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Abstract. Self-stabilization qualifies the ability of a distributed system to re-
cover after transient failures. SASA is a simulator of self-stabilizing algorithms
written in the atomic-state model, the most commonly used model in the self-
stabilizing area.
A simulator is, in particular, useful to study the time complexity of algorithms.
For example, one can experimentally check whether existing theoretical bounds
are correct or tight. Simulations are also useful to get insights when no bound is
known.
In this paper, we use SASA to investigate the worst cases of various well-known
self-stabilization algorithms. We apply classical optimization methods (such as
local search, branch and bound, Tabu list) on the two sources of non-determinism:
the choice of initial configuration and the scheduling of process activations (dae-
mon). We propose a methodology based on heuristics and an open-source tool to
find tighter worst-case lower bounds.

1 Introduction

Usually, simulator engines are employed to test and find flaws early in the design pro-
cess. Another popular usage of simulators is the empirical evaluation of average-case
time complexity via simulation campaigns [3,6,9]. In this paper, we propose to investi-
gate how to build worst-case executions of self-stabilizing algorithms using a simulator
engine. For that purpose, we will apply classical optimization methods and heuristics
on the two sources of non-determinism: the choice of the initial configuration and the
scheduling of process activations. To that goal, we consider SASA [9], an open-source
and versatile simulator dedicated to self-stabilizing algorithms written in the atomic-
state model, the most commonly used model in self-stabilization. In this model, in one
atomic step, a process can read its state and that of its neighbors, perform some local
computations, and update its state accordingly. Local algorithms are defined as set of
rules of the form ⟨Guard⟩ → ⟨Statement⟩. The guard is a Boolean predicate on the
states of the process and its neighbors. The statement is a list of assignments on all or
a part of the process’ variables. A process is said to be enabled if the guard of at least
one of its rules evaluates to true. Executions proceed in atomic steps in which at least
one enabled process moves, i.e., executes an enabled rule.

Self-stabilization [15] qualifies the ability of a distributed system to recover within
finite time after transient faults. Starting from an arbitrary configuration, a self-stabilizing
⋆ This work has been partially funded by the ANR project SkyData (ANR-22-CE25-0008-01).
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algorithm makes the system eventually reach a so-called legitimate configuration from
which every possible execution suffix satisfies the intended specification. Self-stabilizing
algorithms are mainly compared according to their stabilization time, i.e., the maximum
time, starting from an arbitrary configuration, before reaching a legitimate configura-
tion. The stabilization time of algorithms written in the atomic-state model is commonly
evaluated in terms of rounds, which measure the execution time according to the speed
of the slowest processes. Another crucial issue is the number of moves which captures
the number of local state updates. By definition, the stabilization time in moves exhibits
the amount of computations an algorithm needs to recover a correct behavior. Hence,
the move complexity is rather a measure of work than a measure of time: minimiz-
ing the number of state modifications allows the algorithm to use less communication
operations and communication bandwidth [16].

In the atomic-state model, the asynchrony of the system is materialized by the no-
tion of daemon. This latter is an adversary that decides which enabled processes move
at each step. The most general daemon is the distributed unfair one. It only imposes the
progress in the execution, i.e., while there are enabled processes, at least one moves dur-
ing the next step. Algorithms stabilizing under such an assumption are highly desirable
because they work under any daemon assumption. Finally, since it does not impose fair-
ness among process activations, the stabilization time of every self-stabilizing algorithm
working under the distributed unfair daemon is necessarily finite in terms of moves.3

There are many self-stabilizing algorithms proven under the distributed unfair dae-
mon [6,11,13,19]. However, analyses of the stabilization time in moves remain rather
unusual and this is sometime an important issue. Indeed, several self-stabilizing algo-
rithms working under a distributed unfair daemon have been shown to have an expo-
nential stabilization time in moves in the worst case [6] for silent self-stabilizing leader
election algorithms given in [11,13], [14] for the BFS spanning tree construction of
Huang and Chen [22], and [20] for the silent self-stabilizing algorithm they proposed
in [19].

Methods and Contributions. Exhibiting worst-case executions in terms of stabiliza-
tion time in moves is usually a difficult task since the executions of numerous intercon-
nected processes involve many possible interleavings in executions. The combinatorics
induced by such distributed executions is sometime hard to capture in order to prove
a relevant lower bound. Hence, we propose here to use the simulator engine SASA to
give some insights about worst-case scenarios. By judiciously exploring the transition
system, we can expect to quickly find bad scenarios that can be generalized afterwards
to obtain tighter bounds.

