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Abstract

We establish a general existence and uniqueness of integrable adapted solutions to scalar backward

stochastic differential equations with integrable parameters, where the generator g has an iterated-

logarithmic uniform continuity in the second unknown variable z. The result improves our previous one

in [12].
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1. Introduction

Fix an integer d ≥ 1 and a real T > 0. Let (Ω,F ,P) be a complete probability space equipped with

augmented filtration (Ft)t∈[0,T ] generated by a standard d-dimensional Brownian motion (Bt)t∈[0,T ], and

FT = F . Consider the following scalar backward stochastic differential equation (BSDE in short):

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds−
∫ T

t

ZsdBs, t ∈ [0, T ], (1.1)

where ξ is called the terminal condition, which is an FT -measurable real-valued random variable, the

random field

g : Ω× [0, T ]× R× R1×d → R

is called the generator, which is an (Ft)-adapted process for each (y, z), and the pair of (Ft)-adapted

processes (Yt, Zt)t∈[0,T ] is called a solution of (1.1), which takes its values in R×R1×d such that P−a.s.,

t 7→ Yt is continuous, t 7→ |g(t, Yt, Zt)|+ |Zt|2 is integrable, and satisfies (1.1). Denote by BSDE(ξ, g) the

BSDE with the terminal condition ξ and the generator g, which are called the parameters of the BSDE.

Nonlinear BSDEs were initially introduced in [19], who established an existence and uniqueness

result on adapted solutions of multidimensional BSDEs with Lipschitz continuous generators and square
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integrable parameters. Since then, BSDEs have been extensively studied due to their deep connections

with various fields such as partial differential equations, mathematical finance, stochastic control and

so on. The reader is refereed to among others [6, 17, 14] for more details. In particular, much efforts

have been paid on the well-posedness of adapted solutions to BSDEs under various integrability on the

parameters and various growth and/or continuity of the generator g in the unknown variables (y, z). For

instance, some classical results can be found in [18, 17, 2, 3, 5, 15, 16, 4, 9, 10, 11] and the references

therein.

With adapted solutions of BSDEs, Peng [20] introduced the notion of conditional g-expectation

of a square-integrable random variable, which is a nonlinear extension of the conventional conditional

expectation. Since the conventional conditional expectation is defined in the space of integrable random

variables, it is then asked that how to define the conditional g-expectation of an only integrable random

variable—which entails solution of BSDEs with only integrable parameters. It has been widely recognized

that it is more difficult to solve BSDEs with only integrable parameters than those with Lp-integrable

parameters (p > 1). To the best of our knowledge, there are only few discussions on adapted solution

of BSDEs with integrable parameters. In particular, an existence and uniqueness result is available

in [1] in this direction for multidimensional BSDEs, where the generator g is Lipschitz continuous and

grows in z in a sublinear way (see for example (H2S)α with α ∈ (0, 1) in Section 2). Subsequently in

[13, 7, 8, 21], new growth and continuity of the generator g in z are given for the well-posedness of

the integrable adapted solutions, such as the uniform continuity and a sublinear growth, the Hölder

continuity and the quasi-Hölder continuity (see (H5S)α with α ∈ (0, 1) in Section 2). In the last few

years, with the test function method in [10] and the localization technique in [2], we proved in [12]

the existence of integrable solutions of scalar BSDEs with integrable parameters when the generator g

satisfies a logarithmic sublinear growth in z (see (H2)
λ
n with n = 1 and λ > 1/2 in Section 2), and

the uniqueness when further g has a logarithmic uniform continuity in z (see (H5)
λ
n with n = 1 and

λ > 1/2 in Section 2), which extend the above-mentioned growth and continuity (see (i) of Remark 2.5

in Section 2 for details).

The objective of the present paper is to study integrable solutions of scalar BSDEs with only integrable

parameters under finer assumptions on the generator g, as a continuation of our previous work [12]. The

main result is formulated in Theorem 2.2 in Section 2. It gives the existence of an L1 solution of a BSDE

with integrable parameters when the generator g has an iterated-logarithmic sublinear growth in z (see

(H2)
λ
n with n ≥ 2 and λ > 1/2 in Section 2), and the uniqueness of integrable solutions in a proper space

when the generator g further has an iterated-logarithmic uniform continuity in z (see (H5)
λ
n with n ≥ 2

and λ > 1/2 in Section 2), which improves that of [12] (see (i) of Remark 2.3 in Section 2 for details).

In fact, it gives a sequence of weaker and weaker conditions on the generator g for the existence and

uniqueness of the integrable solution of BSDE(ξ, g) under only integrable parameters. For the existence,

we first establish a crucial inequality (see Proposition 3.2 in Section 3), and then find a proper test

function (see Proposition 3.4 in Section 3) to apply Itô’s formula to obtain an a priori bound on the

first component of adapted solutions to the approximating BSDEs (see Proposition 3.5 in Section 3), and

finally utilize the localization technique to obtain the desired solution. For the uniqueness, we establish a

2



general comparison theorem for the integrable solutions to the BSDEs (see Proposition 2.4 in Section 2),

where the same a priori estimate technique as above and Theorem 2.1 of [7] play a key role.

Let us close the introduction by introducing some necessary notations and spaces used in this paper.

