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Introduction

Fix an integer d ≥ 1 and a real T > 0. Let (Ω, F, P) be a complete probability space equipped with augmented filtration (F t ) t∈[0,T ] generated by a standard d-dimensional Brownian motion (B t ) t∈[0,T ] , and F T = F. Consider the following scalar backward stochastic differential equation (BSDE in short):

Y t = ξ + ∫ T t g(s, Y s , Z s )ds - ∫ T t Z s dB s , t ∈ [0, T ], (1.1) 
where ξ is called the terminal condition, which is an F T -measurable real-valued random variable, the random field

g : Ω × [0, T ] × R × R 1×d → R
is called the generator, which is an (F t )-adapted process for each (y, z), and the pair of (F t )-adapted processes (Y t , Z t ) t∈[0,T ] is called a solution of (1.1), which takes its values in R × R 1×d such that P -a.s., integrable parameters. Since then, BSDEs have been extensively studied due to their deep connections with various fields such as partial differential equations, mathematical finance, stochastic control and so on. The reader is refereed to among others [START_REF] El Karoui | Backward stochastic differential equations in finance[END_REF][START_REF] Kobylanski | Backward stochastic differential equations and partial differential equations with quadratic growth[END_REF][START_REF] Hu | Utility maximization in incomplete markets[END_REF] for more details. In particular, much efforts have been paid on the well-posedness of adapted solutions to BSDEs under various integrability on the parameters and various growth and/or continuity of the generator g in the unknown variables (y, z). For instance, some classical results can be found in [START_REF] Lepeltier | Backward stochastic differential equations with continuous coefficient[END_REF][START_REF] Kobylanski | Backward stochastic differential equations and partial differential equations with quadratic growth[END_REF][START_REF] Briand | BSDE with quadratic growth and unbounded terminal value[END_REF][START_REF] Briand | Quadratic BSDEs with convex generators and unbounded terminal conditions[END_REF][START_REF] Delbaen | Backward SDEs with superquadratic growth[END_REF][START_REF] Hu | Multi-dimensional backward stochastic differential equations of diagonally quadratic generators[END_REF][START_REF] Hu | Existence of solution to scalar BSDEs with L exp √ 2 λ log(1 + L)-integrable terminal values[END_REF][START_REF] Buckdahn | Uniqueness of solution to scalar BSDEs with L exp ( µ √ 2 log(1 + L) ) -integrable terminal values[END_REF][START_REF] Fan | Existence and uniqueness of solution to scalar BSDEs with L exp ( µ √ 2 log(1 + L) ) -integrable terminal values: the critical case[END_REF][START_REF] Hu | Well-posedness of scalar BSDEs with sub-quadratic generators and related PDEs[END_REF][START_REF] Hu | Existence, uniqueness and comparison theorem on unbounded solutions of scalar super-linear BSDEs[END_REF] and the references therein.

t → Y t is continuous, t → |g(t, Y t , Z t )| + |Z t | 2 is
With adapted solutions of BSDEs, Peng [START_REF] Peng | Backward SDE and related g-expectation[END_REF] introduced the notion of conditional g-expectation of a square-integrable random variable, which is a nonlinear extension of the conventional conditional expectation. Since the conventional conditional expectation is defined in the space of integrable random variables, it is then asked that how to define the conditional g-expectation of an only integrable random variable-which entails solution of BSDEs with only integrable parameters. It has been widely recognized that it is more difficult to solve BSDEs with only integrable parameters than those with L p -integrable parameters (p > 1). To the best of our knowledge, there are only few discussions on adapted solution of BSDEs with integrable parameters. In particular, an existence and uniqueness result is available in [START_REF] Briand | L p solutions of backward stochastic differential equations[END_REF] in this direction for multidimensional BSDEs, where the generator g is Lipschitz continuous and grows in z in a sublinear way (see for example (H2S) α with α ∈ (0, 1) in Section 2). Subsequently in [START_REF] Fan | A class of BSDE with integrable parameters[END_REF][START_REF] Fan | Bounded solutions, L p (p > 1) solutions and L 1 solutions for one-dimensional BSDEs under general assumptions[END_REF][START_REF] Fan | Existence, uniqueness and stability of L 1 solutions for multidimensional BSDEs with generators of one-sided osgood type[END_REF][START_REF] Xiao | L p (p ≥ 1) solutions of multidimensional BSDEs with time-varying quasi-Hölder continuity generators in general time intervals[END_REF], new growth and continuity of the generator g in z are given for the well-posedness of the integrable adapted solutions, such as the uniform continuity and a sublinear growth, the Hölder continuity and the quasi-Hölder continuity (see (H5S) α with α ∈ (0, 1) in Section 2). In the last few years, with the test function method in [START_REF] Hu | Well-posedness of scalar BSDEs with sub-quadratic generators and related PDEs[END_REF] and the localization technique in [START_REF] Briand | BSDE with quadratic growth and unbounded terminal value[END_REF], we proved in [START_REF] Hu | Scalar BSDEs with logarithmic sub-linear growth generators and integrable parameters[END_REF] the existence of integrable solutions of scalar BSDEs with integrable parameters when the generator g satisfies a logarithmic sublinear growth in z (see (H2) λ n with n = 1 and λ > 1/2 in Section 2), and the uniqueness when further g has a logarithmic uniform continuity in z (see (H5) λ n with n = 1 and λ > 1/2 in Section 2), which extend the above-mentioned growth and continuity (see (i) of Remark 2.5 in Section 2 for details).

