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Abstract

In an insurance context, Long-Term Care (LTC) products cover the risk of permanent loss of
autonomy, which is defined by the impossibility or difficulty of performing alone all or part of the
activities of daily living (ADL). From an actuarial point of view, knowledge of risk depends on
knowledge of the underlying biometric laws, including the mortality of autonomous insureds and
the mortality of disabled insureds. Due to the relatively short history of LTC products and the
age limit imposed at underwriting, insurers lack information at advanced ages. This represents a
challenge for actuaries, making it difficult to estimate those biometric laws.

In this paper, we propose to complete the missing information at advanced ages on the
mortality of autonomous and disabled insured populations using information on the global
mortality of the portfolio. In fact, the three previous mortality laws are linked since the portfolio
is composed only of autonomous and disabled policyholders. We model the two mortality laws
(deaths in autonomy and deaths in LTC) in a Poisson Generalized Linear Model framework,
additionally using the P-Splines smoothing method. A constraint is then included to link the
mortality laws of the two groups and the global mortality of the portfolio. This new method
allows for estimating and extrapolating both mortality laws simultaneously in a consistent

manner.
Keywords: Long-Term Care Insurance; Actuarial Modelling; Generalized Linear Models; P-Splines;
Extrapolation; Penalization
1 Introduction

Long-Term Care (LTC) is linked to the risk that an individual loses their autonomy, resulting in
the impossibility or difficulty of performing Activities of Daily Living (ADL), such as washing,

eating, moving and dressing. Many causes can lead to a loss of autonomy, but the need for LTC
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is mostly due to illness occurring at old ages. With the persistent increase in life expectancy and
the ageing of the Baby Boom generation, we are entering a period in which the number of people
over 80 is likely to continue to grow. Eurostat (2022) estimates that the share of the population in
Furope aged 80 years or above is likely to be multiplied by two and a half between 2021 and 2100.
Therefore, it is expected that an increasing number of people will need financial support to cover
the costs generated by the loss of autonomy. The average age at underwriting of an LTC product is
approximately 60, while claims mainly occur after 85. This average underwriting age means for the
insurer that only a few observations on the mortality of his portfolio at old ages will be available
before the 25th anniversary of the product. This effect combined with the recency of LTC products
makes it difficult to estimate the associated risk. Improving knowledge of the LTC risk is then a
challenge for actuaries. In contrast, the mortality of the overall population was studied long before

the emergence of LTC insurance products.

From an actuarial point of view, the insured’s health condition is often represented by an illness-death
model composed of three states, namely, "Autonomous", "Disabled" and "Dead". Some insurance
contracts cover multiple levels of dependency with different levels of annuity. Actuaries may model
these products with multi-state Markov models, with one state for each level of dependency. This
choice multiplies the number of laws of transition from one state to another to estimate. The
difficulty of calibrating multi-state Markov models comes from the scarcity of data. Most insurers
do not observe enough transition from LTC states in their database due to the recency of their
product. Therefore, papers modelling LTC products with multiple levels of dependency often make
strong assumptions on the intensities of the model, or use big public data as in Biessy (2015) with
data from the French LTC public aid called the "Allocation Personnalisée d’Autonomie" (APA).
Fleischmann (2015) models an Austrian private health insurance product with 7 levels of severity
and assumes that mortality is the same independently from the severity level and that the intensity
to reach a severity level is independent of the state of origin and the time spent in that state.
In addition to using public data, Biessy (2015) uses parametric laws. Another solution to model
products covering multiple states of disability is to consider it as a set of illness-death models. This
method is the solution mainly used by insurers. The method developed in this paper can therefore

be used to model products covering multiple states of disability.

Since the state "Dead" is an absorbing state, the model is composed of 4 transitions, each one
associated with a biometric law. The first one corresponds to the incidence rates in the disabled
state, whereas the second one represents its reverse transition. The two remaining biometric laws
correspond to distinct mortality rates for autonomous and disabled lives. In practice it is very hard
to reverse loss of autonomy. Recovery probabilities are negligible, especially when the "Disabled"
state is associated with a high level of dependency. The definition of LTC in France emphasizes the
fact that the loss of autonomy must be permanent and irreversible. As in most of LTC product
contracts, we consider in this paper that the loss of autonomy is final, which means that no return to

autonomy is envisaged. With this hypothesis, which is representative of the real insurance market,



only 3 biometric laws need to be estimated. The impact of allowing recovery when taking into

account a low level of disability is discussed in Section 6.

Since LTC risk is mostly due to ageing pathologies, the estimation of mortality at old ages is of
importance for pricing and estimation of risk liabilities. In the context of mortality modelling, a
common approach is to fit a parametric model on the crude death rates and assume that information
available at younger ages would explain the behaviour at older ages, where we have no or not enough
observations. Depending on the selected parametric model, a different underlying assumption
on the shape of the mortality curve is made. Some of these models are compared in Hammond
(2000) on 13 countries (European, Scandinavian and Japanese) using data from 1960 to 1990. A
different approach is used in this paper to extrapolate mortality at old ages, relying on the P-Splines
smoothing method introduced by Eilers and Marx (1996). This methodology was adapted to
mortality for the first time by Currie et al. (2004).

The incidence rates and mortality rates of autonomous and disabled insureds are usually estimated
and extrapolated independently. However, in this way, the consistency between the mortality laws
is not guaranteed, and the predicted number of deaths in the whole portfolio might differ from
the sum of the predicted numbers of deaths in autonomy and in LTC. Let DS be the number of
observed deaths between age x and x + 1 in group G € {A, D, gen} and lA)f its predicted value,
where A and D represent the groups of autonomous and disabled insureds, respectively, and gen
represents the overall portfolio of insureds. Then, D" = Df + DD and in the case of consistent

mortality laws, the relation between the expected values must be given by the following equation

DI" = DA 4+ DP. (1)

In the literature, the problem of consistency between mortality laws is mostly approached in the
context of prospective modelling to ensure that the mortality laws do not diverge indefinitely over
time between several groups. This idea of coherent mortality forecasting was first introduced by Li
and Lee (2005). Li proposed a method based on the Lee-Carter model to forecast the mortality of a
group of populations by allowing each population to have its own age pattern and level but have a
common trend. Later, Zhou et al. (2019) and Li et al. (2017) approached this problem of coherent
mortality forecasting with the concept of semicoherence. The idea is to fix a weaker assumption on
the coherence between the mortality laws by allowing the mortality trajectories of two populations
to diverge, as long as the difference between the two mortality laws does not exceed what they
called a tolerance corridor. Noticing that the coherent assumption can be too strong, especially
when it is imposed on a large number of populations, Guibert et al. (2020) proposed a new approach
based on locally coherent mortality forecasts by assuming that the coherence principle is verified by

subgroups of populations.