For a, b ∈ R, we denote a ∧ b := min{a, b}, a+ := max{a, 0} and a− := −min{a, 0}, and sgn(x) :=

1x>0−1x≤0, where 1A is the indicator function of set A. Let S be the set of all continuous nondecreasing

function ρ(·) : [0,+∞) → [0,+∞) with ρ(0) = 0. For each pair of nonnegative integer m > k ≥ 0 and

each real sequence {an}+∞
n=1, we use the following convention:

k∏
i=m

ai := 1 and

k∑
i=m

ai := 0.

Furthermore, for each integer n ≥ 1, by induction we denote the following function

ln(1)(x) := lnx, x ≥ e(1) and ln(n)(x) := ln(n−1)(ln(1)(x)) = ln(1)(ln(n−1)(x)), x ≥ e(n),

where

e(1) := e and e(n) := ee
(n−1)

.

For each p > 0, let Sp be the set of (Ft)-adapted continuous real-valued processes (Yt)t∈[0,T ] satisfying

∥Y ∥Sp :=

(
E[ sup

t∈[0,T ]

|Yt|p]

) 1
p∧1

< +∞,

and Mp the set of all (Ft)-adapted R1×d-valued processes (Zt)t∈[0,T ] satisfying

∥Z∥Mp :=

E

(∫ T

0

|Zt|2dt

)p/2


1
p∧1

< +∞.

Denote by ΣT the set of all (Ft)-stopping times τ valued in [0, T ]. For an (Ft)-adapted real-valued

process (Xt)t∈[0,T ], if the family {Xτ : τ ∈ ΣT } is uniformly integrable, then we say that it is of class

(D).

The rest of this paper is organized as follows. In section 2 we state the main result and introduce

several remarks and examples to illustrate our theoretical result, and in section 3 we give the proof.

2. Statement of the main result

We always suppose that n ≥ 1 is a positive integer, α ∈ (0, 1), β, λ ≥ 0 and γ, c > 0 are several

nonnegative constants, ξ is a terminal condition satisfying E[|ξ|] < +∞, and (ft)t∈[0,T ] is an (Ft)-adapted

nonnegative process satisfying

E

[∫ T

0

ftdt

]
< +∞.

For an integer n ≥ 1 and a real number λ ≥ 0, define the function

ILλ
n(x) :=

n−1∏
i=1

√
ln(i)(e(n) + x)

(
ln(n)(e(n) + x)

)λ
, x ≥ 0.

An equality or inequality between random variables are always understood in the sense of P− a.s.. Let

us introduce the following assumptions on the generator g.
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(H1) dP× dt− a.e., g(ω, t, ·, ·) is continuous.

(H2)
λ
n g has a one-sided linear growth in y and an iterated-logarithmic sublinear growth in z, i.e., dP ×

dt− a.e., for each (y, z) ∈ R× R1×d,

sgn(y)g(ω, t, y, z) ≤ ft(ω) + β|y|+ γ|z|
ILλ

n(|z|)
.

(H3) g has a general growth in (y, z), i.e., there exists a function h(·) ∈ S such that dP× dt− a.e.,

|g(ω, t, y, z)| ≤ ft(ω) + h(|y|) + c|z|2, ∀(y, z) ∈ R× R1×d.

(H4) g satisfies an extended monotonicity condition in y, i.e., there exists a concave function ρ(·) ∈ S

with ρ(u) > 0 for u > 0 and
∫
0+

du
ρ(u) = +∞ such that dP× dt− a.e.,

g(ω, t, y1, z)− g(ω, t, y2, z) ≤ ρ(y1 − y2), ∀(y1, y2, z) ∈ R× R× R1×d with y1 > y2.

(H5)
λ
n g has an iterated-logarithmic uniform continuity in z, i.e., there is a linearly growing function

κ(·) ∈ S such that dP× dt− a.e.,

|g(ω, t, y, z1)− g(ω, t, y, z2)| ≤ κ

(
|z1 − z2|

ILλ
n(|z1 − z2|)

)
, ∀(y, z1, z2) ∈ R× R1×d × R1×d.

Remark 2.1. We have the following four assertions.

(i) Assumptions (H1), (H3) and (H4) are also required in [12]. And, assumptions (H2)
λ
1 and (H5)

λ
1

with λ ∈ (1/2, 1] are the assumptions (H2) and (H5) of [12], respectively. Assumption (H2)
0
1 is

exactly the one (H1) of [1], where g has a one-sided linear growth in y and a linear growth in z,

and (H5)
0
1 is exactly the uniform continuity assumption of g in z of [7, 11].

(ii) For each n ≥ 1 and λ > 1/2, we have

ILλ
n+1(x) ≤ K ILλ

n(x), x ≥ 0

with a constant K > 0 depending only on (n, λ). Consequently, for any λ > 1/2, both conditions

(H2)
λ
n and (H5)

λ
n become weak as the integer n increases.

(iii) The inequality ln(n)(e(n)) ≥ ln e = 1 is true for each n ≥ 1. Both conditions (H2)
λ
n and (H5)

λ
n

become weak as the parameter λ decreases in the interval ( 12 ,∞).

(iv) For each n ≥ 1 and k > e(n), there is a constant K > 0 depending only on (n, k) such that

1 ≤ ln(n)(k + x)

ln(n)(e(n) + x)
≤ K, x ≥ 0.

Consequently, the constant e(n) appearing in (H2)
λ
n and (H5)

λ
n can be replaced with a larger number.

In addition, the three assumptions (H3), (H4) and (H5)
λ
n yield (H2)

λ
n.