The objective of the present paper is to study integrable solutions of scalar BSDEs with only integrable parameters under finer assumptions on the generator g, as a continuation of our previous work [START_REF] Hu | Scalar BSDEs with logarithmic sub-linear growth generators and integrable parameters[END_REF]. The main result is formulated in Theorem 2.2 in Section 2. It gives the existence of an L 1 solution of a BSDE with integrable parameters when the generator g has an iterated-logarithmic sublinear growth in z (see (H2) λ n with n ≥ 2 and λ > 1/2 in Section 2), and the uniqueness of integrable solutions in a proper space when the generator g further has an iterated-logarithmic uniform continuity in z (see (H5) λ n with n ≥ 2 and λ > 1/2 in Section 2), which improves that of [START_REF] Hu | Scalar BSDEs with logarithmic sub-linear growth generators and integrable parameters[END_REF] (see (i) of Remark 2.3 in Section 2 for details).

In fact, it gives a sequence of weaker and weaker conditions on the generator g for the existence and uniqueness of the integrable solution of BSDE(ξ, g) under only integrable parameters. For the existence, we first establish a crucial inequality (see Proposition 3.2 in Section 3), and then find a proper test function (see Proposition 3.4 in Section 3) to apply Itô's formula to obtain an a priori bound on the first component of adapted solutions to the approximating BSDEs (see Proposition 3.5 in Section 3), and finally utilize the localization technique to obtain the desired solution. For the uniqueness, we establish a general comparison theorem for the integrable solutions to the BSDEs (see Proposition 2.4 in Section 2), where the same a priori estimate technique as above and Theorem 2.1 of [START_REF] Fan | Bounded solutions, L p (p > 1) solutions and L 1 solutions for one-dimensional BSDEs under general assumptions[END_REF] play a key role.

Let us close the introduction by introducing some necessary notations and spaces used in this paper.

For a, b ∈ R, we denote a ∧ b := min{a, b}, a + := max{a, 0} and a -:= -min{a, 0}, and sgn(x) := Furthermore, for each integer n ≥ 1, by induction we denote the following function ln (1) (x) := ln x, x ≥ e (1) and ln (n) (x) := ln (n-1) (ln (1) (x)) = ln (1) (ln (n-1) (x)), x ≥ e (n) , where e (1) := e and e (n) := e e (n-1) .

For each p > 0, let S p be the set of (F t )-adapted continuous real-valued processes

(Y t ) t∈[0,T ] satisfying ∥Y ∥ S p := ( E[ sup t∈[0,T ] |Y t | p ] ) 1 p ∧1
< +∞, and M p the set of all (F t )-adapted R 1×d -valued processes (Z t ) t∈[0,T ] satisfying

∥Z∥ M p :=    E   ( ∫ T 0 |Z t | 2 dt ) p/2      1 p ∧1 < +∞.
Denote by Σ T the set of all (F t )-stopping times τ valued in [0, T ]. For an (F t )-adapted real-valued process (X t ) t∈[0,T ] , if the family {X τ : τ ∈ Σ T } is uniformly integrable, then we say that it is of class (D).

The rest of this paper is organized as follows. In section 2 we state the main result and introduce several remarks and examples to illustrate our theoretical result, and in section 3 we give the proof.

Statement of the main result

We always suppose that n ≥ 1 is a positive integer, α ∈ (0, 1), β, λ ≥ 0 and γ, c > 0 are several nonnegative constants, ξ is a terminal condition satisfying E[|ξ|] < +∞, and

(f t ) t∈[0,T ] is an (F t )-adapted nonnegative process satisfying E [ ∫ T 0 f t dt ] < +∞.
For an integer n ≥ 1 and a real number λ ≥ 0, define the function

IL λ n (x) := n-1 ∏ i=1 √ ln (i) (e (n) + x) ( ln (n) (e (n) + x) ) λ , x ≥ 0.
An equality or inequality between random variables are always understood in the sense of P -a.s.. Let us introduce the following assumptions on the generator g. 

| ≤ f t (ω) + h(|y|) + c|z| 2 , ∀(y, z) ∈ R × R 1×d .
(H4) g satisfies an extended monotonicity condition in y, i.e., there exists a concave function ρ(•) ∈ S with ρ(u) > 0 for u > 0 and ∫

0 + du ρ(u) = +∞ such that dP × dt -a.e., g(ω, t, y 1 , z) -g(ω, t, y 2 , z) ≤ ρ(y 1 -y 2 ), ∀(y 1 , y 2 , z) ∈ R × R × R 1×d with y 1 > y 2 .
(H5)

λ n g has an iterated-logarithmic uniform continuity in z, i.e., there is a linearly growing function

κ(•) ∈ S such that dP × dt -a.e., |g(ω, t, y, z 1 ) -g(ω, t, y, z 2 )| ≤ κ ( |z 1 -z 2 | IL λ n (|z 1 -z 2 |) ) , ∀(y, z 1 , z 2 ) ∈ R × R 1×d × R 1×d .
Remark 2.1. We have the following four assertions.

(i) Assumptions (H1), (H3) and (H4) are also required in [START_REF] Hu | Scalar BSDEs with logarithmic sub-linear growth generators and integrable parameters[END_REF]. And, assumptions (H2) λ 1 and (H5)

λ 1
with λ ∈ (1/2, 1] are the assumptions (H2) and (H5) of [START_REF] Hu | Scalar BSDEs with logarithmic sub-linear growth generators and integrable parameters[END_REF], respectively. Assumption (H2) 0 1 is exactly the one (H1) of [START_REF] Briand | L p solutions of backward stochastic differential equations[END_REF], where g has a one-sided linear growth in y and a linear growth in z, and (H5) 0 1 is exactly the uniform continuity assumption of g in z of [START_REF] Fan | Bounded solutions, L p (p > 1) solutions and L 1 solutions for one-dimensional BSDEs under general assumptions[END_REF][START_REF] Hu | Existence, uniqueness and comparison theorem on unbounded solutions of scalar super-linear BSDEs[END_REF].

