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Signal Denoising and Detection for Uplink in LoRa
Networks based on Bayesian-optimized Deep

Neural Networks
Angesom Ataklity Tesfay, Sofiane Kharbech, Eric Pierre Simon, and Laurent Clavier

Abstract—Long-range and low-power communications are
suitable technologies for the Internet of things networks. The
long-range implies a very low signal-to-noise ratio at the receiver.
In addition, low power consumption requires reduced signaling,
hence the use of less complex protocols, such as ALOHA, so
reduced communication coordination. Therefore, the increase
of objects using this technology will automatically lead to an
increase in interference. In this paper, we propose a detector
for Long Range (LoRa) networks based on an autoencoder
for denoising and dealing with the interference, followed by a
convolutional neural network for symbol detection. Simulation
results demonstrate that the proposed approach outperforms
both the convolutional neural network-based detector and the
classical LoRa detector in the presence of interference from other
LoRa users. The proposed detector shows around 3 dB gain for
a target Symbol Error Rate (SER) of 10−4.

Index Terms—LoRa, IoT, deep learning, neural networks,
autoencoder, Bayesian optimization.

I. INTRODUCTION

Despite the high expectation of large-scale deployment of
the Internet of Things (IoT) in the last decade, the number of
devices on the field is far from what was expected. Indeed,
low energy, low cost, and reliability are challenging to handle
simultaneously. Low-Power Wide-Area Networks (LPWANs)
address this issue and present an asymmetry that we can
exploit. If devices are low power and low cost, access points
manage a large number of devices; they can be more expen-
sive and plugged in, able to handle a higher computational
burden. It allows one to implement more complex decoding
algorithms.

Additionally, the broad coverage of a single cell and the
low power allocated to transmission make IoT networks op-
erate mainly in low signal-to-noise ratio (SNR) values. LoRa
(Long Range) uses a chirp spread spectrum (CSS) modulation
scheme and works below the noise level, i.e., SNR < 0 dB.
Thus, denoising techniques are worth investigating to extract
useful information from the noisy signal. Besides, the ALOHA
protocol used in LoRaWAN generates collisions and packet
losses when two or more devices transmit using the same
spreading factor (SF) and frequency band at the same time
[1].
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In this paper, we propose a deep learning-based detector
structure for LoRa symbol detection in the uplink that copes
with challenging conditions at the receiver. The structure is
based on a denoising autoencoder [2], [3] and a convolutional
neural network. The contributions are (i) the implementation
of an autoencoder (AE) for denoising LoRa signals as well
as coping with the collisions corresponding to interference
coming from other LoRa transmitters using the same SF and
frequency band, (ii) a convolutional neural network (CNN) to
detect the symbols, and (iii) the set up of a Bayesian-optimized
complete decoding scheme.

In previous works, few improvements to the original LoRa
detector can be found. If optimal in Gaussian noise, it does not
handle interference properly. Some specific works have been
proposed to evaluate or improve the capture effect [4], but
most of the time with a single interferer and without modi-
fying the receiver detection method. In [5], a convolutional
neural network-based LoRa demodulator is proposed. This
is achieved by considering time-domain LoRa symbols with
impairments, including additive white Gaussian noise, carrier
frequency, and time offset. The results show an improvement
when using deep learning over typical non-coherent detection.
However, in this work, the impact of interference from the
other LoRa user is not considered. In [6], a neural network-
based approach is proposed, but without preprocessing step.
In this paper, we consider as input for the proposed detector
the time-frequency representation of the received signal, i.e.,
its spectrogram, to efficiently take advantage of autoencoders’
denoising capabilities. In [6], the input of the CNN is a two-
dimensional image of a line plot. However, autoencoders are
not suited for denoising such kind of input since the noise
in [6] corrupts the shape of the line plot rather than acting
stochastically on the whole image. By using the spectrogram
as input, the noise is spread all over the image, resulting in
a noisy image for which the autoencoder is able to perform
noise removal. Besides denoising, the autoencoder is also able
to deal with interference from other LoRa users if present. If
autoencoders have been used previously to denoise signals in
receivers [7]–[9], as far as we know, they were not employed
yet for LoRa systems or signal detection.