Our main result is stated as the following existence and uniqueness theorem.
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Theorem 2.2. Let n ≥ 2, λ > 1/2 and the generator g satisfy assumptions (H1), (H2)
λ
n and (H3).

Then BSDE(ξ, g) admits a solution (Yt, Zt)t∈[0,T ] such that (Y, Z) ∈ Sp ×Mp with each p ∈ (0, 1), and

Y belongs to class (D). And, there exists a constant C > 0 depending only on (β, γ, n, λ, T ) such that

|Yt| ≤ |Yt|+
∫ t

0

fsds ≤ CE

[
|ξ|+

∫ T

0

fsds

∣∣∣∣∣Ft

]
+ C, t ∈ [0, T ]. (2.1)

Moreover, if assumptions (H4) and (H5)
λ
n also hold for the generator g, then the solution (Y, Z) with Y

being of class (D) is unique.

Remark 2.3. With respect to Theorem 2.2, we make the following two remarks.

(i) In view of (i) and (ii) of Remark 2.1, Theorem 2.2 improves [12, Theorem 1], since it gives a

sequence of weaker and weaker conditions on the generator g for the existence and uniqueness of

the integrable solution of BSDE(ξ, g) under only integrable parameters. In addition, the condition

of Z ∈ Mp for each p ∈ (0, 1) is not required for the uniqueness in Theorem 2.2 as in [12, Theorem

1], while it is assumed in [1, 13, 7].

(ii) Both Theorem 1 of [12] and Theorem 2.2 show that under assumptions (H1) and (H3) on the

generator g, the condition (H2)
λ
n with n ≥ 1 and λ > 1/2 is sufficient to guarantee existence of

the integrable solution of BSDE(ξ, g) with integrable parameters. And, [16] showed that (H2)
λ
n with

n = 1 and λ = 0 is not enough. Assertion (iii) of Remark 2.1 states that assumption (H2)
λ
n becomes

weak as the parameter λ decreases. It is still open whether the condition (H2)
λ
n with n ≥ 1 and

λ ∈ (0, 1/2] is sufficient for the existence of an integrable solution.

A general comparison result on the integrable solutions of BSDEs with integrable parameters is

established in the following proposition, which generalizes Proposition 2.5 in [12] by (i) and (ii) of

Remark 2.1, and naturally yields the uniqueness part in Theorem 2.2.

Proposition 2.4. Let n ≥ 2, λ > 1/2, ξ and ξ′ be two terminal conditions, g and g′ be two generators,

and (Yt, Zt)t∈[0,T ] and (Y ′
t , Z

′
t)t∈[0,T ] be a solution of BSDE(ξ, g) and BSDE(ξ′, g′), respectively. Suppose

that g (resp. g′) satisfies assumptions (H4) and (H5)
λ
n and (Y − Y ′)+ is of class (D). If ξ ≤ ξ′ and

1Yt>Y ′
t
(g(t, Y ′

t , Z
′
t)− g′(t, Y ′

t , Z
′
t)) ≤ 0 (resp. 1Yt>Y ′

t
(g(t, Yt, Zt)− g′(t, Yt, Zt)) ≤ 0 ), (2.2)

then we have Yt ≤ Y ′
t for each t ∈ [0, T ].

Let us further introduce the following assumptions on the generator g, which is closely related to

assumptions (H2)
λ
n and (H5)

λ
n. We would like to mention that some similar assumptions to the following

(H2S)α and (H5S)α have been used in [1] and [21], respectively. It will be shown in the following

Remark 2.5 that (H5)
λ
n and (H5S)α are respectively equivalent to the following (H5′)

λ
n and (H5S′)α.

(H2S)α g has a one-sided linear growth in y and a sublinear growth in z, i.e., dP × dt − a.e., for each

(y, z) ∈ R× R1×d,

sgn(y)g(ω, t, y, z) ≤ ft(ω) + β|y|+ γ|z|α.
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(H5S)α g satisfies a quasi-Hölder continuity condition in z, i.e., there exists a function κ̄(·) ∈ S with linear

growth such that dP× dt− a.e., for each (y, z1, z2) ∈ R× R1×d × R1×d,

|g(ω, t, y, z1)− g(ω, t, y, z2)| ≤ κ̄ (|z1 − z2|α) .

(H5′)
λ
n There exists a constant A > 0 and a function κ̃(·) ∈ S with linear growth such that dP× dt− a.e.,

for each (y, z1, z2) ∈ R× R1×d × R1×d,

|g(ω, t, y, z1)− g(ω, t, y, z2)| ≤ κ̃ (|z1 − z2|) (2.3)

and

|g(ω, t, y, z1)− g(ω, t, y, z2)| ≤
A|z1 − z2|

ILλ
n(|z1 − z2|)

+A. (2.4)

(H5S′)α There exists a constant A > 0 and a function κ̃(·) ∈ S with linear growth such that dP× dt− a.e.,

for each (y, z1, z2) ∈ R× R1×d × R1×d, (2.3) holds and

|g(ω, t, y, z1)− g(ω, t, y, z2)| ≤ A|z1 − z2|α +A.

Remark 2.5. We have the following several remarks.