This paper aims to develop a method that improves the estimation and extrapolation of the mortality

laws of autonomous and disabled groups, using knowledge on the mortality of the overall population



(union of the 2 groups) while keeping a smooth structure of the mortality laws. To this end, we
use the P-Splines smoothing method proposed in Eilers and Marx (1996) and adapted to mortality
estimation in Currie et al. (2004) and Macdonald et al. (2018). A constraint based on Equation
(1) is then included to link the mortality laws of the two groups and the global mortality of the
portfolio. The idea of adding constraints to the P-Splines method has already been used in Bollaerts
et al. (2006) for research on the cognitive development of children and for mortality modelling in
Camarda et al. (2016), Remund et al. (2018) and in Camarda (2019). The method proposed in
this paper uses an algorithm converging under certain conditions discussed in Appendix A. The
goal of this paper is to provide an algorithm for actuaries in charge of the pricing of LTC products.
This paper is not intended to present limit theorems of convergence of estimators because they are

difficult to obtain. The simulations support the interest of the method.

We show that this approach leads to a better estimate of the death rates for both autonomous and
disabled insureds, providing an estimate of the predicted number of deaths of the overall population

close to the sum of the predicted number of deaths in autonomy and LTC.

Section 2 of this paper introduces the dataset and the model. In Subsection 2.2, we present the
continuous multi-state Markov model used in the context of LTC modelling and explain its link
with the Poisson model and the Poisson generalized linear model (Poisson-GLM). The P-Splines
smoothing method, used to maintain a smooth structure of the mortality laws, is proposed in
Subsection 2.3. We add a constraint on the consistency between mortality laws based on Equation
(1) in Subsection 2.4.

Section 3 focuses on the extrapolation of the mortality laws when no exposures are available at
old ages. We propose an extrapolation method with reconstruction of the exposures using the
model proposed in the first part of the paper. Section 4 addresses the problem of the choice of the
hyper-parameter corresponding to the weight that we give to the consistency constraint. The larger
this parameter is, the better the mortality laws estimated by the algorithm satisfy the coherence rule.
An application on a real dataset is made in Section 5. Recovering from a high level of dependency
can easily be assumed as impossible. However, one might wish to assume that recovery is possible
when modelling low levels of LTC. Section 6 discusses how to use the loopback algorithm to model a
product covering several levels of LTC, especially when the lower levels allow recovery. Concluding

remarks are provided in Section 7.

2 Modelling

2.1 Data structure

The biometric laws are calibrated to an LTC portfolio observed in a given period. The trajectories
of insured individuals, meaning their health status at each time of the period of observation, are

observed. For each insured individual, the following information is available:



e date of birth,

e gender,

e underwriting date,

o date of loss of autonomy if it occurred,

o date of death if it occurred, and

o date of exit from the portfolio in case of a contract cancellation.

Since males and females do not have the same mortalities or same probabilities of loss of autonomy
at each age, biometric laws are estimated separately by gender. The information of all the insureds
is then aggregated to construct two databases per gender. The first one, denoted by DB, is used
to study the autonomous experience, and the second one, denoted by DBP | is used to study the

experience in LTC. For each integer age z, DB* and DBP contain:
e the central exposure to risk between age x and x + 1,
e the number of observed deaths between ages x and x + 1, and
o the number of reported losses of autonomy (only for DBA) between age x and x + 1.

For a given age z, the central exposure to risk in autonomy (resp. LTC) corresponds to the sum of
individual exposures of each insured in autonomous (resp. LTC) state between x and = + 1. The
individual exposure of an insured at age x in a given state (autonomous or LTC) is the fraction of
time spent in this state between age r and x 4+ 1. For example, an insured in autonomous state at
his 65th birthday, losing his autonomy 9 months after, and surviving at least until his 66th birthday
in LTC has an exposure in the autonomous state equal to 0.75, which corresponds to 3/4 of a year,

and an exposure in LTC equal to 1/4.

2.2 Modelling of a Long-Term Care product

We consider in this paper continuous multi-state Markov models, as shown in Figure 1, with three
states: autonomy (A), LTC/Disability (D) and death. Such models are often used by insurers in
practice. As no return to a better state of health is envisaged in this paper, e.g., in Nuttall et al.
(1994) and Alegre et al. (2003), only three laws are needed in this model:

e 1, is the incidence intensity at age x,
. )\f is the mortality intensity in state A at age z, and

. Af is the mortality intensity in state D at age x.
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Figure 1: Modelling of an LTC product

Let X, be the current state of an individual at age = € R™. The transition intensities are defined as

P(Xpin = D|X, = A)
m

h—0*+ h ’
)\A — lim [P(Xw_;,_h = Death|Xx = A) 7
h—0*+ h
)\f ~ lim P(X,+n = Death| X, = D) .
h—0*t h
Let x be an integer. The notation is as follows. Consider independent individuals j = 1,...,n

observed at least one day in the autonomous state A between x and = + 1. For each individual j, let
x +7a and 2 4+ 7b be the age at the beginning and end of observation in state A, respectively, for the
age band [z;z + 1]. Let = + ¢ be the age at the end of observation in the portfolio between z and
z+ 1. Then, 0 <7a <7b<7Je < 1. If j does not enter state D between z and = + 1, then 7b = Je¢.

The end of observation in state A of an individual between z and x + 1 can be due to three reasons:
1. right censoring,
2. loss of autonomy, or
3. death.
Let /d, and /LTC,, indicate the cause of the end of observation in state A of j such that:
e Jd, =1 if the cause is death and 0 otherwise, and
e JLTC, =1 if the cause is the loss of autonomy and 0 otherwise.
Let 7 dﬁTc = 1 if individual j dies in state D between x and = + 1, 0 otherwise.
The main assumptions that we need in this paper are as follows:

1. the mortality rates remain constant throughout the age interval from x to x + 1 (where x is

an integer),

2. the logarithm of mortality rates may be decomposed on a P-Splines basis (see Section 2.3),



3. incidence and general mortality laws are assumed to be known and are not estimated.

Then, using classic tools of survival analysis and methods for modelling competing risks, as explained
in Section 2.3 in Porta et al. (2007), and from the definitions of the intensities, the likelihood

associated with individual j between x and x + 1 is given by

b Jc

. . . j j j JLTC

]La: = €xXp <_ J ()‘Ix4+u + Z$+’LL) du) (Z;Hjb)]LTcx ()‘;;44_1'1;)]% eXp <_ Lb ()‘:?-&-u) du) ()\[L'DJrjc)sz :
Ja

LA LD

(2)

The likelihood of individual j in Equation (2) can be separated into 2 distinct partial likelihoods.
J Lf corresponds to the experience of j in state A, whereas 7/ L:CD corresponds to its experience in
state D. If j is not observed in state D between x and = + 1, then ij = 1. We can then study the

experience in states A and D separately.

Under Assumption 1, L7 becomes

TLE = exp (~ (0 + i) Te) (i) T (), (3)

where 7 6;4 = Jb —Jq is the time of exposure to the risk in the autonomous state of individual j

between age x and x + 1.

Therefore, the likelihood for the age band [z;x + 1] for the overall population of individuals
j=1,...,n, being the product of all individuals likelihood is equal to

L = exp (—(A +iz)el) (i) T (A ™, (4)

where ef, called the central exposure to risk is the sum of the time exposed to the risk in autonomy
by all individuals in the age band, and LTC, and d, are the total number of observed losses of

autonomy and deaths, respectively.