(ii) For each n ≥ 1 and λ > 1/2, we have (iv) For each n ≥ 1 and k > e (n) , there is a constant K > 0 depending only on (n, k) such that

IL λ n+1 (x) ≤ K IL λ n (x), x ≥ 0 with a constant K > 0
1 ≤ ln (n) (k + x) ln (n) (e (n) + x) ≤ K, x ≥ 0.
Consequently, the constant e (n) appearing in (H2) λ n and (H5)

λ n can be replaced with a larger number. In addition, the three assumptions (H3), (H4) and (H5)

λ n yield (H2) λ n .
Our main result is stated as the following existence and uniqueness theorem. Then BSDE(ξ, g) admits a solution (Y t , Z t ) t∈[0,T ] such that (Y, Z) ∈ S p × M p with each p ∈ (0, 1), and Y belongs to class (D). And, there exists a constant C > 0 depending only on (β, γ, n, λ, T ) such that

|Y t | ≤ |Y t | + ∫ t 0 f s ds ≤ CE [ |ξ| + ∫ T 0 f s ds F t ] + C, t ∈ [0, T ].
(2.1)

Moreover, if assumptions (H4) and (H5)

λ n also hold for the generator g, then the solution (Y, Z) with Y being of class (D) is unique. Theorem 1], since it gives a sequence of weaker and weaker conditions on the generator g for the existence and uniqueness of the integrable solution of BSDE(ξ, g) under only integrable parameters. In addition, the condition of Z ∈ M p for each p ∈ (0, 1) is not required for the uniqueness in Theorem 2.2 as in [START_REF] Hu | Scalar BSDEs with logarithmic sub-linear growth generators and integrable parameters[END_REF]Theorem 1], while it is assumed in [START_REF] Briand | L p solutions of backward stochastic differential equations[END_REF][START_REF] Fan | A class of BSDE with integrable parameters[END_REF][START_REF] Fan | Bounded solutions, L p (p > 1) solutions and L 1 solutions for one-dimensional BSDEs under general assumptions[END_REF].

Remark 2.3. With respect to Theorem 2.2, we make the following two remarks. (i) In view of (i) and (ii) of Remark 2.1, Theorem 2.2 improves [12,

(ii) Both Theorem 1 of [START_REF] Hu | Scalar BSDEs with logarithmic sub-linear growth generators and integrable parameters[END_REF] and Theorem 2.2 show that under assumptions (H1) and (H3) on the generator g, the condition (H2) λ n with n ≥ 1 and λ > 1/2 is sufficient to guarantee existence of the integrable solution of BSDE(ξ, g) with integrable parameters. And, [START_REF] Hu | Existence of solution to scalar BSDEs with L exp √ 2 λ log(1 + L)-integrable terminal values[END_REF] showed that (H2) A general comparison result on the integrable solutions of BSDEs with integrable parameters is established in the following proposition, which generalizes Proposition 2.5 in [START_REF] Hu | Scalar BSDEs with logarithmic sub-linear growth generators and integrable parameters[END_REF] by (i) and (ii) of Remark 2.1, and naturally yields the uniqueness part in Theorem 2.2. Proposition 2.4. Let n ≥ 2, λ > 1/2, ξ and ξ ′ be two terminal conditions, g and g ′ be two generators, and (Y t , Z t ) t∈[0,T ] and (Y ′ t , Z ′ t ) t∈[0,T ] be a solution of BSDE(ξ, g) and BSDE(ξ ′ , g ′ ), respectively. Suppose that g (resp. g ′ ) satisfies assumptions (H4) and (H5)

λ n and (Y -Y ′ ) + is of class (D). If ξ ≤ ξ ′ and 1 Yt>Y ′ t (g(t, Y ′ t , Z ′ t ) -g ′ (t, Y ′ t , Z ′ t )) ≤ 0 (resp. 1 Yt>Y ′ t (g(t, Y t , Z t ) -g ′ (t, Y t , Z t )) ≤ 0 ), (2.2 
)

then we have Y t ≤ Y ′ t for each t ∈ [0, T ].
Let us further introduce the following assumptions on the generator g, which is closely related to assumptions (H2) λ n and (H5) λ n . We would like to mention that some similar assumptions to the following (H2S) α and (H5S) α have been used in [START_REF] Briand | L p solutions of backward stochastic differential equations[END_REF] and [START_REF] Xiao | L p (p ≥ 1) solutions of multidimensional BSDEs with time-varying quasi-Hölder continuity generators in general time intervals[END_REF], respectively. It will be shown in the following (H2S) α g has a one-sided linear growth in y and a sublinear growth in z, i.e., dP × dt -a.e., for each

(y, z) ∈ R × R 1×d , sgn(y)g(ω, t, y, z) ≤ f t (ω) + β|y| + γ|z| α .
(H5S) α g satisfies a quasi-Hölder continuity condition in z, i.e., there exists a function κ(•) ∈ S with linear growth such that dP × dt -a.e., for each (y,

z 1 , z 2 ) ∈ R × R 1×d × R 1×d , |g(ω, t, y, z 1 ) -g(ω, t, y, z 2 )| ≤ κ (|z 1 -z 2 | α ) .

(H5 ′ )

λ n There exists a constant A > 0 and a function κ(•) ∈ S with linear growth such that dP × dt -a.e., for each (y,

z 1 , z 2 ) ∈ R × R 1×d × R 1×d , |g(ω, t, y, z 1 ) -g(ω, t, y, z 2 )| ≤ κ (|z 1 -z 2 |) (2.3) and |g(ω, t, y, z 1 ) -g(ω, t, y, z 2 )| ≤ A|z 1 -z 2 | IL λ n (|z 1 -z 2 |) + A.
(2.4) (H5S ′ ) α There exists a constant A > 0 and a function κ(•) ∈ S with linear growth such that dP × dt -a.e.,

for each (y, z 1 , z 2 ) ∈ R × R 1×d × R 1×d , (2.
3) holds and

|g(ω, t, y, z 1 ) -g(ω, t, y, z 2 )| ≤ A|z 1 -z 2 | α + A.
Remark 2.5. We have the following several remarks.