(i) For each α ∈ (0, 1), n ≥ 1 and λ ≥ 0, there exists a constant K > 0 depending only on (α, n, λ)

such that

|x|α ≤ K|x|
ILλ

n(|x|)
, x ∈ R,

which means that (H2S)α ⇒ (H2)
λ
n and (H5S)α ⇒ (H5)

λ
n. In addition, the bigger the α, the weaker

the assumptions (H2S)α and (H5S)α. In fact, the assertion on (H2S)α is obvious. And, it can be

easily proved that for each 0 < α < ᾱ < 1, if the generator g satisfies (H5S)α with the function

κ̄(·), then it has to satisfy (H5S)ᾱ with the function

κ̃(x) := κ̄(x
α
ᾱ )10≤x≤1 + κ̄(x)1x>1.

(ii) It holds that (H5)
λ
n ⇔ (H5′)

λ
n for each n ≥ 1 and λ ≥ 0. In fact, since ln(i)(e(n)) ≥ 1 for each

n ≥ 1 and i = 1, · · · , n and the function κ(·) in (H5)
λ
n is of linear growth, the statement of

(H5)
λ
n ⇒ (H5′)

λ
n is obvious. Conversely, suppose that (H5′)

λ
n holds with a constant A > 0 and

a function κ̃(·). Observe that for each n ≥ 1 and λ ≥ 0, there exist two constants K1,K2 > 0

depending only on (n, λ) such that

ILλ
n(x) ≤ K1, x ∈ [0, 1]

and

1 ≤ K2x

ILλ
n(x)

, x ∈ (1,+∞).

It then follows from (2.3) and (2.4) that (H5)
λ
n holds for the generator g with the function

κ(x) :=

 κ̃(K1x)10≤x≤1 + κ̃(K1)x1x>1, if κ̃(K1) ≥ (1 +K2)A;

(1+K2)A
κ̃(K1)

κ̃(K1x)10≤x≤1 + (1 +K2)Ax1x>1, if κ̃(K1) < (1 +K2)A.
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Similarly, it also holds that (H5S)α ⇔ (H5S′)α for each α ∈ (0, 1). In particular, from the above

assertions we can deduce that if the generator g is uniformly continuous and has a bounded growth

in z, then it must satisfy (H5S)α and then (H5)
λ
n for each α ∈ (0, 1), n ≥ 1 and λ ≥ 0.

(iii) In view of (ii) and (iii) in Remark 2.1 and the above (i), the following assertions can be verified.

– If g1 and g2 satisfy respectively (H5)
λ
n and (H5)

λ̄
n with n ≥ 1 and 0 ≤ λ ≤ λ̄, then anyone of

their linear combinations must satisfy (H5)
λ̄
n.

– If g1 and g2 satisfy respectively (H5)
λ
n and (H5)

λ̄
m with 1 ≤ n < m, λ > 1/2 and λ̄ ≥ 0, then

anyone of their linear combinations must satisfy (H5)
λ̄
m.

– If the generators g1 and g2 satisfy respectively (H5S)α and (H5S)ᾱ with 0 < α ≤ ᾱ < 1, then

anyone of their linear combinations satisfy (H5S)ᾱ and then (H5)
λ
n for each n ≥ 1 and λ ≥ 0.

Finally, let us give two examples to which Theorem 2.2 applies, but none of existing results could.

Example 2.6. For each (ω, t, y, z) ∈ Ω× [0, T ]× R× R1×d, define

g(ω, t, y, z) := Bt(ω)− ey sin2 |z|+ |z| cos |z|√
ln(e8 + |z|)(ln ln(e8 + |z|)) 3

4

− |z|2 sin y.

It is not hard to check that this generator g satisfies assumptions (H1), (H2)
λ
n and (H3) with

f· = B· + 1, β = 0, γ = 1, n = 2, λ = 3/4, c = 1 and h(u) = eu.

Then, by Theorem 2.2 it can be concluded that BSDE(ξ, g) admits a solution (Yt, Zt)t∈[0,T ] such that

(Y, Z) ∈ Sp ×Mp with each p ∈ (0, 1), and Y is of class (D).

Example 2.7. For each (ω, t, y, z) ∈ Ω× [0, T ]× R× R1×d, define

ḡ(ω, t, y, z) := y41y≤0 + l(|y|) + sin |z|+
√

|z|+ |z| 13 +
|z|

ln(e+ |z|)
+

|z|√
ln(e8 + |z|)(ln ln(e8 + |z|)) 2

3

,

where

l(u) := u| lnu| ln | lnu|10≤u≤ε + l′−(ε)(u− l(ε))1u>ε, u ∈ (0,+∞)

with ε > 0 being sufficiently small. Note that for each x1, x2 ≥ 0, we have |F (x1)−F (x2)| ≤ F (|x1−x2|)

for any concave function F (·) ∈ S. It can be verified that for each x1, x2 ≥ 0,

|l(x1)− l(x2)| ≤ l(|x1 − x2|) with

∫
0+

du

l(u)
= +∞,

| sinx1 − sinx2| ≤ |x1 − x2|, | sinx1 − sinx2| ≤ 2,

|
√
x1 −

√
x2| ≤

√
|x1 − x2|,

∣∣∣x 1
3
1 − x

1
3
2

∣∣∣ ≤ |x1 − x2|
1
3 ,∣∣∣∣ x1

ln(e+ x1)
− x2

ln(e+ x2)

∣∣∣∣ ≤ |x1 − x2|
ln(e+ |x1 − x2|)

and ∣∣∣∣∣ x1√
ln(e8 + x1)(ln ln(e8 + x1))

2
3

− x2√
ln(e8 + x2)(ln ln(e8 + x2))

2
3

∣∣∣∣∣
≤ |x1 − x2|√

ln(e8 + |x1 − x2|) ln ln(e8 + |x1 − x2|))
2
3

.
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Based on these above observations, by virtue of Remark 2.5 we can easily prove that this generator ḡ

satisfies assumptions (H1), (H2)
λ
n, (H3), (H4) and (H5)

λ
n with ρ(u) = l(u), n = 2 and λ = 2/3. Then,

by Theorem 2.2 it can be concluded that BSDE(ξ, g) admits a unique solution (Yt, Zt)t∈[0,T ] such that

(Y, Z) ∈ Sp ×Mp with each p ∈ (0, 1) and Y is of class (D).