Maximizing the likelihood Lf with respect to /\f and 7, is equivalent to maximizing separately

o LA7P(iy) = exp (—imef) (i) FTC | and

PO = exp (-A2e) O

We note that L7~ (i,) and LA7Peh (A4 are proportional to the likelihood of Poisson variables
with expectancies equal to ifef and )\fef, respectively. Therefore, the maximum likelihood
estimators of ¢, and )\f obtained by maximizing Equation (4) are equal to the maximum likelihood
estimators of the Poisson distributions. The incidence intensity i, is considered as known in this

paper. The likelihood has to be maximized with respect to )\f only. One can therefore assume that



the number of observed deaths in autonomy (state A) at age x follows a Poisson distribution with
parameter )\fef. The same reasoning can be applied to deaths in the LTC state (state D). This
result is interesting, allowing us to use the theory of Poisson-GLM to estimate )\f. In the rest of the
paper, we assume that the number of deaths at age z in both autonomous and LTC states follows a

Poisson distribution with parameter A¢e$ where G € {A, D, gen}.

Let xin and xpmq, be integers corresponding to the minimum and maximum observed ages. Let
df and df be the observed deaths at age x in states A and D, respectively. Since we may not
have enough observations at certain ages, we introduce an indicator function wf for each group
indicating if the observations in the associated group at age = are reliable and can be included in
the log-likelihood.

The total likelihood for all the observations from x,,i, t0 Zyma: in group G is given by

w

Tmazx G G dIG
B o (a8 | (5)

T T

L7 (A prel

O =

Tmin Tmazx

LT=Tmin

where wf = 1 if the observations in the associated group at age x are reliable and 0 otherwise.

Equation (5) is the product of likelihoods of Poisson distributions for each age z between x,,;, and

Tmaz-

The maximum likelihood estimators of the intensities )\Ag for & € {Tmin; Tmin + 1; ...} Timax} are given
by the ratio df/ef. Each intensity is fully determined by the deaths and exposure at this age,
regardless of the observations at neighbouring ages. This can imply a very irregular curve of the
mortality law that can be explained by the variance of the estimator, equal to d,/ ei. Smoothing
methods can be used to obtain a smoother mortality law, reducing volatility in the results. In this
paper, we use the P-Splines smoothing method, which is widely used in the literature to smooth

mortality intensities.

2.3 A model based on P-Splines

The method of P-Splines is a method of smoothing embedded in the GLM framework described in
Eilers and Marx (1996), Marx and Eilers (1998), Eilers and Marx (2002), or Currie and Durban
(2002).

Let n = Tynae — Timan be an integer. Let J be an integer representing the number of splines. In this
method:

1. Let B be a basis matrix of cubic splines such that B;; is the value of the cubic spline
j at the i"" age. For a given group (A or D), the curve of the mortality intensities is

considered a linear combination of .J cubic splines. Let 8¢ = {6 ...,05} be the vector



J
of coefficients such that log(/\gcx,) = 2 BSJHJG for each ¢ € {1,...,n + 1}. Let Agg =
j=1

T
()\gc . ,)\gc TR )\gc . ) . We can write this linear combination in matrix form

as
log(ASe) = BE0C,

where BY € M, 11,7(R") represents the matrix of the J splines at each point {Zmin, - - - , Tmaz }-
Bg is the value of the ' spline at the i" age of group G. This matrix is called the B-spline

basis.

2. Let d be an integer. A penalty term p(D50%)T(DS0%) depending on the penalty order d is
added to the log-likelihood to avoid complex models with excessively large variability between

coefficients of adjacent splines. p € R is a smoothing parameter giving a weight to the penalty.
G _ G G 290G _ Gy _ pG G G dpnG _ d—1pG

DY is defined as the matrix satisfying D§0% = A9,

Let P§ = p(D$)T DY a simpler way to write the penalty term that is used in the rest of the
paper is ()T PFC.

Therefore, J coefficients GJG must be estimated for each group G instead of one by age. In addition
to having a smoother curve, the number of coefficients to estimate is then lower than if no smoothing
method were used. The extrapolation mostly depends on the order of the penalty. The smoothing
parameter p can be chosen to minimise the BIC as recommended in Currie and Durban (2002). The
choice of other parameters, such as the number of nodes or the degree of the splines, may be less
critical, as different choices often lead to similar smoothings. Ruppert (2000) and Eilers and Marx

(1996) study the choice of the P-Splines parameters. The following rule of thumb is often sufficient:
e In the case of equidistant data, fix 1 node every 4 or 5 observations,
« Use cubic splines (order 3).

Let (BY0%);, be the k™ coefficient of the vector log(Agg) — BY@C. The penalized log-likelihood
for group G is given by



pen

1
i, (0F) = log(L9(69)) — 5(9G)TPdG 0¢

Tmazx 1
= D wildflog(\ge ) — A €5 ] —5(0G)TPdGHG

T=Tmin

Tmaz —Tmin 1
= Z w§m¢n+k [dgmerk(BGgG)kH - eXP((BGeG)kH)efmerk] _5(9G)TP¢1GOG‘
k=0
16(66)

(6)

In the following, the log-likelihood for autonomous and LTC groups is denoted by [4(84) and
1P(6P), respectively.

It is possible to smooth the intensities of the 2 groups simultaneously but independently (i.e. the
observations of one group have no influence on the estimate of the mortality of the other). As the
respective penalized log-likelihoods are independent, maximizing the sum of these log-likelihoods is
equivalent to maximizing both of them. This is then equivalent to maximizing l;‘e/f (HA, oP ) given

by the following equation

Ll (04,0P) = X wi (64T poA

Tmaz —Tmin [
k=0

DN |

£t B0 = (B0 )ed, | -

Tmax —Tmin

P SR I [dfmﬁk(BDeD)m _ exp((BDoDnH)eme]
k=0

P pPoP.

(7)

1
2

B4 0

To this aim, we introduce the basis spline matrix B = [ BD] € M2(n+1)’2J(R+) and the penalty

P 0
d PD] € MQJQJ([R).

matrix P =
d

64 07 log(AZL)
Let 6 be the vector of all the smoothing coefficients, i.e., 8 = [ | € R, log(Ag) = % €
0 log(Agp)
[RQ(”H); then:
1. log(Ag) = B6,
1
2. The sum of the penalties of the 2 groups can be written as QOTPO.