(i) For each α ∈ (0, 1), n ≥ 1 and λ ≥ 0, there exists a constant K > 0 depending only on (α, n, λ)

such that |x| α ≤ K|x| IL λ n (|x|) , x ∈ R,
which means that (H2S) α ⇒ (H2)

λ n and (H5S) α ⇒ (H5) λ n . In addition, the bigger the α, the weaker the assumptions (H2S) α and (H5S) α . In fact, the assertion on (H2S) α is obvious. And, it can be easily proved that for each 0 < α < ᾱ < 1, if the generator g satisfies (H5S) α with the function 

IL λ n (x) ≤ K 1 , x ∈ [0, 1] and 
1 ≤ K 2 x IL λ n (x) , x ∈ (1, +∞).
It then follows from (2.3) and (2.4) that (H5) λ n holds for the generator g with the function

κ(x) :=    κ(K 1 x)1 0≤x≤1 + κ(K 1 )x1 x>1 , if κ(K 1 ) ≥ (1 + K 2 )A; (1+K2)A κ(K1) κ(K 1 x)1 0≤x≤1 + (1 + K 2 )Ax1 x>1 , if κ(K 1 ) < (1 + K 2 )A.
Similarly, it also holds that (H5S) α ⇔ (H5S ′ ) α for each α ∈ (0, 1). In particular, from the above assertions we can deduce that if the generator g is uniformly continuous and has a bounded growth in z, then it must satisfy (H5S) α and then (H5)

λ n for each α ∈ (0, 1), n ≥ 1 and λ ≥ 0.

(iii) In view of (ii) and (iii) in Remark 2.1 and the above (i), the following assertions can be verified.

-If g 1 and g 2 satisfy respectively (H5) -|z| 2 sin y.

It is not hard to check that this generator g satisfies assumptions (H1), (H2)

λ n and (H3) with

f • = B • + 1, β = 0, γ = 1, n = 2, λ = 3/4, c = 1 and h(u) = e u .
Then , where

l(u) := u| ln u| ln | ln u|1 0≤u≤ε + l ′ -(ε)(u -l(ε))1 u>ε , u ∈ (0, +∞)
with ε > 0 being sufficiently small. Note that for each x 1 , x 2 ≥ 0, we have

|F (x 1 ) -F (x 2 )| ≤ F (|x 1 -x 2 |)
for any concave function F (•) ∈ S. It can be verified that for each

x 1 , x 2 ≥ 0, |l(x 1 ) -l(x 2 )| ≤ l(|x 1 -x 2 |) with ∫ 0 + du l(u) = +∞, | sin x 1 -sin x 2 | ≤ |x 1 -x 2 |, | sin x 1 -sin x 2 | ≤ 2, | √ x 1 - √ x 2 | ≤ √ |x 1 -x 2 |, x 1 3 1 -x 1 3 2 ≤ |x 1 -x 2 | 1 3 , x 1 ln(e + x 1 ) - x 2 ln(e + x 2 ) ≤ |x 1 -x 2 | ln(e + |x 1 -x 2 |) and x 1 √
ln(e 8 + x 1 )(ln ln(e 8 + x 1 ))

2 3 - x 2 √
ln(e 8 + x 2 )(ln ln(e 8 + x 2 ))

2 3 ≤ |x 1 -x 2 | √ ln(e 8 + |x 1 -x 2 |) ln ln(e 8 + |x 1 -x 2 |)) 2 3
.

Based on these above observations, by virtue of Remark 2.5 we can easily prove that this generator ḡ satisfies assumptions (H1), (H2)

λ n , (H3), (H4) and (H5)

λ n with ρ(u) = l(u), n = 2 and λ = 2/3. Then, by Theorem 2.2 it can be concluded that BSDE(ξ, g) admits a unique solution (Y t , Z t ) t∈[0,T ] such that (Y, Z) ∈ S p × M p with each p ∈ (0, 1) and Y is of class (D).

Proof of the main result

First, we have the following crucial inequality.

Proposition 3.1. Let p > 1 and ψ(•) : [0, +∞) → [1, +∞) be a twice continuously differentiable function such that for each x ≥ 0, ψ ′ (x) > 0, ψ ′′ (x) < 0, x (ln ψ(x)) ′ ≤ 1 4 ∧ (1 - 1 √ p ), (3.1) 
-x (ln ψ ′ (x)) ′ ≤ 3 2 , ( 3.2) 
and 

ψ( √ pxψ(x)) ≤ √ pψ(x). (3.3) Then, we have 2xy ψ(y) ≤ px 2 ψ 2 (x) + y 2 , ∀(x, y) ∈ [0, ∞) × [0, ∞). (3.4) Proof. For (x, y) ∈ [0, +∞) × [0, +∞), define the function f (x, y) := y 2 - 2xy ψ(y) + px 2 ψ 2 (x) = ( y - x ψ(y) ) 2 + px 2 ψ 2 (x) - x 2 ψ 2 (y) . ( 3 
) ′ = 2y - 2x(ψ(y) -yψ ′ (y)) ψ 2 (y) , y ∈ [0, x] (3.6)
and Furthermore, note by (3.6) that f ′ (0) = -2x/ψ(0) < 0 and

f ′′ (y) = 2 -2x ( y ψ(y) ) ′′ = 2 + 2x ( 2ψ(y)ψ ′ (y) -2y(ψ ′ (y)) 2 + yψ(y)ψ ′′ (y) ) ψ 3 (y) , y ∈ [0, x]. ( 3 
f ′ (x) = 2x - 2x ψ(x) + 2x 2 ψ ′ (x) ψ 2 (x) ≥ 2x 2 ψ ′ (x) ψ 2 (x) > 0.
It follows that there exists a unique y 0 ∈ (0, x) such that f ′ (y 0 ) = 0 and

f (x, y) = f (y) ≥ f (y 0 ) = f (x, y 0 ), y ∈ [0, x]. (3.8)
In the sequel, since the function yψ(y), y ∈ [0, +∞) is strictly increasing with its range being [0, +∞), we can conclude that there exists a unique real y 1 ∈ (0, +∞) such that

y 1 = x √ pψ(y 1 )
.