3. Proof of the main result

First, we have the following crucial inequality.

Proposition 3.1. Let p > 1 and ψ(·) : [0,+∞) → [1,+∞) be a twice continuously differentiable function

such that for each x ≥ 0, ψ′(x) > 0, ψ′′(x) < 0,

x (lnψ(x))
′ ≤ 1

4
∧ (1− 1

√
p
), (3.1)

− x (lnψ′(x))
′ ≤ 3

2
, (3.2)

and

ψ(
√
pxψ(x)) ≤ √

pψ(x). (3.3)

Then, we have
2xy

ψ(y)
≤ px2

ψ2(x)
+ y2, ∀(x, y) ∈ [0,∞)× [0,∞). (3.4)

Proof. For (x, y) ∈ [0,+∞)× [0,+∞), define the function

f(x, y) := y2 − 2xy

ψ(y)
+

px2

ψ2(x)
=

(
y − x

ψ(y)

)2

+
px2

ψ2(x)
− x2

ψ2(y)
. (3.5)

Clearly, it suffices to prove that f(x, y) ≥ 0 for each x, y ≥ 0. By (3.5) it is obvious for y ≥ x. Hence,

we only need to prove that f(x, y) ≥ 0 for each x ∈ (0,+∞) and y ∈ [0, x].

Now, fix arbitrary x ∈ (0,+∞) and let f̄(y) := f(x, y), y ∈ [0, x]. Then we have

f̄ ′(y) = 2y − 2x

(
y

ψ(y)

)′

= 2y − 2x(ψ(y)− yψ′(y))

ψ2(y)
, y ∈ [0, x] (3.6)

and

f̄ ′′(y) = 2− 2x

(
y

ψ(y)

)′′

= 2 +
2x
(
2ψ(y)ψ′(y)− 2y(ψ′(y))2 + yψ(y)ψ′′(y)

)
ψ3(y)

, y ∈ [0, x]. (3.7)

It follows from (3.1) and (3.2) that

2y(ψ′(y))2 − yψ(y)ψ′′(y) ≤ 1

2
ψ(y)ψ′(y) +

3

2
ψ(y)ψ′(y) = 2ψ(y)ψ′(y),

which together with (3.7) yields that f̄ ′′(·) > 0, and then f̄(·) is a strictly convex function on [0, x].

Furthermore, note by (3.6) that f̄ ′(0) = −2x/ψ(0) < 0 and

f̄ ′(x) = 2x− 2x

ψ(x)
+

2x2ψ′(x)

ψ2(x)
≥ 2x2ψ′(x)

ψ2(x)
> 0.

It follows that there exists a unique y0 ∈ (0, x) such that f̄ ′(y0) = 0 and

f(x, y) = f̄(y) ≥ f̄(y0) = f(x, y0), y ∈ [0, x]. (3.8)
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In the sequel, since the function yψ(y), y ∈ [0,+∞) is strictly increasing with its range being [0,+∞),

we can conclude that there exists a unique real y1 ∈ (0,+∞) such that

y1 =
x

√
pψ(y1)

. (3.9)

Then, y1 ∈ (0, x) and it follows from (3.6), (3.9) and (3.1) that

f̄ ′(y1) = 2y1 −
2x

ψ(y1)
+

2xy1ψ
′(y1)

ψ2(y1)
= −

2x
[(

1− 1√
p

)
ψ(y1)− y1ψ

′(y1)
]

ψ2(y1)
≤ 0.

Therefore, y1 ≤ y0 and then by (3.8) and (3.5) we deduce that

f(x, y) ≥ f(x, y0) =

(
y0 −

x

ψ(y0)

)2

+
px2

ψ2(x)
− x2

ψ2(y0)
≥ px2

ψ2(x)
− x2

ψ2(y1)
, y ∈ [0, x]. (3.10)

Finally, it follows from (3.3) and (3.9) that

√
pψ(y1) ≥ ψ(

√
py1ψ(y1)) = ψ(x). (3.11)

Then, by (3.10) and (3.11) we obtain that f(x, y) ≥ 0 for each x ∈ (0,+∞) and y ∈ [0, x], which is the

desired conclusion.

By virtue of Proposition 3.1, we can establish the following key inequality.

Proposition 3.2. Let n ≥ 1, λ ≥ 0 and p > 1. Then, there exists a positive constant kn,λ,p ≥ e(n)

depending only on (n, λ, p) such that for each k ≥ kn,λ,p, we have

2xy

ILλ
n,k(y)

≤ px2(
ILλ

n,k(x)
)2 + y2, x, y ≥ 0, (3.12)

where and hereafter,

ILλ
n,k(x) :=

n−1∏
i=1

√
ln(i)(k + x)

(
ln(n)(k + x)

)λ
.