We introduce the following vectors:

10
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_ (44 A D D 2(n+1)
cd=(af dh D dD L) e N

A A D D T o+
e e= <€mmm’ e € s ey ezmern) eR , and
T

(A A D D 2(n+1)

o W= (wwmm, Wy W wxmern) e {0,1} ,

of length 2(n + 1). Then, the penalized log-likelihood on all the observations is

1
P (0) = 14(0) +1°(0) — 5oT PO
—

P-Splines smoothing penalty Pensmoothing

= Z Wk+1 {dkH(BG)kH - exp((BG)kH)ekH]
k=0

2n+1

+ Z Wi+1 {dkﬂ(Be)kH - eXP((BO)kH)ekH}
k=n+1

1

— 267 po.
2

2.4 Introduction of a second penalty on the log-likelihood

In this paper, the mortality intensities A" of the general population are assumed to be known and
to be piecewise constant as the mortality laws of groups A and D. The idea of our approach is to
minimize the gap between the predicted number of deaths in the general population and the sum
of the deaths in autonomous and LTC states (cf. Equation (1)). As the portfolio is composed of
autonomous and dependent individuals, the total number of deaths at age x in the portfolio is equal
to the sum of deaths in autonomy (state A) and LTC state (state D), as shown on Figure 2. This
figure shows the possible transitions in an LTC product. One observed death is either a death in
autonomy or in the LTC state. The exposures in these states are respectively denoted by e? and
eP. Therefore, the exposure of the portfolio is e + eP. In the context of a Poisson distribution for

the number of observed deaths, Equation (1) can be written as follows

A et + D) = Mleq + ADel. (8)

11
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Figure 2: Modelling of an LTC product keeping consistency between mortality laws

To respect the coherence criteria between the 3 mortality laws (autonomous, LTC, and general), a

second penalty term given by the following equation

Penloopback (0) - K (9)

2
1. Tpas ()\gf" (ef + ef) — Aéxef — A&@f)
2

T=Tmin

2
gen
IK i )‘xmm+k (ek+1 + e(n+1)+k+1) — Ao kr1€k41 — Ae,n+1+ke(n+1)+k+1
2 )
k=0

€kt+1 T €(nt1)+k+1

is added to the log-likelihood, where K is a parameter corresponding to the weight given to the

consistency criteria in the estimation of the mortality laws.

The new penalized log-likelihood now becomes

lloopback (0) — lA/D (9) — PenIOOPbaCk (0) . (10)

pen pen

This penalized log-likelihood is maximized by the Newton-Raphson algorithm. The first and second

12



derivatives with respect to the coefficients 6; are needed. The matrix forms of the gradient and the

Hessian are given by Equations (11) and (12), respectively.

Vo(lpen) = BTW(d — dg) — PO — KBT (W5 )?Wg @ ) do, (11)

Ho(lpen) = —BTWWyB — P — KBT [Wg ([(W3—1)2Wg?] ® 12)] B—

- - Tr . -
K |\Wi'Wisa Wiwsp| |Witwisa WiwPss|, (2)

where:

o the basis matrices B € MQ(HH)QJ([IQ*'), By e M(n_;'_l)’J(IRJr), Bpe M(n_;'_l)’J(IRJr), the penalty
matrix P € My;27(R) and the vector of deaths d € N2("*1) are introduced in Section 2.3,

o dy = (AgJei)ie{L.“’g(nH)} is the expected number of observed deaths with the assumption of

a Poisson distribution,
« W = diag(w),
e Iy is the 2 x 2 identity matrix
« Wo = diag(dg) € Moi1),2n+1)(R)
o W§ = diag(dy ) € M(yy1) i1y (R) where G € {4, D},

o W5 = diag ((ek+1 + e(n+1)+k+1)ke{0,.‘.,n}) € M(n+1)7(n+1)([l?) is the diagonal matrix of the total

exposure at each age, and
* W(? = diag ((AH,kHekH + A0,(n+1)+k+1e(n+1)+k+1 - /\gsfszrk[ekH + e(n+1)+k+1])ke{0,...,n}>
€ M(n-i—l),(n-i—l)(lR) :

The Newton-Raphson algorithm is used to find the optimal coefficients 8. The estimator at step
A(k+1) .
k + 1 denoted 6 is given by

~(k+1)

0 AF)

=0 - H@(k)(lpen)ilva(k)(lpen)- (13)

The algorithm stops when the maximum relative difference between two coefficients from successive

Ak)  A(k—1)
0. _0
iterations is lower than a previously fixed tolerance € (i.e  max B ! < g). The final
ie{l,....2M} a( )
K3

)

estimator of 0 is denoted by 6.

The convergence of the algorithm is discussed in Appendix A.

13



3 Extrapolation of mortality laws: calibration of theoritical expo-

sures at old ages

Extrapolating the mortality laws is necessary when not having enough observations at certain old
ages. In this case, the lack of observations does not enable the inclusion of this information at old
ages in the likelihood in Equation (10). The weights of these ages are then fixed to 0 (w, = 0).
The corresponding intensities are exclusively determined in such a way as to minimize both the

P-Splines and consistency penalties ( Pen®m°in9 and Penloorback ),

3.1 Research problem

The previous methodology is adapted when having non-zero exposures up to the maximum age
at which we wish to estimate mortality law. However, the data often contain very few or no
observations at old ages. In fact, as age increases, exposures in the portfolio of the insurer tend
to decrease because of deaths. As a consequence, the loopback penalty, based on exposures, is
of undetermined form. The extrapolation is therefore done entirely with the P-Splines penalty.
However, the objective and the interest of the loopback is to extrapolate the mortality laws in a
coherent way to better estimate the mortality at old ages, using the information on the general

mortality at these ages.

We overcome this point by computing theoretical exposures at these old ages.

3.2 Estimation of theoritical exposures and extrapolation

To overcome this issue, a maximum age at which we have enough observations is fixed. All exposures
above this age z)s are estimated to compute the distribution of autonomous and LTC people at
each age in the general population. The theoretical and estimated exposures are only used in the

loopback penalty term Pen!®P** of Equation (10).

Suppose that the general mortality intensities of the overall portfolio and the incidence are known.
Theoretical exposures at each age above xj; and in each group can be obtained by projecting the
population observed at the maximum age previously fixed. To this aim, we start the projection
with the exposures computed at age xjs. The mortality laws and the incidence intensities are then

used to estimate the exposures at older ages.

Let e and d be the vectors of observed exposures and deaths in the portfolio, respectively, as defined

in Section 2.3. Let €t be the estimated vector of exposures. The k™ terms of e and et are equal

(e®t;, = e;) for each k corresponding to an age below xy;. Here, e®st

is estimated by projection
using mortality laws and incidence intensities, depending on the vector of coefficients of the splines

6. Therefore, e®* is denoted by e®5*(8).

Let [loopback (0|ee5t,d) be the penalized log-likelihood from Equation (10) given the estimated

pen

exposure vector e®* and the vector of death counts d. We want to compute the mortality laws
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by maximizing this penalized log-likelihood with respect to 8. However, the exposures are needed
to compute the mortality laws, and the mortality laws are needed to estimate the exposures by

projection.
The problem that we want to solve in this section is then:

loopback est
mgxl (0]e°%¢(0),d).

pen

The exposures at old ages are then estimated iteratively with Algorithm 1 by updating the mortality
laws and exposures simultaneously. The Newton-Raphson algorithm in Section 2.4 is first used with
K = 0 to compute mortality laws without the consistency constraint. From the resulting mortality
laws and the known incidence intensities, exposures are first estimated by projection of the portfolio
at age xj7. The following two steps are then repeated several times. First, mortality laws are
computed using the Newton-Raphson algorithm from Section 2.4 with the estimated exposures and
the chosen parameter K to link the estimation of the two mortality laws. The second stage consists

of the re-computation of the exposures using the mortality laws from the previous step.
Let:

o loopback(data, K, expo) be the loopback function applied to data with the Newton-Raphson
algorithm in Section 2.4, with expo the exposures in both autonomous and LTC group (A
and D respectively) at each age and K the loopback penalty chosen for the calibration of the

model,

o compute expo(erpoy,,,incidence, mortality 4, mortalityp) be the projection function that
estimates the theoretical exposures given the incidence (incidence), the mortality laws
(mortalitys and mortalityp), and the exposures expos,, at the age chosen for the pro-
jection zps (the last age for which we consider the real exposures). This projection is made by
considering the exposure in each group at age x;; as the number of insureds in each group.
Under the assumption that all deaths and losses of autonomy occur at the end of the period
(i.e., just before the birthday of the insured) and from the transition probabilities at each age,

we are then able to estimate the number of insureds in states A and D at age x = z),.

o c(mortality s, mortalityp) be the concatenation of the vectors of mortality intensities in states
A and D,

e expogquq be the real exposures observed at each age.