(3.9)

Then, y 1 ∈ (0, x) and it follows from (3.6), (3.9) and (3.1) that

f ′ (y 1 ) = 2y 1 - 2x ψ(y 1 ) + 2xy 1 ψ ′ (y 1 ) ψ 2 (y 1 ) = - 2x [( 1 -1 √ p ) ψ(y 1 ) -y 1 ψ ′ (y 1 )
]

ψ 2 (y 1 ) ≤ 0.
Therefore, y 1 ≤ y 0 and then by (3.8) and (3.5) we deduce that depending only on (n, λ, p) such that for each k ≥ k n,λ,p , we have

f (x, y) ≥ f (x, y 0 ) = ( y 0 - x ψ(y 0 ) ) 2 + px 2 ψ 2 (x) - x 2 ψ 2 (y 0 ) ≥ px 2 ψ 2 (x) - x 2 ψ 2 (y 1 ) , y ∈ [0, x]. ( 3 
2xy IL λ n,k (y) ≤ px 2 ( IL λ n,k (x)
) 2 + y 2 , x, y ≥ 0, (3.12)

where and hereafter,

IL λ n,k (x) := n-1 ∏ i=1 √ ln (i) (k + x) ( ln (n) (k + x) ) λ .
Proof. Note that for each m ≥ 2, the case of n = m and λ = 0 is just the case of n = m -1 and λ = 1/2, and the case of n = 1 and λ = 0 is evident from the basic ineuqality. It suffices to prove the case of n ≥ 1 and λ > 0. Fix a sufficiently large k ≥ e (n) and let

ψ(x) := IL λ n,k (x) ≥ 1, x ∈ [0, +∞).
We prove that for a sufficient large k, the function ψ(•) satisfies (3.1)- (3.3). Observe that for each n ≥ 1 and x ≥ 0, we have

(ln (n) (k + x)) ′ = (ln (n-1) (k + x)) ′ ln (n-1) (k + x) = • • • = 1 (k + x) n-1 ∏ j=1 ln (j) (k + x)
.

For each n ≥ 1 and x ≥ 0, we can calculate that

ln ψ(x) = 1 2 n-1 ∑ i=1 ln (i+1) (k + x) + λ ln (n+1) (k + x)
and, in view of k being large enough,

0 ≤ x (ln ψ(x)) ′ = x k + x          1 2 n-1 ∑ i=1      1 i ∏ j=1 ln (j) (k + x)      + λ n ∏ j=1 ln (j) (k + x)          ≤ n-1 2 + λ ln k ≤ 1 4 ∧ (1 - 1 √ p ), (3.13) 
which means that the function ψ(•) satisfies (3.1).

Furthermore, it is not very difficult to verify that for each n ≥ 1 and x ≥ 0,

ψ ′ (x) = (ln ψ(x)) ′ ψ(x) = [ n-1 ∑ i=1 ( n-1 ∏ j=i+1 ln (j) (k + x) ) + 2λ ln (n) (k+x) ] ψ(x) 2(k + x) n-1 ∏ j=1 ln (j) (k + x) > 0 and ln ψ ′ (x) = ln ψ 0 (x) + ln ψ(x) -ln 2 - n-1 ∑ i=0 ln (i+1) (k + x) with ψ 0 (x) := n-1 ∑ i=1   n-1 ∏ j=i+1 ln (j) (k + x)   + 2λ ln (n) (k + x) ≥ 2λ ln(k + x) 1 n=1 + 1 n≥2 . ( 3.14) 
Note that for each n ≥ 1 and x ≥ 0, we have with i

= 1, • • • , n -1,   n-1 ∏ j=i+1 ln (j) (k + x)   ′ =   n-1 ∑ j=i+1 ln (j+1) (k + x)   ′ n-1 ∏ l=i+1 ln (l) (k + x) = n-1 ∑ j=i+1 ( n-1 ∏ l=j+1 ln (l) (k + x) ) (k + x) i ∏ l=1 ln (l) (k + x) ≥ 0,
and then

ψ ′ 0 (x) = n-1 ∑ i=1            n-1 ∑ j=i+1 ( n-1 ∏ l=j+1 ln (l) (k + x) ) (k + x) i ∏ l=1 ln (l) (k + x)            - 2λ (k + x) n ∏ i=1 ln (i) (k + x) ln (n) (k + x)
.

From (3.14) and (3.13), we deduce that for a sufficiently large k,

-(ln ψ ′ (x)) ′ = - ψ ′ 0 (x) ψ 0 (x) -(ln ψ(x)) ′ + 1 k + x n-1 ∑ i=0      1 i ∏ j=1 ln (j) (k + x)      ≤ 0 + 1 k + x ( 1 ln(k + x) + 2λ ln(k + x) ) + 0 + 1 k + x ( 1 + n -1 ln(k + x) ) ≤ 1 x ( 1 + n + 2λ ln k ) ≤ 3 2x , x > 0,
which yields that the function ψ(•) satisfies (3.2).