Simulation results show that our proposed detector outper-
forms the classical LoRa detector [10], the coherent LoRa
detector in [11], and the deep learning-based detectors of [5]
and [6] in the presence of interference.



II. SYSTEM MODEL

Each symbol in LoRa carries SF bits, resulting in M = 2SF

different symbols. SF ranges from 7 to 12. The symbol
duration is Ts = MT , where T = 1

B and B is the signal
bandwidth [12]. Each LoRa symbol is represented by a chirp
that contains a linear frequency change over the time interval
Ts. It is generated from a raw chirp s(t) which has an
instantaneous frequency of B

Ts
t, resulting in the base-band

expression:
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Let Q be the total number of LoRa symbols in a packet. User
j transmits at time qTs (q = 0, · · · , Q−1) the symbol m(j)

q ∈
{0, · · · ,M−1}. Information is encoded by cyclic shifting the
raw chirp by δ(j)q = m
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Fig. 1: (a) Raw chirp (b) Coded chirp associated with m(j)
q .

User j transmits s(j)(t) =
∑Q−1
q=0 s

(j)
q (t−qTs). A preamble

composed of raw chirps is added to form the LoRa packet.
We assume that the gateway is at the center of a circle

of radius rmax with a user-free guard-zone of radius rmin.
The number Ni of interfering users with the same SF is
randomly chosen from a Poisson distribution with parameter
λ. Their 2D coordinates are uniformly distributed in the
ring. The communication between nodes is uncoordinated and
asynchronous. Synchronization at the receiver is based on the
correlation between the received signal and the preamble, and
we assume it is perfect. The received signal associated with
symbol q of user j sampled at t = nT , n = −M2 , · · · ,

M
2 − 1

is:

rq[n] = h(j) s(j)q [n] +
∑
i∈I

h(i)s
(j,i)
q,interf[n] + wq[n], (2)

where s(j)q [n] = s
(j)
q (nT ), I is the set of interfering users

(|I| = Ni), and wq[n] ∼ CN (0, σ2) is a complex Gaussian
noise. The channel coefficients of user i is denoted h(i).

III. THE CLASSICAL DETECTOR

The classical detection for LoRa utilizes the non-coherent
Frequency Shift Keying (FSK) detection technique [10]. First
multiplies the samples of the received signal by the conjugate
of the raw chirp, yielding yq[n] = rq[n]s

∗[n]. A Fast Fourier
Transform (FFT) is then applied:

Yq[k] =

M/2∑
n=−M/2

yq[n] e
−2πnk

M , k = 0, . . . ,M − 1. (3)

The symbol m(j)
q is estimated by taking the frequency index

where the modulus of (3) is maximum. It cannot handle an
interferer with higher power.

IV. PROPOSED DEEP LEARNING-BASED DETECTOR

The proposed deep learning-based detector architecture is
illustrated in Fig. 2 and decomposed in two steps: an autoen-
coder and a CNN based detector.

A. Input signal

Instead of the signal itself, the input of our denoiser is
a grayscale spectrogram of the received signal (cf. Fig. 6a
and 6b). The spectrogram is obtained as follows: a window
(Hamming) of the signal is taken, and the Fourier Transform
of this window is calculated. The magnitude of the FFT will
represent one column of the spectrogram. Then the window is
shifted, and a second line is created using the same process.
The length of the window (and of the FFT) and the length of
the shifts are parameters to be chosen that will define the size
of the spectrogram. The spectrogram is defined by the length
l of the window used for calculating the Short-Time Fourier
Transform (we use a Hamming window), m the number of
overlapping samples between two consecutive windows, and
k the number of samples of the Fourier transform. Having
fixed l, the minimum resolution would be given by m = 0
and k = l.