The algorithm stops when the maximum over all the ages between the exposures of two successive
iterations is lower than a chosen tolerance 2. A maximum number of iterations is also fixed. Then,
the algorithm returns the vector of the exposures in groups A and D at each age. The values are

the real exposures for ages below x;; and theoretical exposures for ages above.

The mortality laws are then obtained by applying the Newton-Raphson algorithm in Section 2.4 by
maximizing the penalized log-likelihood !°%*2°* (cf. Equation (10)). The weights w$ are fixed to 1

pen
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Algorithm 1 Exposures estimation algorithm

K«0
EXPO < €TPOdata
c(mortality o, mortalityp) <« loopback(data, K, expo)
expo «— compute__expo(expoy,,, incidence, mortality 4, mortalityp)
K « penalty parameter chosen for model calibration
for i=1,...,nb.iterations do
c(mortality o, mortalityp) < loopback(data, K, expo)
expo « compute__expo(expoy,,, incidence, mortality 4, mortalityp)
end for
return expo

for the ages that are considered in the likelihood and 0 for the others.

The exposures used in the likelihood part of Equation (10) are the observed ones, even if wf =1

and the age is above x;;. The vector of theoretical exposure is only used in the loopback penalty.

We have introduced a hyper-parameter K on the penalized log-likelihood. Therefore, an important

step for the user of this algorithm is to fix its value.

4 Choice of hyper-parameter K, an application on synthetic data

The choice of K is important for mortality law estimation. In fact, K can be considered as the
weight given to the coherence criterion. The larger K is, the better the mortality laws estimated by

the algorithm satisfy the coherence rule. Let us illustrate this aspect first on synthetic data.

4.1 Presentation of the synthetic data

Synthetic mortality laws have been constructed from age 50 to 120. Autonomous and LTC mortality
laws have been independently estimated on a real French LTC portfolio covering severe LTC. The
general mortality has then been constructed to satisfy the coherence criterion from Equation (8)
in Section 2.4. The obtained laws are plotted from 50 to 120 years old in Figure 3. At age 50,
the general mortality is equal to the autonomous mortality since we consider a population of
100% autonomous insured at age 50 to construct the general mortality law. As age increases, the
proportion of disabled people in the general population changes, as does the general mortality law.
We see that in this example of synthetic laws, the LTC mortality law converges to the general

mortality since the population is composed of a majority of disabled individuals at old ages.

Let us assume then that the general mortality law is known but that no data are available above
age 85 for both A and D groups. This means that exposures and number of deaths at these ages are
null. The loopback algorithm should be able to find the mortality intensities for both autonomous

and LTC groups that have been used to construct the general mortality law for ages above 85.
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Figure 3: Synthetic mortality laws

4.2 Impact of the choice of K on the residual loopback error

The larger K is, the better the mortality laws estimated by the algorithm satisfy the coherence rule,

and the lower the residual loopback error given by the formula

E T'TOToopback =

2
Tmaw ()\gf” (e;? + ef) — Med — Afef) (14)

A D

The pattern of the residual loopback error as a function of K is illustrated in Figure 4.

4.3 Optimization of parameter K

A large value of K leads to a small value of the loopback error. Unfortunately, we cannot choose
K as large as possible since it implies problems in the convergence of the algorithm. Indeed, the
Hessian becomes non-invertible after a few iterations. We need to find a balance between minimizing
the loopback error and having K small enough to converge the algorithm. Figure 4 shows that if we
accept a residual error smaller than 2e — 4, we have to choose K such that the error is below the
red line. This means here that we can choose all K larger than the one at the intersection between

the red line and the error curve, which is approximatively equal to 2950.

The idea is to fix a tolerance criterion on the loopback error. We then choose the value of K that
leads to a residual loopback error close to this tolerance. The smaller the tolerance is, the larger
K. A function has been developed to optimize the choice of parameter K, leading to a tolerance
close to the one previously fixed. In this example, we choose a tolerance named 3 in the R function

equal to 2e — 4 (i.e., e3 = 2e — 4).

The optimal value for K found by the algorithm is equal to 2741.65, and the residual loopback error

17



|091 O(Errorloopback)
N

.34
(2950 , 2e-04 )

ol \

0.5 16.0 512.0 16384.0

Figure 4: Choice of K given a tolerance on the residual loopback error

is equal to 2e — 4.

4.4 Application of the loopback with the optimal K

The loopback algorithm is then used with this optimized parameter K to estimate coherent
autonomous and LTC mortality laws. Since no observations are available above 85, Algorithm 1
from Section 3.2 is used to estimate theoretical exposures at old ages appearing in the loopback
penalty given by Formula 9. In this example, the maximum age xj; for which we used the real
observed exposures is fixed to 80. All exposures used in the loopback penalty for ages above 80 are
computed by projecting the population of age 80 using biometric laws. Proportions of autonomous
and disabled individuals are sufficient to compute the penalty. Therefore, those values are computed
from the theoretical exposures and plotted in Figure 5. Starting with almost only autonomous

individuals (97.2%) at age 80, the proportion of disabled individuals increases and reaches 99.4% at
age 119.

The resulting mortality laws, plotted in Figure 6, are very close to the laws we used to construct the
general mortality law. In this figure, the triangle represents the observations used to fit the laws, and
the dots represent the mortality intensities of the synthetic data that are not used in the loopback
algorithm. The lines represent the estimated mortality laws with the loopback algorithm. Despite
not using this information above age 85, the algorithm successfully manages to return mortality
intensities close to those from the original synthetic data with the optimal K. Figure 6 shows the
added value of the loopback algorithm. In fact, by not using any coherence penalty, the extrapolation
of the mortality laws is driven only by the P-Splines order. Therefore, the extrapolation of the
mortality in LTC is quadratic if the order is fixed to 3, as in our example. As a consequence, the

mortality law in LTC (group D) diverges from the general mortality of the portfolio, whereas the
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Figure 5: Proportions resulting from calibrated exposures with the optimal parameter K

population is mostly composed of disabled individuals at old ages.
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Figure 6: Estimated mortality laws with the optimal parameter K

5 A case study on real data

5.1 Data

We rely on data coming from 5 medium-to-large French LTC portfolios. The application focuses

only on females. The level of the loss of autonomy varies from mild to severe. In this application, we
consider only severe LTC, with the GIR12 definition from the AGGIR grid described in Dupourqué
(2012), which is used by the French government for the attribution of public aid. From these
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portfolios, 11 130 deaths are observed in the autonomous state (A), versus 3681 in LTC (D). To
calibrate the mortality laws, two datasets are constructed from the portfolios. The first one, called
DB, represents the dataset of the active contributors, and the second one, called DBp, represents
the dataset of the annuitants who are disabled. The first one is used to calibrate the autonomous

mortality and incidence, while the second one is used to calibrate the mortality in LTC.