Proof. Note that for each m ≥ 2, the case of n = m and λ = 0 is just the case of n = m−1 and λ = 1/2,

and the case of n = 1 and λ = 0 is evident from the basic ineuqality. It suffices to prove the case of

n ≥ 1 and λ > 0. Fix a sufficiently large k ≥ e(n) and let

ψ(x) := ILλ
n,k(x) ≥ 1, x ∈ [0,+∞).

We prove that for a sufficient large k, the function ψ(·) satisfies (3.1)-(3.3). Observe that for each n ≥ 1

and x ≥ 0, we have

(ln(n)(k + x))′ =
(ln(n−1)(k + x))′

ln(n−1)(k + x)
= · · · = 1

(k + x)
n−1∏
j=1

ln(j)(k + x)

.

For each n ≥ 1 and x ≥ 0, we can calculate that

lnψ(x) =
1

2

n−1∑
i=1

ln(i+1)(k + x) + λ ln(n+1)(k + x)

9



and, in view of k being large enough,

0 ≤ x (lnψ(x))
′

=
x

k + x


1

2

n−1∑
i=1

 1
i∏

j=1

ln(j)(k + x)

+
λ

n∏
j=1

ln(j)(k + x)


≤

n−1
2 + λ

ln k
≤ 1

4
∧ (1− 1

√
p
),

(3.13)

which means that the function ψ(·) satisfies (3.1).

Furthermore, it is not very difficult to verify that for each n ≥ 1 and x ≥ 0,

ψ′(x) = (lnψ(x))′ψ(x) =

[
n−1∑
i=1

(
n−1∏

j=i+1

ln(j)(k + x)

)
+ 2λ

ln(n)(k+x)

]
ψ(x)

2(k + x)
n−1∏
j=1

ln(j)(k + x)

> 0

and

lnψ′(x) = lnψ0(x) + lnψ(x)− ln 2−
n−1∑
i=0

ln(i+1)(k + x)

with

ψ0(x) :=

n−1∑
i=1

 n−1∏
j=i+1

ln(j)(k + x)

+
2λ

ln(n)(k + x)
≥ 2λ

ln(k + x)
1n=1 + 1n≥2. (3.14)

Note that for each n ≥ 1 and x ≥ 0, we have with i = 1, · · · , n− 1,

 n−1∏
j=i+1

ln(j)(k + x)

′

=

 n−1∑
j=i+1

ln(j+1)(k + x)

′
n−1∏
l=i+1

ln(l)(k + x) =

n−1∑
j=i+1

(
n−1∏

l=j+1

ln(l)(k + x)

)

(k + x)
i∏

l=1

ln(l)(k + x)

≥ 0,

and then

ψ′
0(x) =

n−1∑
i=1


n−1∑

j=i+1

(
n−1∏

l=j+1

ln(l)(k + x)

)

(k + x)
i∏

l=1

ln(l)(k + x)

− 2λ

(k + x)
n∏

i=1

ln(i)(k + x) ln(n)(k + x)
.

From (3.14) and (3.13), we deduce that for a sufficiently large k,

− (lnψ′(x))
′

= −ψ
′
0(x)

ψ0(x)
− (lnψ(x))

′
+

1

k + x

n−1∑
i=0

 1
i∏

j=1

ln(j)(k + x)


≤ 0 +

1

k + x

(
1

ln(k + x)
+

2λ

ln(k + x)

)
+ 0 +

1

k + x

(
1 +

n− 1

ln(k + x)

)

≤ 1

x

(
1 +

n+ 2λ

ln k

)
≤ 3

2x
, x > 0,

which yields that the function ψ(·) satisfies (3.2).

In the sequel, we prove that the function ψ(·) also satisfies (3.3). In fact, fix n ≥ 2 and λ > 0, and

set δ := p
1

n−1+2λ > 1. We pick k large enough such that for each x ≥ 0 and i = 1, · · · , n,

k +
√
pxψ(x) ≤ √

p(k + x)ψ(x) ≤ (k + x)δ and δ ln(i)(k + x) ≤ (ln(i)(k + x))δ. (3.15)
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Then, for each i = 1, · · · , n, we have

ln(i)(k +
√
pxψ(x)) ≤ δ ln(i)(k + x), x ≥ 0. (3.16)

The last inequality can be proved by induction. In fact, (3.16) is clear for i = 1 since it follows from

(3.15) that

ln(1)(k +
√
pxψ(x)) ≤ ln(1)[(k + x)δ] = δ ln(1)(k + x), x ≥ 0.

Now, assume that (3.16) holds for some i = l with l ∈ {1, · · · , n− 1}. Then, in view of (3.16) and (3.15)

we can deduce that

ln(l+1)(k +
√
pxψ(x)) = ln(1)[ln(l)(k +

√
pxψ(x))] ≤ ln(1)[δ ln(l)(k + x)] ≤ ln(1)[(ln(l)(k + x))δ]

= δ ln(1)[ln(l)(k + x)] = δ ln(l+1)(k + x), x ≥ 0,

which means that (3.16) also holds for i = l + 1. Hence, (3.16) is true for each i = 1, · · · , n, and then

ψ(
√
pxψ(x)) =

n−1∏
i=1

√
ln(i)(k +

√
pxψ(x))

(
ln(n)(k +

√
pxψ(x))

)λ
≤ δ

n−1
2 +λ

n−1∏
i=1

√
ln(i)(k + x)

(
ln(n)(k + x)

)λ
=

√
pψ(x), x ≥ 0.

