 536 582 689 699 829 k = 5 283 347 345 426 410 496 k = 10 200 258 232 313 264 354

Table 1 :

 1 Values of t = inf{t ≥ 0 | P{T k,n > t} < ε} for different values of k, fand ε with n = 100 nodes.