From these databases, only the observations between age 50 and 91 are used in the likelihood, as we
decided to consider only ages with at least 10 observed deaths in our database. Observations at
ages with fewer than 10 observed exits are too volatile. In Figures 8 and 10, representing estimated
mortality laws, crude rates are represented as triangles or circles. Triangles represent the data

points used in the likelihood, unlike the circles.

The general mortality law used in this section is calibrated on the same portfolios by aggregating
the databases DB4 and DBp and smoothing the crude rates by using the P-Splines smoothing
methods. To extrapolate the general mortality law, we assume that the mortality law of the portfolio
at old ages is close to the French mortality law, which is well known. The French mortality law
used here comes from the « Human Mortality Database (HMD) » with an observation period from
2016 to 2018, available at www.mortality.org (data downloaded in May 2020) thanks to Max Planck
Institute for Demographic Research (Germany), University of California, Berkeley (USA), and
French Institute for Demographic Studies (France) (2020). The BRASS model, explained in Brass
(1971), is used to force the mortality law to converge to the HMD mortality.

The incidence law i used in this section is estimated on the same 5 French LTC portfolios with the
P-Splines smoothing method with order d = 2. As many LTC products in France exclude recovery,

we do not observe any transition from state D to state A.

5.2 Application

We first begin with the extrapolation of the mortality laws, excluding any coherence criterion. This
is equivalent to using the loopback algorithm with a penalty K equal to 0. We then study the impact
of K on the residual loopback error and choose the optimal hyper-parameter K. The mortality laws
are then estimated and extrapolated using the loopback with this optimal penalization parameter.

Life expectancy at age 50, an aggregate measure of mortality above age 50, is then computed.

5.2.1 Extrapolation without loopback penalization

When the penalization parameter K is fixed to 0, then the likelihood is equal to the sum of the
likelihood of two P-Splines smoothing, one for each group (A and D). Maximizing the sum of
these two likelihoods is equivalent to maximizing both of them independently. In this example, the
smoothing penalty order is fixed to 1 for state A and 2 for state D. Therefore, as shown on Figure 8
with the dotted lines, the mortality law converges to a horizontal line at old ages for the first group

and converges to a linear extrapolation for the second group.
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5.2.2 Selection of parameter K and extrapolation of mortality laws

As seen in Section 4, parameter K has a large influence on the residual loopback error, with a larger

K leading to a smaller residual loopback error.

For a tolerance 3 fixed to le — 2, the optimal K defined in Section 4 and chosen by the algorithm
is equal to 411.56.

The maximum age x s for which we use the real observed exposures in the loopback penalty is fixed
to 90. All exposures used in the loopback penalty for ages above x; are estimated using Algorithm
1 from Section 3.2. As in Section 4.4, the estimated proportions of autonomous (group A) and
dependent individuals (group D) in the projected population needed for the loopback penalty are
plotted in Figure 7. At age x7, 80.6% of exposures are exposures in autonomy. At 99, estimated
exposures in autonomy and disability are almost equal. The proportion of dependent individuals
converges to 100% as age increases. Therefore, the population at old ages is composed almost only
of dependent individuals, and we expect the estimated mortality law in LTC (group D) to converge

to the global mortality of the portfolio denoted Gen.
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Figure 7: Proportions of autonomous and dependent individuals estimated with the optimal
parameter K

As expected, the associated mortality laws obtained by the loopback algorithm, shown in solid lines
in Figure 8, present convergence of LTC mortality to general mortality, while the log-intensity of
autonomous mortality converges to a constant value. With the incidence law used in this example,
the probability of remaining autonomous after 110 years is extremely low. Therefore, as shown in
Figure 7, almost all the surviving insureds at 110 years are disabled, and the general mortality is

equal to the mortality in LTC.

Figure 8 shows the impact of both smoothing and coherence penalties on the estimated mortality
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laws. Mortality laws obtained by maximizing lG(BG) given in Equation (6) for each group G are
represented in dotted lines. Without any smoothing penalty, the resulting mortality laws are very
volatile and try to capture all the variance observed in the data. As shown in dashed lines, adding a
smoothing penalty for each group reduces over-fitting and obtains better extrapolation in the sense
that the mortality laws do not explode as age increases. Finally, solid lines represent the mortality
laws obtained with optimal parameter K. Adding the coherence penalty allows consistency between
the three mortality laws, having the mortality of group D (LTC) converging to the general mortality

since the portfolio is composed almost only of dependent individuals at old ages.
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Figure 8: Comparison of the mortality laws for the GIR12 product obtained with the optimal K,
without any coherence penalty, and without a smoothing penalty

Given the estimated proportions of autonomous and dependent individuals in Figure 7 and the
associated calibrated mortality laws in groups A and D plotted in Figure 8, the implied mortality

law of the porfolio is estimated with Equation 8. The proportions of individuals in states A and D
ez an er

ed + el ed 4+ eD’

the general mortality law used as a reference. The two mortality laws are really close, except for

are

respectively. Figure 9 shows how well the algorithm was able to replicate

ages below 70 where the implied mortality law is really close to the autonomous mortality law. This
is explained by exposures in state D almost equal to zero at young ages. Therefore, the implied
mortality law is almost equal to the autonomous mortality. Moreover, since exposures in state A
are high at young ages, the weight of the likelihood of autonomous observations of Equation 10 is

higher than the weight of the consistency penalty for these ages.

The confidence intervals of the two mortality laws are obtained with a simulation algorithm inspired
by the bootstrap method. Using the fitted mortality laws and assuming that the number of deaths

is Poisson distributed, new death counts per age and group (A and D) are simulated for each age
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Figure 9: Comparison of the implied mortality of the portfolio to the general mortality law used as

a reference

participating in the log-likelihood term of Equation (10). New mortality laws are then fitted using
the loopback algorithm on these new simulated data. We must keep in mind that these confidence
intervals are computed considering that the general mortality is known. This implies that the
uncertainty on the general mortality is not taken into account when computing the confidence

intervals of the mortality laws in autonomy and LTC.

The confidence intervals at 99% constructed with 800 simulations are shown in Figure 10.

IC at 95%, K = 411.56

-6
e T
g ot
= E_: Aut.
: e
> —— Dep.
o] l:-_-_::
=1 10 —— Gen.
124
T T T T
60 80 100 120
Age

Figure 10: Confidence intervals for the GIR12 product obtained with the optimal K

Thanks to the loopback, the autonomous and LTC mortality and the incidence laws represented by
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)\f, )\f and i,, respectively, in Figure 1, are consistent with the general mortality of the portfolio

that is known.