Then, (3.3) is true for ψ(·). Up to now, we have proved that the function ψ(·) satisfies all conditions in

Proposition 3.1, by which the desired inequality (3.12) follows immediately.

Remark 3.3. With respect to the above Proposition 3.2, we make the following remarks.

(i) The case of n = 1 and λ ∈ [0, 1] of Proposition 3.2 is Proposition 3.2 of [12].

(ii) Except from the case of n = 1 and λ = 0, the inequality (3.12) does not hold when p ≤ 1. In fact,

let n ≥ 1, λ > 0 and k ≥ e(n) be any constant. Assume that constants x, y > 0 satisfy

y :=
x

ILλ
n,k(y)

< x.

Then, in view of (3.5),

y2 − 2xy

ILλ
n,k(y)

+
x2(

ILλ
n,k(x)

)2 =
x2(

ILλ
n,k(x)

)2 − x2(
ILλ

n,k(y)
)2 < 0,

which immediately yields the desired assertion.

Now, let n ≥ 2, λ > 1/2 and k ≥ e(n) be sufficiently large and depends only on (n, λ) such that the

inequality (3.12) with p = 2 in Proposition 3.2 holds. A C1,2 function ϕ : [0, T ] × [0,+∞) → (0,+∞)

will be called a test function, if ϕs > 0, ϕx > 0, ϕxx > 0, and

−βϕx(s, x)x− ϕx(s, x)
γ|z|

ILλ
n,k(|z|)

+
1

2
ϕxx(s, x)|z|2 + ϕs(s, x) ≥ 0,

(s, x, z) ∈ [0, T ]× [0,+∞)× R1×d.

(3.17)
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Here and hereafter, ϕs is the first-order partial derivative of ϕ in the first variable, and ϕx and ϕxx are

respectively the first- and second-order partial derivative of ϕ in the second variable. Since (in view of

(3.12) with p = 2)

−ϕx(s, x)
γ|z|

ILλ
n,k(|z|)

+
1

2
ϕxx(s, x)|z|2 = ϕxx(s, x)

(
−γϕx(s, x)
ϕxx(s, x)

|z|
ILλ

n,k(|z|)
+

1

2
|z|2
)

≥ − γ2ϕ2x(s, x)

ϕxx(s, x)
(
ILλ

n,k

(
γϕx(s,x)
ϕxx(s,x)

))2 ,
a C1,2 function ϕ(·, ·) will be a test function if ϕ > 0, ϕs > 0, ϕx > 0, ϕxx > 0, and moreover, for each

(s, x) ∈ [0, T ]× [0,+∞),

− βϕx(s, x)x− γ2ϕ2x(s, x)

ϕxx(s, x)
(
ILλ

n,k

(
γϕx(s,x)
ϕxx(s,x)

))2 + ϕs(s, x) ≥ 0. (3.18)

In the sequel, we choose the following function

ϕ(s, x) := (k + x)

[
1−

(
ln(n)(k + x)

)1−2λ
]
µs, (s, x) ∈ [0, T ]× [0,+∞)

to explicitly solve (3.18), where µs : [0, T ] → (0,+∞) is a nondecreasing and continuously differentiable

function to be assigned. First of all, letting further the constant k ≥ e(n) depending only on (n, λ, γ) be

large enough, by a simple computation we can obtain that for each (s, x) ∈ [0, T ]× [0,+∞),

ϕx(s, x) =

1− 1(
ln(n)(k + x)

)2λ−1

1− 2λ− 1
n∏

i=1

ln(i)(k + x)


µs > 0,

ϕxx(s, x) =
2λ− 1

(k + x)
(
ILλ

n,k(x)
)2
1− 2λ− 1

n∏
i=1

ln(i)(k + x)
− 1(

n∏
i=1

ln(i)(k + x)

)2

µs > 0

and

ϕs(s, x) = (k + x)

[
1−

(
ln(n)(k + x)

)1−2λ
]
µ′
s > 0,

which yields that for (s, x) ∈ [0, T ]× [0,+∞),

1

2
µs ≤ ϕx(s, x) ≤ µs, (3.19)

(2λ− 1)µs

2(k + x)
(
ILλ

n,k(x)
)2 ≤ ϕxx(s, x) ≤

(2λ− 1)µs

(k + x)
(
ILλ

n,k(x)
)2 , (3.20)

ϕs(s, x) ≥
1

2
(k + x)µ′

s, (3.21)

and then
γϕx(s, x)

ϕxx(s, x)
≥ γ

2(2λ− 1)
(k + x)

(
ILλ

n,k(x)
)2

≥ k + x. (3.22)

Substituting (3.19)-(3.22) into the left hand side of (3.18), we have
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−βϕx(s, x)x− γ2ϕ2x(s, x)

ϕxx(s, x)
(
ILλ

n,k

(
γϕx(s,x)
ϕxx(s,x)

))2 + ϕs(s, x)

≥ −β(k + x)µs −
γ2µ2

s

(2λ−1)µs

2(k+x)(ILλ
n,k(x))

2

(
ILλ

n,k(k + x)
)2 +

1

2
(k + x)µ′

s

≥ (k + x)

[
−
(
β +

2γ2

2λ− 1

)
µs +

1

2
µ′
s

]
, (s, x) ∈ [0, T ]× [0,+∞).