To improve the receiver performance, we over-sample the
spectrogram both in time and frequency. For SF = 7 in result
section V-A, we use a 128 × 128 image size obtained with
l = 32, m = l − 1 and k = 128. It is to be noted that we
center the first window on the first signal value rq[−M/2],
which requires to add l/2 samples. Taking benefit of the cyclic
property of rq[n] we add the l − 1 last samples, i.e. rq[i] =
rq[i + 2SF] for i = −M/2 − l/2, · · · ,−M/2 − 1. Similarly,
we add the first l/2 samples at the end of the signal so that
the last window is centered on the last sample.

However, it is not necessary to take a N ×N window with
N = 2SF. We will see in the complexity analysis (section
V-B) that fixing an image size with N = 128 is sufficient.
The image does not even need to be square, but the best
compromise between accuracy and complexity is an open
question.

Spectrogram

image

Denoising

convolutional

autoencoder

CNN-based

detector

Detected
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Fig. 2: Architecture of the detector.

B. Denoising step: The Convolutional Autoencoder

An autoencoder is a neural network with two parts: en-
coding and decoding. The encoding part aims at getting
a compressed low dimensional representation of the input;
the decoding part reconstructs the input. The autoencoder is
trained with noisy input and a noise-free target results in
a model that learns the essential features and denoises the



input image. As shown in Fig. 3, the encoder is a series
of convolutional layers, each followed by a downsampling
(pooling) layer. The decoder is a series of convolutional layers,
each followed by an upsampling layer. As the decoder must
do the reverse operation, the whole architecture is symmetrical
[13]. The number of convolutional layers, the number of filters
and their sizes for each layer are determined through Bayesian
optimization [14]. In short, Bayesian optimization is a typical
derivative-free optimization method used for black-box objec-
tive functions. A black-box function is a function in which we
can only observe its output based on a given input, i.e., with
no information about what is inside. Within the context of our
paper, the input is the set of hyperparameters of the considered
machine learning (ML) model (based on the approach, it can
be the CNN or the Convolutional Autoencoder), and the output
is the ML model accuracy. Thus, the black-box is the function
that maps a given set of hyperparameters (i.e., the input) to
the corresponding ML model accuracy (i.e., the output).
Bayesian optimization relies on the following steps. (i) Evalu-
ate the objective function based on the (initial) input samples.
(ii) Based on the samples and their corresponding outputs,
perform a Gaussian Process Regression (GPR). In fact, the
result is a statistical model of the black-box objective function
(in other words., a substitute or surrogate). In this step, the
Bayes rule is involved. (iii) Calculate the acquisition function,
a metric function to decide which set of hyperparameters is
a potential lead to the optimum, so it will be employed for
the next searching iteration. (iv) Identify the next to-evaluate
input, then iterate (starting from step (ii) to update the GPR
model based on the enriched observations) until achieving
some stopping criteria.

Fig. 3: Convolutional Autoencoder Network architecture.

C. Detection step: The Convolutional Neural Network

As shown in Fig. 4, the CNN architecture consists of a
series of convolutional layers, each followed by a pooling
layer and a sequence of fully connected layers. The number of
convolutional and fully connected layers, the number of filters
and their sizes, and the size of each fully connected layer
are determined through Bayesian optimization. The activation
function is the ReLU function, and batch normalization is ap-
plied. We use the softmax function for the output classification
layer. The output of the overall detection system is the index
of the transmitted symbol.

Fig. 4: Convolutional Neural Network architecture.

The adaptive moment estimation (ADAM) is used to opti-
mize the AE and CNN structures’ learnable parameters, such
as the weights and biases.