5.2.3 Actuarial application

Using the calibrated laws )\af‘, )\g and ., 50000 trajectories of the future states of 50-year-old
women are simulated. The aim is to estimate the probability for autonomous women to be in the
autonomous, disabled or death state at each age above 50. The results are represented in Figure
11, where the obtained proportions in each group at each age are plotted. Starting with 100%
of autonomous individuals at age 50, the proportion of autonomous individuals decreases with
increasing age, since recovery is not considered in the model. Death is an absorbing state, and
the proportion can only increase with age. The probability of being in LTC increases until age 93
before decreasing afterwards. Indeed, insureds can both enter and exit the LTC state. Under the
calibrated biometric laws, up to age 93, the number of entries into LTC is larger than the number
of deaths. This is reversed afterwards, with more deaths expected than loss of autonomy. The last
survivor in this simulation dies in LTC at age 118. The last autonomous insured enters LTC at age
110 before dying.

Figure 12 represents the proportion of autonomous and disabled people among the survivors. Until
age 99, there are still more autonomous than disabled insureds. For an insurer, this means that
the proportion of insureds paying their premium is larger than the proportion of disabled insureds

receiving an annuity.
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Figure 11: Proportion of insureds in each group considering a 100% autonomous population at age
50
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Figure 12: Proportion of autonomous insureds and annuitants considering a 100% autonomous
population at age 50

6 Modelling products with several levels of dependency and al-

lowing recovery

Let us consider in this section a product covering multiple levels of dependency, with different

amounts of annuity depending on the degree of loss of autonomy.
Let us assume 3 levels of dependency:

o Total Dependency (TD)

 Partial Dependency (PD)

o Light Dependency (LD)

Recovering from severe dependency can be assumed to be impossible. However, one could want to

allow recovery from the light level of dependency LD.

Section 6.1 presents two ways of modelling this product. Subsection 6.2 focuses on how to incorporate

the recovery in the loopback algorithm.

6.1 Two ways of modelling a product covering multiple levels of dependency

In a first step, let consider a product without transition payments. We can model a product covering
multiple levels of dependency with a 5-state Markov model (termed Model 1 in this section), as
shown in Figure 13. For clarity, the intensity notations are not mentioned in this figure, except for
the incidence rates from the autonomous state A to the lower level of dependency LD denoted i,

and the recovery rates from LD to A denoted r,.
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A

Figure 13: Modelling of an LTC product with multiple degrees of loss of autonomy (Model 1)

Most insurers suffer from scarcity of data due to the recency of LTC products covering multiple
degrees of loss of autonomy. As a consequence, it is difficult for these insurers to calibrate this type
of model without needing to introduce strong assumptions on the intensities, as in Fleischmann
(2015), where, for example, the intensity to reach a specific level of dependency is assumed to be
independent of the state of origin. Another way of modelling this product is to consider it as a set
of 3 products. Underwriting to this product covering 3 levels of severity of loss of autonomy, with
an annuity depending on this severity, is equivalent to underwriting to 3 LTC contracts denoted «,

8 and =, as represented in Figure 14 and described as follows:

o Product « covers all degrees of LTC (light, partial and total dependency) with the same

annuity amount. The conditions of the contract are as follows:
— The insured pays the premium P, as long as the insured is autonomous.

— The insurer pays an annuity R, as long as the insured is in light, partial or total

dependency.

— The insured can recover from dependency. In this case, the insurer stops paying the

annuity, and the insured is considered autonomous.
e Product § covers partial and total dependency such that:

— The insured pays the premium Pz as long as the insured is autonomous or in light

dependency.
— The insurer pays an annuity Rg as long as the insured is in partial or total dependency.

— Recovery is not possible.
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e Product v covers only total dependency such that:

— The insured pays the premium P, as long as the insured is alive and not in total

dependency.

— The insurer pays an annuity 2, as long as the insured is in total dependency.

— Recovery is not possible.

(a) Product « (b) Product g (¢) Product ~

Figure 14: Modelling of an LTC product covering multiple degrees of loss of autonomy with a set of
3 LTC products (Model 2)

We note that 7, < r, because only insureds in light dependency (LD) can recover.

Let:
e P be the premium of the product covering the multiple levels of LTC.

o Rjpe be the annuity paid to a dependent insured with the level of severity level €
{LD,PD,TD}.

e Pj and R; be the premium and annuity amounts for Product j € {a, 3,7}, respectively.

Let us compare both models by analyzing the cash-flows of the insured depending on its health
status. To model the multi-level product with a set of LTC products, the cash flows given in Table
1, of both models have to be equal. In this case, underwriting to a contract covering the 3 degrees

of dependency is equivalent to underwriting to the 3 products described in Figure 14.

Cash flows
Health status | Model 1 Model 2
Autonomous —P —P,—Ps - FP¢
LD Rip R, — P3 - P,
PD Rpp R, + R@ — P,y
TD Rrp R, + Rg + Ry

Table 1: Comparison of cash flows of Model 1 and Model 2

A product offering transition payments, can also be considered as a set of 3 products as in Figure 14

if going through intermediate LTC states does not change the total amount received by the insured.
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Here is an example of transition payments of such a product:
o In case of entry in LD from A, the insured receives a capital K7 p at the time of entry in LD,
o In case of entry in PD from A, the insured receives a capital Kpp at the time of entry in PD,
o In case of entry in T'D from A, the insured receives a capital K7p at the time of entry in T'D,

o If the insured enters state PD from state LD, then he receives Kpp — K1p at the time of
entry in PD,

e If the insured enters state T'D from state LD, then he receives Krp — K1p at the time of
entry in T'D,

e If the insured enters state T'D from state PD, then he receives Krp — Kpp at the time of
entry in T'D,

o An insured entering state S € {LD, PD,TD} from state A after recovering from LD receives
Kg— Ky p at the time of entry in S.

Model 2 is a good way to model a multi-level product when not having a large database without

making strong assumptions on the shape of the rates. This model is often used by insurers.

6.2 Taking into account the possibility to recover

Product « represented in Figure 14a allows recovery. Allowing this transition has only a slight
impact on the algorithm presented in this paper. In fact, allowing recovery has an impact only if

one needs to estimate exposures, as in Section 3. In this case, Algorithm 1 becomes:

Algorithm 2 Exposures estimation algorithm in the case of recovery
K«0
EXPO < €TPOdata
c(mortality o, mortalityp) < loopback(data, K, expo)
expo «— compute__expo(expoy,,,incidence, recovery, mortality 4, mortalityp)
K < penalty parameter chosen for model calibration
for i=1,...,nb.iterations do
c(mortality 4, mortalityp) < loopback(data, K, expo)
expo < compute__expo(expoy,,,incidence, recovery, mortality 4, mortalityp)
end for
return expo

where recovery represents the transition rates from the LTC to the autonomous state.

In this case, the function compute__expo(expoy,,, incidence, recovery, mortality s, mortalityp) has

to take into account the recovery law.