In the sequel, we prove that the function ψ(•) also satisfies (3.3). In fact, fix n ≥ 2 and λ > 0, and

set δ := p 1 n-1+2λ > 1.
We pick k large enough such that for each x ≥ 0 and i = 1,

• • • , n, k + √ pxψ(x) ≤ √ p(k + x)ψ(x) ≤ (k + x) δ and δ ln (i) (k + x) ≤ (ln (i) (k + x)) δ . ( 3.15) 
Then, for each i = 1, • • • , n, we have

ln (i) (k + √ pxψ(x)) ≤ δ ln (i) (k + x), x ≥ 0. (3.16) 
The last inequality can be proved by induction. In fact, (3.16) is clear for i = 1 since it follows from (3.15) that ln (1) (k + √ pxψ(x)) ≤ ln (1) [(k + x) δ ] = δ ln (1) (k + x), x ≥ 0. Now, assume that (3.16) holds for some i = l with l ∈ {1, • • • , n -1}. Then, in view of (3.16) and (3.15) we can deduce that ln (l+1) (k + √ pxψ(x)) = ln (1) [ln (l) (k + √ pxψ(x))] ≤ ln (1) [δ ln (l) (k + x)] ≤ ln (1) [(ln (l) 

(k + x)) δ ]
= δ ln (1) [ln (l) 

(k + x)] = δ ln (l+1) (k + x), x ≥ 0,
which means that (3.16) also holds for i = l + 1. Hence, (3.16) is true for each i = 1, • • • , n, and then

ψ( √ pxψ(x)) = n-1 ∏ i=1 √ ln (i) (k + √ pxψ(x)) ( ln (n) (k + √ pxψ(x)) ) λ ≤ δ n-1 2 +λ n-1 ∏ i=1 √ ln (i) (k + x) ( ln (n) (k + x) ) λ = √ pψ(x), x ≥ 0.
Then, (3.3) is true for ψ(•). Up to now, we have proved that the function ψ(•) satisfies all conditions in Proposition 3.1, by which the desired inequality (3.12) follows immediately.

Remark 3.3. With respect to the above Proposition 3.2, we make the following remarks.

(i) The case of n = 1 and λ ∈ [0, 1] of Proposition 3.2 is Proposition 3.2 of [START_REF] Hu | Scalar BSDEs with logarithmic sub-linear growth generators and integrable parameters[END_REF].

(ii) Except from the case of n = 1 and λ = 0, the inequality (3.12) does not hold when p ≤ 1. In fact, let n ≥ 1, λ > 0 and k ≥ e (n) be any constant. Assume that constants x, y > 0 satisfy

y := x IL λ n,k (y) < x.
Then, in view of (3.5),

y 2 - 2xy IL λ n,k (y) + x 2 ( IL λ n,k (x) ) 2 = x 2 ( IL λ n,k (x) ) 2 - x 2 ( IL λ n,k (y) ) 2 < 0,
which immediately yields the desired assertion. Now, let n ≥ 2, λ > 1/2 and k ≥ e (n) be sufficiently large and depends only on (n, λ) such that the inequality (3.12) with p = 2 in Proposition 3.2 holds. A C 1,2 function ϕ : [0, T ] × [0, +∞) → (0, +∞) will be called a test function, if ϕ s > 0, ϕ x > 0, ϕ xx > 0, and

-βϕ x (s, x)x -ϕ x (s, x) γ|z| IL λ n,k (|z|) + 1 2 ϕ xx (s, x)|z| 2 + ϕ s (s, x) ≥ 0, (s, x, z) ∈ [0, T ] × [0, +∞) × R 1×d .
(3.17)

Here and hereafter, ϕ s is the first-order partial derivative of ϕ in the first variable, and ϕ x and ϕ xx are respectively the first-and second-order partial derivative of ϕ in the second variable. Since (in view of (3.12) with p = 2)

-ϕ x (s, x) γ|z| IL λ n,k (|z|) + 1 2 ϕ xx (s, x)|z| 2 = ϕ xx (s, x) ( - γϕ x (s, x) ϕ xx (s, x) |z| IL λ n,k (|z|) + 1 2 |z| 2 ) ≥ - γ 2 ϕ 2 x (s, x) ϕ xx (s, x) ( IL λ n,k ( γϕx(s,x) ϕxx(s,x)
)) 2 , a C 1,2 function ϕ(•, •) will be a test function if ϕ > 0, ϕ s > 0, ϕ x > 0, ϕ xx > 0, and moreover, for each

(s, x) ∈ [0, T ] × [0, +∞), -βϕ x (s, x)x - γ 2 ϕ 2 x (s, x) ϕ xx (s, x) ( IL λ n,k ( γϕx(s,x) ϕxx(s,x)
)) 2 + ϕ s (s, x) ≥ 0.

(3.18)

In the sequel, we choose the following function

ϕ(s, x) := (k + x) [ 1 - ( ln (n) (k + x) ) 1-2λ ] µ s , (s, x) ∈ [0, T ] × [0, +∞)
to explicitly solve (3.18), where µ s : [0, T ] → (0, +∞) is a nondecreasing and continuously differentiable function to be assigned. First of all, letting further the constant k ≥ e (n) depending only on (n, λ, γ) be large enough, by a simple computation we can obtain that for each

(s, x) ∈ [0, T ] × [0, +∞), ϕ x (s, x) =     1 - 1 ( ln (n) (k + x) ) 2λ-1     1 - 2λ -1 n ∏ i=1 ln (i) (k + x)         µ s > 0, ϕ xx (s, x) = 2λ -1 (k + x) ( IL λ n,k (x) ) 2      1 - 2λ -1 n ∏ i=1 ln (i) (k + x) - 1 ( n ∏ i=1 ln (i) (k + x) ) 2      µ s > 0 and ϕ s (s, x) = (k + x) [ 1 - ( ln (n) (k + x) ) 1-2λ ] µ ′ s > 0, which yields that for (s, x) ∈ [0, T ] × [0, +∞), 1 2 µ s ≤ ϕ x (s, x) ≤ µ s , (3.19) (2λ -1)µ s 2(k + x) ( IL λ n,k (x) ) 2 ≤ ϕ xx (s, x) ≤ (2λ -1)µ s (k + x) ( IL λ n,k (x) ) 2 , (3.20) ϕ s (s, x) ≥ 1 2 (k + x)µ ′ s , ( 3.21) 
and then )) 2 + ϕ s (s, x)