V. SIMULATION RESULTS

The considered LoRa transmission setting is bandwidth
B = 250 kHz, SF = 7 resulting in M = 128. The values
for rmax and rmin are 1 km and 20 m, respectively. The
signal amplitude decays with distance d according to d−γ/2,
where γ is the path loss exponent, γ = 4 is considered here.
The number of interfering users Ni in a given time interval is
obtained from a Poisson distribution as explained in section
II, with λ = 0.25, 0.7, and 1. The 128×128 received signals’
spectrogram (see section IV-A is considered as the input
of the AE. As previously mentioned, Bayesian optimization
is performed to set the hyperparameters of both the AE
and CNN: the number of convolutional layers (nCL), fully
connected layers (nFC), filters (nf); the size of the filters (sf)
and fully connected layers (sFC). The Bayesian optimization
step is done independently for each value of λ. Moreover,
a priori experimental trials showed that running that step for
SNR = −8 dB is enough to have a network structure that could
be generalized for the other considered SNR values. Tables I
and II list the optimized structure for both AE and CNN parts,
where the subscripts indicate the number of the corresponding
layer. The hyperparameter values are given for the encoder,
and the decoder part of the AE is symmetric to the encoder
structure. Roughly, the number of kernels of the AE and their
sizes expands with the severity of the interference. In contrast,
the hyperparameters of the CNN part are almost uncorrelated
with the interference parameter λ. In fact, since the AE is
trained to provide noise-and-interference free spectrograms,
this makes the CNN much less sensitive to the interference
effect. Note that the size of the last FC layer is set to M
as described in Fig. 4. In order to perform the denoising
step independently of the symbol decoding step, the denoising
autoencoder and the detector are trained sequentially. The AE
is trained for 30 epochs, with a mini-batch size of 100 samples,
and the mean squared error (MSE) function is used as the
loss function. The CNN network is trained to minimize the
cross-entropy loss for 60 epochs with a mini-batch size of 300
samples. To optimize the learnable parameters for both AE and
CNN structures, we employed the ADAM algorithm with an
initial learning rate of 0.001. The symbol error rate (SER)



TABLE I: Bayesian-based tuned hyperparameters of the convolu-
tional autoencoder for different λ.

λ nCL nf1 nf2 nf3 nf4 sf1 sf2 sf3 sf4
0.25 4 15 23 30 35 8 5 4 16
0.7 4 94 18 58 89 5 14 16 20
1 4 80 97 51 99 12 10 18 19

TABLE II: Bayesian-based tuned hyperparameters of the CNN for
different λ.

λ nCL nf1 nf2 sf1 sf2 nFC sFC1 sFC2

0.25 2 15 80 3 8 2 915 128
0.7 2 83 96 6 12 2 879 128
1 2 45 98 3 12 2 459 128

as a function of SNR is used to compare the performance of
the proposed detector with the classical LoRa detector, the
coherent LoRa detector, and the CNN-based detectors in [5]
and [6].

A. Performance evaluation

Training and testing are performed for each (SNR, λ)
pair. It should be noted that typical LoRa detectors are able
to estimate the SNR. The average number of potentially
interfering devices is represented by λ. As the gateway knows
its environment, including the number of users using the
same spreading factor, an estimation of λ could also be
implemented. We also note that in the absence of interference,
the proposed detector performs very close to the coherent
LoRa and classical LoRa (noncoherent) detectors. However,
in such a case, λ = 0, switching to the coherent or classical
receiver seems the best option.

For illustration, we first show in Figs. 5 and 6 the effect of
the denoising on a given symbol for two different values of
SNR. In Fig 5 and 6, the term noisy represents the presence
of noise plus interference in the signal.

(a) Noise-free (b) Noisy (c) Denoised

Fig. 5: Spectrogram of (a) a noise-free LoRa symbol of index 116,
(b) before and (c) after the AE, SNR = −8 dB, λ = 0.25, SF = 7.

(a) Noise-free (b) Noisy (c) Denoised

Fig. 6: Spectrogram of (a) a noise-free LoRa symbol of index 116,
(b) before and (c) after the AE, SNR = −12 dB, λ = 0.25, SF = 7.

Figure 7 shows the simulation results for λ = 0.25, 0.7, and
1. The performance curves illustrate that the proposed AE-
CNN detector outperforms the CNN-based detectors in [5],
[6], classical LoRa detector, and coherent LoRa detector for
all λ.