We consider here self-stabilizing algorithms working under the unfair daemon. Hence,
the subgraph of the transition system induced by the set of illegitimate configurations is
a directed acyclic graph (DAG). This subgraph can be huge and also dense since from
a given configuration we may have up to 2n −1 possible directed edges, where n is the
number of nodes. Note that worst-case scenarios in moves are frequently central [6,5]:
at each step, exactly one process moves. Therefore, and because it limits the number of
possible steps from a configuration to at most n, we focus in the experiments on central

3 The (classical) weakly fair daemon, for example, does not provide such a guarantee.
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schedulers – even if the methods presented in the article actually work for other unfair
daemons.

Even with this restriction, the space to explore remains huge. Since worst cases de-
pend on the initial configuration and the scheduling of moves, we propose exploration
heuristics targeting these two sources of non-determinism. The goal is to get some in-
sights on algorithms upper bounds, or to assess how tight known upper bounds are.

One of the proposed heuristics relies on so-called potential functions. A potential
function is a classical technique used to prove convergence (and stabilization) of al-
gorithms: it provides an evaluation of any configuration and decreases along all paths
made of illegitimate configurations. We use them to guide the state space exploration,
and to use classical optimization techniques (branch and bound). Note that potential
functions usually give a rough upper bound on the stabilization time. Again, our ap-
proach allows to refine such a bound.

We also propose heuristics based on local search to speed-up the finding of worst-
case initial configurations. All those heuristics are implemented into the open-source
simulator SASA, and conclusive experiments on well-known self-stabilization algo-
rithms are performed.

Related Work. SASA [9] is an open-source and versatile simulator dedicated to self-
stabilizing algorithms written in the atomic-state model. All important concepts used
in the model are available in SASA: simulations can be run and evaluated in moves,
atomic steps, and rounds. Classical daemons are available: central, locally central, dis-
tributed, and synchronous daemons. Every level of anonymity can be considered, from
fully anonymous to (partially or fully) identified. Finally, distributed algorithms can be
either uniform (all nodes execute the same local algorithm) or non-uniform. SASA can
be used to perform batch simulations which can use test oracles to check expected prop-
erties. For example, one can check that the stabilization time in rounds is upper bounded
by a given function. The distribution provides several facilities to achieve batch-mode
simulation campaigns. Simulations can also be run interactively, step by step (forward
or backward), for debugging purposes.

Only a few other simulators dedicated to self-stabilization in locally shared mem-
ory models, such as the atomic-state model, have been proposed. None of them offers
features to deal with worst-case scenarios. Flatebo and Datta [18] propose a simulator
of the atomic-state model to evaluate leader election, mutual exclusion, and ℓ-exclusion
algorithms on restricted topologies, mainly rings. This simulator has limited facilities
including classical daemons and evaluation of stabilization time in moves only. It is not
available anymore. Müllner et al. [24] present a simulator of the register model, a com-
putational model which is close to the atomic-state model. This simulator does not al-
low to evaluate stabilization time. Actually, it focuses on three fault tolerance measures
initially devoted to masking fault-tolerant systems (namely, reliability, instantaneous
availability, and limiting availability [25]) to evaluate them on self-stabilizing systems.
These measures are still uncommon today in analyses of self-stabilizing algorithms.
The simulator proposed by Har-Tal [21] allows to run self-stabilizing algorithms in the
register model on small networks (around 10 nodes). It proposes a small amount of fa-
cilities, i.e., the execution scheduling is either synchronous, or controlled step by step
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by the user. Only the legitimacy of the current configuration can be tested. It provides
neither batch mode, nor debugging tools. Evcimen et al. describe in [17] a simulation
engine for self-stabilizing algorithms in message passing. Their simulator uses heavy
mechanisms to implement this model, such as queue of events, threads, and fault in-
jection. In the Evcimen et al.’s simulator, the execution scheduler can be only fully
asynchronous. Being corner cases, central and synchronous executions are very useful
to find bugs or to exhibit a worst-case scenario.

Several other studies deal with the empirical evaluation of self-stabilizing algo-
rithms [1,2,3]. However, these studies focus on the average-case time complexity. Note
that SASA has been also used to tackle average-case stabilization times through simula-
tion campaigns [9].