γϕ x (s, x) ϕ xx (s, x) ≥ γ 2(2λ -1) (k + x) ( IL λ n,k (x) ) 2 ≥ k + x. ( 3 
≥ -β(k + x)µ s - γ 2 µ 2 s (2λ-1)µs 2(k+x)(IL λ n,k (x)) 2 ( IL λ n,k (k + x) ) 2 + 1 2 (k + x)µ ′ s ≥ (k + x) [ - ( β + 2γ 2 2λ -1 ) µ s + 1 2 µ ′ s ] , (s, x) ∈ [0, T ] × [0, +∞).
Thus, if we take

µ s := exp [ 2 ( β + 2γ 2 2λ -1 ) s ] , s ∈ [0, T ],
then (3.18) and then (3.17) holds. 

Define the function for

k ≥ e (n) , φ(s, x) := (k + x) [ 1 - ( ln (n) (k + x) ) 1-2λ ] exp [ 2 ( β + 2γ 2 2λ -1 ) s ] , (s, x) ∈ [0, T ] × [0, +∞). ( 3 
(s, x, z) ∈ [0, T ] × [0, +∞) × R 1×d , -βφ x (s, x)x -φ x (s, x) γ|z| IL λ n,k (|z|) + 1 2 φ xx (s, x)|z| 2 + φ s (s, x) ≥ 0. (3.24) 
The following Proposition 3.5 gives an a priori estimate for the solution to a BSDE. 

|Y t | ≤ |Y t | + ∫ t 0 f s ds ≤ CE [ |ξ| + ∫ T 0 f t dt F t ] + C, t ∈ [0, T ].
(3.25)

Proof. In view of (iv) of Remark 2.1, we suppose that the generator g satisfies assumptions (H2) ] .

By a similar analysis as that in Proposition 3.4 of [START_REF] Hu | Scalar BSDEs with logarithmic sub-linear growth generators and integrable parameters[END_REF], we conclude that

1 2 (k + Ȳt ) ≤ k 1 E[(k + ȲT )|F t ], t ∈ [0, T ],
which immediately yields the desired inequality (3.25).

We now prove Theorem 2.2 and Proposition 2.4.

Proof of Theorem 2.2. Assume first that g satisfies assumptions (H1), (H2) λ n and (H3). With Proposition 3.5 in hand, using the localization technique put forward initially in [START_REF] Briand | BSDE with quadratic growth and unbounded terminal value[END_REF] and following closely the proof of Theorem 2.1 in [START_REF] Hu | Scalar BSDEs with logarithmic sub-linear growth generators and integrable parameters[END_REF], we can construct a solution (Y t , Z t ) t∈[0,T ] of BSDE(ξ, g) such that (Y, Z) ∈ S p × M p with each p ∈ (0, 1) and Y is of class (D). The details are omitted here. Furthermore, suppose that g also satisfies assumptions (H4) and (H5) λ n . The uniqueness part of Theorem 2.2 is a direct consequence of Proposition 2.4, whose proof will be given below. The proof is then complete.

Proof of Proposition 2.4. Let A represent the linear-growth positive constant for the functions ρ(•) and κ(•) defined respectively in assumptions (H4) and (H5) λ n . In view of (iv) of Remark 2.1, we can suppose that the generator g satisfies (H5) λ n with a sufficiently large constant k ≥ e (n) instead of e (n) , where the constant k depends only on (n, λ, A) and can be similarly defined as in Proposition 3.4. In view of assumptions (H4) and (H5) λ n with k instead of e (n) , Proposition 3.4 and the proof of Proposition 3.5 together with Theorem 2.1 in [START_REF] Fan | Bounded solutions, L p (p > 1) solutions and L 1 solutions for one-dimensional BSDEs under general assumptions[END_REF], by a similar argument as that in Proposition 2.5 of [START_REF] Hu | Scalar BSDEs with logarithmic sub-linear growth generators and integrable parameters[END_REF] we have the desired assertions. The details are omitted here.

  integrable, and satisfies (1.1). Denote by BSDE(ξ, g) the BSDE with the terminal condition ξ and the generator g, which are called the parameters of the BSDE. Nonlinear BSDEs were initially introduced in [19], who established an existence and uniqueness result on adapted solutions of multidimensional BSDEs with Lipschitz continuous generators and square ⋆ This work is supported by National Natural Science Foundation of China (Nos. 12171471, 12031009 and 11631004), by Key Laboratory of Mathematics for Nonlinear Sciences (Fudan University), Ministry of Education, Handan Road 220, Shanghai 200433, China; by Lebesgue Center of Mathematics "Investissements d'avenir" program-ANR-11-LABX-0020-01, by CAESARS-ANR-15-CE05-0024 and by MFG-ANR-16-CE40-0015-01.
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  x>0 -1 x≤0 , where 1 A is the indicator function of set A. Let S be the set of all continuous nondecreasing function ρ(•) : [0, +∞) → [0, +∞) with ρ(0) = 0. For each pair of nonnegative integer m > k ≥ 0 and each real sequence {a n } +∞ n=1 , we use the following convention:

  depending only on (n, λ). Consequently, for any λ > 1/2, both conditions (H2) λ n and (H5) λ n become weak as the integer n increases. (iii) The inequality ln (n) (e (n) ) ≥ ln e = 1 is true for each n ≥ 1. Both conditions (H2) λ n and (H5) λ n become weak as the parameter λ decreases in the interval ( 1 2 , ∞).

Theorem 2 . 2 .