In the lowest number of interfering users (λ = 0.25 ), the
proposed AE-CNN detector is more efficient than the CNN-
based detectors, with at least 2 dB gain for a target SER
of 10−4 (cf. Figs. 7a). In the case of a higher number of
interfering users (λ = 0.7 and λ = 1), the proposed AE-
CNN detector attains 3 dB gain compared to the CNN-based
detectors (cf. 7b and Fig. 7c). Furthermore, the classical LoRa
detector suffers a higher performance loss in the presence of
interference.

Figure 8 investigates the impact of time and frequency
synchronization errors on the performance of the proposed
detector. SD denotes the standard deviation of the errors
modeled as zero-mean Gaussian random variables. First, the
robustness to time synchronization errors was tackled by
considering SD = Ts/(2M). The performance is degraded
but remains in the same order of magnitude as the perfect
synchronization case. Then frequency synchronization errors
were considered with SD = B/(2M), leading to the same
conclusions. Note that both SD values correspond to half the
time and frequency resolutions, which is reasonably consid-
ered poor synchronization [15].

B. Computational Complexity

As a series of convolutional layers, and based on [16],
the complexity order of the proposed detection scheme is
estimated to be O(N4) + O(N2M). The complexity of the
spectrogram calculation is neglected in front of O(N4). If
a maximum resolution (N = 2SF) is chosen, the resulting
exponential complexity can be limiting for high SF (12 in
particular). However, we focus on the uplink scenario, and the
detector is the access point, which can be more expensive and
reduce energy constraints so that an implementation could be
envisioned.

Besides, the size of the spectrogram has not to be condi-
tioned on the signal length M . In fact, we can significantly
reduce N to limit the complexity. In table III we show the
performance with SF = 9 and SF = 12 for a given λ
and SNR when we change N from 2SF to 256 and 128.
The performance loss is very limited while the complexity
is significantly reduced, as illustrated by the duration needed
to decode one hundred symbols (on a computer using Matlab,
so not an optimized implementation), see table IV.

TABLE III: Comparison of SER when different SF and image sizes
are considered for λ = 0.7 and SNR= −10 dB.

SF = 9 SF = 12

N = 2SF 5.07× 10−4 6.38× 10−6

N = 256 5.26× 10−4 7.57× 10−6

N = 128 5.33× 10−4 7.62× 10−6

TABLE IV: Average computational time (in second) to decode a 100
symbols packet length, for λ = 0.7, SNR= −10 dB, and when
different image sizes are considered.

SF = 7 SF = 9 SF = 12

N = 2SF 0.186 1.80 21.9
N = 128 0.186 0.254 0.791



(a) λ = 0.25 (b) λ = 0.7 (c) λ = 1

Fig. 7: Symbol error rate as a function of the SNR for different detection approaches: classical detector, coherent detector in [11], CNN-based
[5], [6], and the proposed AE-CNN detector when B = 250 kHz, SF = 7. The plot inside shows the probability mass function (pmf) related
to the number of interfering users.

Fig. 8: SER as a function of the SNR for the proposed AE-
CNN detector with time (SD = Ts

2M
) and frequency (SD = B

2M
)

synchronization errors, λ = 0.7.

VI. CONCLUSION

This paper proposes a new detector for LoRa-like networks,
which combines a denoising autoencoder and a CNN-based
detector. The main idea is to use a denoising autoencoder
to alleviate the impact of the noise and interference. The
proposed detector can decode the user of interest’s signals
in the presence of multiple interfering users, which transmit
simultaneously using the same transmission setting (frequency
channel and SF). The results show that the proposed AE-CNN
detector outperforms the CNN-based, the coherent, and the
classical LoRa detectors when there is interference coming
from other users. The proposed detector shows 3 dB gain for
a target SER of 10−4. Additionally, the classical LoRa detector
suffers a significant performance loss when interfering users
increase. Deep learning-based approaches, such as denoising
autoencoder and CNN, appear then to be a potential choice
for addressing noise and interference in LoRa networks. As
machine learning-based decoding approaches are known for
their capacity to learn transmission mismatches, a good expan-
sion to the proposed detection scheme would be to consider
synchronization errors in the training process (i.e., considering
features with synchronization errors) in order to make the
receiver even more robust to those errors.
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