Let us assume that recoveries occur at the end of the period as the deaths and losses of autonomy

in Section 3. An insured recovering at age x is in state A at age x + 1 and cannot enter state D a
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second time or die before age = + 1. At the i iteration,

empofﬂ(i) = ewpo?(i —1)exp (—()\g[f1 + zx)) + expo,]?(i -1) [1 — exp (—()\E + r}))] ﬁ,
empoxDH(i) = ea:pof(i —1)exp (—()\:ED + r}()) + empof(i —-1) [1 — exp (—()\;4 + Zx))] )\Aiﬁ,

where eacpogﬂ(i) denotes the exposure in group G at age x at the i, iteration, and 7, denotes the

intensity rate of recovery. The terms added by allowing the recovery are highlighted in boldface.

7 Discussion

In this paper, we introduce an approach to simultaneously estimate the mortality laws of two
subgroups A and D (where A and D represent the autonomous and disabled insured groups,
respectively), knowing the mortality of the overall group (A u D). To do so, we rely on the P-Splines
smoothing method combined with Poisson-GLM, to which we add a consistency constraint. The
aim of this constraint is to link the mortality of the overall group, named general mortality in this
paper, to both mortality laws in groups A and D. This constraint is based on the idea that each
death in the overall group is a death in either subgroup A or subgroup D. Therefore, the sum of
deaths in A and D is equal to the number of deaths in the overall group (gen). If Dg denotes the
random variable of the death counts at age = in group G € {4, D, gen}, then DI = D} + DD As
in the Poisson-GLM part of the model, we assume that the count of deaths in each group G at each
age x exhibits a Poisson distribution of parameters proportional to the central exposure and the
mortality intensities. This allows us to link the mortality rates of the three groups. This constraint
is added in the form of a penalty in the likelihood. The mortality intensities are then estimated by

maximizing the penalized log-likelihood.

We then address the problem of extrapolation of mortality laws in the case where no or not enough
observations are available at old ages. This is often the case in an insurance context, particularly
when estimating the risk associated with LTC products. In fact, the recency of these products
combined with the fact that they are sold to individuals on average 60 years old are responsible for
the data paucity beyond 85 years old. Extrapolation of mortality laws is therefore necessary for
actuaries to assess the risk. We introduce an iterative approach to estimate the missing exposures
at old ages. To do so, we successively estimate the mortality laws with the method described in
Section 2 and then the exposures using the probability of transition from group A to D and the
mortality laws from the previous step. We then re-estimate the mortality laws using the estimated
exposures. These new mortality laws then lead to new estimations of the exposures. The algorithm

stops when tolerance criteria are reached between successive estimations of exposures.

In the first step, the algorithm developed in this paper is tested on synthetic data. Mortality laws
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are known until 119 years old, but we hide the observations above 85 to the algorithm and see how

the algorithm is able to reproduce these mortality intensities between ages 86 and 119.

We introduce methods to fix the hyper-parameter and to construct confidence intervals and perform
testing on the synthetic dataset. We show that our approach improves the extrapolation of the
mortality laws. In fact, the extrapolation with a consistency penalty is much closer to the actual
mortality intensities from 86 to 119 than the extrapolation without a penalty. In a second step, the
approach presented in this paper is used on real data from five medium-to-large LTC portfolios. As
with the synthetic data, we compare the results of estimations and extrapolations with and without
a consistency penalty. Compared to the estimation without penalty, adding the consistency criteria
results in lower estimated mortality rates in LTC (group D) at old ages and higher mortality rates
for the autonomous group (group A). An insurer not using consistency criteria would overestimate

the mortality of the annuitants, leading to underestimation of the provisions.

As the loopback algorithm is based on P-Splines, orders of splines penalties d introduced in Section
2.3 for each group (A and D) are considered as hyper-parameters. As seen in Section 2.3, the choice
of d is crucial since it drives the age extrapolation results. In particular, without a loopback penalty,
the age extrapolation is linear on the log-scale for d = 2 and constant for d = 1. Adding consistency
penalty decreases the impact of this choice. The extrapolation is no longer driven only by this
order but also by the consistency criteria. Nevertheless, a careful choice must be made whether
one assumes that the mortality intensity continues to grow log-linearly with age even at old ages,
as in Gavrilov and Gavrilova (2019), or if mortality stops growing at old ages, as in Barbi et al.
(2018). In this paper, the order is fixed to 2 for disabled mortality. The order 2 allows a linear
extrapolation and gives more degrees of freedom. At old ages, the probability of being autonomous
is very low. Most insureds are either disabled or dead. Therefore, autonomous mortality at old
ages has a relatively low impact on product pricing and reserving. In our application, fixing d = 2
for autonomous leads to intersecting mortality curves. In fact, in the first step of Algorithm 1,
exposures are estimated with the mortality laws without a consistency constraint. With d = 2 for
both autonomous and disabled groups, these extrapolated mortality laws at first step intersect, and
the autonomous mortality is truly high at old ages (higher than the general mortality), leading
to estimated exposures equal to 0 in autonomy. Therefore, for the second and next steps of the
algorithm, the autonomous mortality in the constraint has a negligible or even zero weight. Hence,
the constraint has only an impact on the extrapolation of the mortality in LTC, and the autonomous

mortality remains higher than both the general and the disabled mortality.

In the context of modelling LTC products, many insurers use two-dimensional mortality rates for
the LTC group, using semi-Markov models. In fact, mortality in LTC may depend on attained
age but also on time spent in disability. Future research should implement this algorithm with a
one-dimensional mortality law for group A depending on age and a two-dimensional mortality for

group D depending on age and duration.
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Appendix A: Convergence of the Newton Raphson algorithm

To be the maximum penalized likelihood estimator of 6, the Hessian matrix Hy at the final step of

the algorithm has to be negative semi-definite.

Let us analyse the Hessian matrix.

The first term —BT WWyB is negative semi-definite for all 8. Indeed, recalling that Wy is

diagonal with only non-negative terms,
W BTWyBh = (Bh)'Wy(Bh) =0 Vhe R*M,

The second term — P, which does not depend on 8, is also negative semi-definite. Indeed,
from 2.3, we know that P; = Dng. Therefore, h' P;h >0  Vhe R*M.

The third term —K BT [Wg ([(Wg— I)QWBQ 1® IQ):l B is not necessarily negative semi-definite
for all . In fact, the weight matrix [Wg ([(WQI)QW‘?] ®12>] is diagonal, but not all

coefficients are greater than 0 for some 6. The terms of the diagonal matrix are non-positive

if some terms of WéQ are non-negative. This is the case when

)\émef + Ag@ef < A [ed + eD], for some Zpmin < & < Zag-

- . Tr . -
The fourth term —K [ngwg‘BA W3_1W9DBD] [Wg_lWé“BA Wg—leDBD] is negative
semi-definite for all 8. In fact,
- - Tr . - - ~ 2
W\ Wy Wit B Wy W BD| Wy WitBa Wi W B | h = ||y wWitsa Wi twBp | A,

= 0.

Then, a sufficient condition for Hg(lpen) to be negative semi-definite and therefore for 0 to be the

optimal parameter is that the third term is negative semi-definite. The condition is given by

A A D _D A D
Mgy T ANgaly SAT(er ter);  YVTmin < T < Tmaz- (15)

This means that the sum of the predicted number of deaths in states A and D has to be lower than

or equal to the predicted number of deaths of the overall population.
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