 22 Let n ≥ 2, λ > 1/2 and the generator g satisfy assumptions (H1), (H2) λ n and (H3).

  λ n with n = 1 and λ = 0 is not enough. Assertion (iii) of Remark 2.1 states that assumption (H2) λ n becomes weak as the parameter λ decreases. It is still open whether the condition (H2) λ n with n ≥ 1 and λ ∈ (0, 1/2] is sufficient for the existence of an integrable solution.

Remark 2 .

 2 5 that (H5) λ n and (H5S) α are respectively equivalent to the following (H5 ′ ) λ n and (H5S ′ ) α .

  κ(•), then it has to satisfy (H5S) ᾱ with the functionκ(x) := κ(x α ᾱ )1 0≤x≤1 + κ(x)1 x>1 . (ii) It holds that (H5) λ n ⇔ (H5 ′ ) λ n for each n ≥ 1 and λ ≥ 0. In fact, since ln (i) (e (n) ) ≥ 1 for each n ≥ 1 and i = 1, • • • , n and the function κ(•) in (H5) λ n is of linear growth, the statement of (H5) λ n ⇒ (H5 ′ ) λ n is obvious. Conversely, suppose that (H5 ′ )λ n holds with a constant A > 0 and a function κ(•). Observe that for each n ≥ 1 and λ ≥ 0, there exist two constants K 1 , K 2 > 0 depending only on (n, λ) such that

λn

  and (H5) λ n with n ≥ 1 and 0 ≤ λ ≤ λ, then anyone of their linear combinations must satisfy (H5) λ n . -If g 1 and g 2 satisfy respectively (H5) λ n and (H5) λ m with 1 ≤ n < m, λ > 1/2 and λ ≥ 0, then anyone of their linear combinations must satisfy (H5) λ m . -If the generators g 1 and g 2 satisfy respectively (H5S) α and (H5S) ᾱ with 0 < α ≤ ᾱ < 1, then anyone of their linear combinations satisfy (H5S) ᾱ and then (H5) λ n for each n ≥ 1 and λ ≥ 0.

Finally

  

. 5 )

 5 Clearly, it suffices to prove that f (x, y) ≥ 0 for each x, y ≥ 0. By (3.5) it is obvious for y ≥ x. Hence, we only need to prove that f (x, y) ≥ 0 for each x ∈ (0, +∞) and y ∈ [0, x]. Now, fix arbitrary x ∈ (0, +∞) and let f (y) := f (x, y), y ∈ [0, x]. Then we have f ′ (y) = 2y -2x ( y ψ(y)

. 7 )

 7 It follows from (3.1) and (3.2) that2y(ψ ′ (y)) 2 -yψ(y)ψ ′′ (y) ≤ 1 2 ψ(y)ψ ′ (y) + 3 2 ψ(y)ψ ′ (y) = 2ψ(y)ψ ′ (y),which together with (3.7) yields that f ′′ (•) > 0, and then f (•) is a strictly convex function on [0, x].

. 10 )Proposition 3 . 2 .

 1032 Finally, it follows from (3.3) and (3.9) that√ pψ(y 1 ) ≥ ψ( √ py 1 ψ(y 1 )) = ψ(x). (3.11)Then, by (3.10) and (3.11) we obtain that f (x, y) ≥ 0 for each x ∈ (0, +∞) and y ∈ [0, x], which is the desired conclusion.By virtue of Proposition 3.1, we can establish the following key inequality. Let n ≥ 1, λ ≥ 0 and p > 1. Then, there exists a positive constant k n,λ,p ≥ e(n) 

  , let us give two examples to which Theorem 2.2 applies, but none of existing results could.

	3
	4

Example 2.6. For each (ω, t, y, z)

∈ Ω × [0, T ] × R × R 1×d ,

define g(ω, t, y, z) := B t (ω) -e y sin 2 |z| + |z| cos |z| √ ln(e 8 + |z|)(ln ln(e 8 + |z|))

  for a sufficiently large constant k ≥ e(n) (as given in Proposition 3.4). Applying Itô-Tanaka's formula with the test function φ (see(3.23) for the definition), and noting the assumption (H2) λ n (but with IL λ n being replaced with IL λ n,k ), we have dφ(s, Ȳs ) = φ x (s, Ȳs ) (-sgn(Y s )g(s, Y s , Z s ) + f s ) ds + φ x (s, Ȳs ) Zs dB s +φ x (s, Ȳs )dL s + 1 2 φ xx (s, Ȳs )|Z s | 2 ds + φ s (s, Ȳs )ds (s, Ȳs ) Zs dB s , s ∈ [0, T ]. Then, since |Y s | ≤ Ȳs , we have from (3.24) in Proposition 3.4, dφ(s, Ȳs ) ≥ φ x (s, Ȳs ) Zs dB s , s ∈ [0, T ].

	[	(					)	]
	≥	-φ x (s, Ȳs )	β|Y s | +	γ|Z s | IL λ n,k (|Z s |)	+	1 2	φ xx (s, Ȳs )|Z s | 2 + φ s (s, Ȳs )	ds
	+φ x In the sequel, observe from (3.23) that				
	1 2 (k + with	k 1 := exp	[ 2	(	β +	2γ 2 2λ -1	)	T
									λ n with
	IL λ n being replaced with IL λ n,k Define	∫ t					
	Ȳt := |Y t | +	f s ds and	Zt := sgn(Y t )Z t , t ∈ [0, T ].
			0					
	Using Itô-Tanaka's formula, we have					
	∫ T						∫ T	∫ T
	Ȳt = ȲT +	(sgn(Y s )g(s, Y s , Z s ) -f s ) ds -	Zs dB s -
	t							t

t dL s , t ∈ [0, T ], where L is the local time of Y at 0. x) ≤ φ(s, x) ≤ k 1 (k + x), (s, x) ∈ [0, T ] × [0, +∞),