Thus, if we take

µs := exp

[
2

(
β +

2γ2

2λ− 1

)
s

]
, s ∈ [0, T ],

then (3.18) and then (3.17) holds.

Define the function for k ≥ e(n),

φ(s, x) := (k + x)

[
1−

(
ln(n)(k + x)

)1−2λ
]
exp

[
2

(
β +

2γ2

2λ− 1

)
s

]
, (s, x) ∈ [0, T ]× [0,+∞). (3.23)

We have established the following proposition on the test function ϕ.

Proposition 3.4. Let n ≥ 2, λ > 1/2 and k ≥ e(n) be a sufficiently large constant depending only on

(n, λ, γ) and such that the inequalities (3.12) (with p = 2) and (3.19)-(3.22) are all satisfied. Then, we

have for each (s, x, z) ∈ [0, T ]× [0,+∞)× R1×d,

− βφx(s, x)x− φx(s, x)
γ|z|

ILλ
n,k(|z|)

+
1

2
φxx(s, x)|z|2 + φs(s, x) ≥ 0. (3.24)

The following Proposition 3.5 gives an a priori estimate for the solution to a BSDE.

Proposition 3.5. Assume that n ≥ 2, λ > 1/2, the generator g satisfies assumption (H2)
λ
n, and

(Yt, Zt)t∈[0,T ] is a solution of BSDE(ξ, g). If the process (|Yt|+
∫ t

0
fsds)t∈[0,T ] is of class (D), then there

exists a constant C > 0 depending only on (n, β, γ, λ, T ) such that

|Yt| ≤ |Yt|+
∫ t

0

fsds ≤ CE

[
|ξ|+

∫ T

0

ftdt

∣∣∣∣∣Ft

]
+ C, t ∈ [0, T ]. (3.25)

Proof. In view of (iv) of Remark 2.1, we suppose that the generator g satisfies assumptions (H2)
λ
n with

ILλ
n being replaced with ILλ

n,k for a sufficiently large constant k ≥ e(n) (as given in Proposition 3.4).

Define

Ȳt := |Yt|+
∫ t

0

fsds and Z̄t := sgn(Yt)Zt, t ∈ [0, T ].

Using Itô-Tanaka’s formula, we have

Ȳt = ȲT +

∫ T

t

(sgn(Ys)g(s, Ys, Zs)− fs) ds−
∫ T

t

Z̄sdBs −
∫ T

t

dLs, t ∈ [0, T ],

where L is the local time of Y at 0. Applying Itô-Tanaka’s formula with the test function φ (see (3.23)
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for the definition), and noting the assumption (H2)
λ
n (but with ILλ

n being replaced with ILλ
n,k), we have

dφ(s, Ȳs) = φx(s, Ȳs) (−sgn(Ys)g(s, Ys, Zs) + fs) ds+ φx(s, Ȳs)Z̄sdBs

+φx(s, Ȳs)dLs +
1

2
φxx(s, Ȳs)|Zs|2ds+ φs(s, Ȳs)ds

≥

[
−φx(s, Ȳs)

(
β|Ys|+

γ|Zs|
ILλ

n,k(|Zs|)

)
+

1

2
φxx(s, Ȳs)|Zs|2 + φs(s, Ȳs)

]
ds

+φx(s, Ȳs)Z̄sdBs, s ∈ [0, T ].

Then, since |Ys| ≤ Ȳs, we have from (3.24) in Proposition 3.4,

dφ(s, Ȳs) ≥ φx(s, Ȳs)Z̄sdBs, s ∈ [0, T ].

In the sequel, observe from (3.23) that

1

2
(k + x) ≤ φ(s, x) ≤ k1(k + x), (s, x) ∈ [0, T ]× [0,+∞),

with

k1 := exp

[
2

(
β +

2γ2

2λ− 1

)
T

]
.

By a similar analysis as that in Proposition 3.4 of [12], we conclude that

1

2
(k + Ȳt) ≤ k1E[(k + ȲT )|Ft], t ∈ [0, T ],

which immediately yields the desired inequality (3.25).

We now prove Theorem 2.2 and Proposition 2.4.

Proof of Theorem 2.2. Assume first that g satisfies assumptions (H1), (H2)
λ
n and (H3). With Propo-

sition 3.5 in hand, using the localization technique put forward initially in [2] and following closely

the proof of Theorem 2.1 in [12], we can construct a solution (Yt, Zt)t∈[0,T ] of BSDE(ξ, g) such that

(Y, Z) ∈ Sp ×Mp with each p ∈ (0, 1) and Y is of class (D). The details are omitted here. Furthermore,

suppose that g also satisfies assumptions (H4) and (H5)
λ
n. The uniqueness part of Theorem 2.2 is a direct

consequence of Proposition 2.4, whose proof will be given below. The proof is then complete.

Proof of Proposition 2.4. Let A represent the linear-growth positive constant for the functions ρ(·) and

κ(·) defined respectively in assumptions (H4) and (H5)
λ
n. In view of (iv) of Remark 2.1, we can suppose

that the generator g satisfies (H5)
λ
n with a sufficiently large constant k ≥ e(n) instead of e(n), where

the constant k depends only on (n, λ,A) and can be similarly defined as in Proposition 3.4. In view of

assumptions (H4) and (H5)
λ
n with k instead of e(n), Proposition 3.4 and the proof of Proposition 3.5

together with Theorem 2.1 in [7], by a similar argument as that in Proposition 2.5 of [12] we have the

desired assertions. The details are omitted here.
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