2 Exploring Daemons

For a given topology T and an initial configuration cinit , the stabilization time in moves
of an algorithm A depends on the choices made by the daemon at each step. Finding
a worst-case stabilization time requires to explore all the illegitimate configurations of
the transition system. Hence, we define R(A,T,cinit) as the transition system where all
legitimate configurations are collapsed into one node, as illustrated in Fig. 1. As the
size of R(A,T,cinit) grows exponentially, we need exploration heuristics. The goal of
those heuristics is to build a scheduling of actions and thus to implement a daemon.
We call exhaustive daemon the algorithm that builds a central daemon by exploring
R(A,T,cinit) until finding a longest path; we also use random daemons which, at each
configuration, pick the next move uniformly at random.

Greedy Daemons. In self-stabilization, a potential function φ maps configurations
to the set of natural integers and satisfies the following two properties: (1) if φ(c) is
minimum, then c is legitimate; (2) φ is decreasing over illegitimate configurations,
i.e., for every execution c0, . . .ci,ci+1, . . ., for every i ≥ 0, if ci is illegitimate, then
φ(ci) > φ(ci+1). Exhibiting such a function is a classical technique to prove the self-
stabilization of an algorithm. The idea here is to use potential functions during simula-
tions, and define greedy daemons that always choose configurations that maximize φ .
As shown by the experiments we perform below, for most algorithms, greedy daemons
find longer paths in R(A,T,cinit) than random ones – but not necessarily the longest.

Cutting Exploration Branches. Using a greedy daemon is of course a heuristic that
can miss the longest path. To find it, we need to backtrack (branch) in the exploration of
R(A,T,cinit). A first simple optimization is the following: (1) perform a greedy traver-
sal of R(A,T,cinit) to get a lower bound on the maximum number of moves to sta-
bilization; (2) then, during the remaining of the exploration, all configurations which
depth (i.e., the distance to cinit ) plus its potential is less than or equal to the known
lower bound will never lead to a longer path: the corresponding branches can then be
cut (bound) without missing the worst-case. This can reduce a lot the number of steps
necessary to explore exhaustively R(A,T,cinit); see experiments below.



Exploring Worst Cases of Self-stabilizing Algorithms using Simulations 5

Perfect Potential Functions. Given an algorithm, a topology and an initial configura-
tion, we say that the potential function is perfect if the corresponding greedy traversal
finds in n moves a legitimate configuration when the potential of the initial configura-
tion is n (i.e., if it decreases by one at each move). In such cases, which are easy to
detect during simulations, it is useless to continue the search as no better (longer) path
can be found.

Tabu List. A classical optimization used to explore graphs is to maintain a (tabu) list
of visited nodes in order to avoid to revisit the same node twice. A classical heuristic
to prevent this list to grow too much is to keep only the more recently visited nodes.
When a configuration α in the tabu list is reached, the length of the path associated to
α just need to be updated. This often reduces drastically the exploration time measured
in terms of number of visited edges of R(A,T,cinit).

Promising Daemons. Consider Fig. 1; according to the values of φ , a greedy daemon
would choose the path cinit − c5 − c6 −Cs. In order to search for a better solution, one
could backtrack to the last choice point (c5), which amounts to perform a depth-first
traversal of R(A,T,cinit).

As R(A,T,cinit) can be huge, exploring it exhaustively can be very long, and the
use of a timeout is necessary in practice. In this context, it is better to explore the most
promising configurations first. The next configurations that would be explored by a
depth-first traversal would be c7 or c8; but they do not look promising, as their potential
is 2 – which means that at most two more moves would be needed to reach the set of
legitimate configurations Cs, and will not lead to big improvements.

By taking into account the depth d in R(A,T,cinit) and the potential φ , we can
choose to backtrack to a more promising configuration. In order to have a choice cri-
terion, we can remark that so far (once the greedy daemon found a path of length 3),
each move consumed 18/3 = 6 of the initial potential; we denote by sφ this quantity.
By choosing the configuration which maximizes the promise computed by d + φ/sφ ,
we can hope to do better than a simple depth-first-search and find better solutions first.
We now detail the behavior of this heuristic on the R(A,T,cinit) of Fig. 1.

1. At the beginning, from cinit , we need to consider configurations that all have the
same depth (c1, c2, c3, c4, c5); the one with the highest promise is therefore the one
with the highest potential, c5.

2. c7 and c8 are thus added to the set of configurations to be considered (c6 has already
been visited during the initial greedy traversal), but their promises (2+2/6 = 2.33)
are lower than the promise of c2 (1+14/6 = 3.34).

3. c2 is therefore selected, which adds c9, c10, c11 in the configurations set to be ex-
plored.

4. c11 has a promise of 2+ 11/6 = 3.83, and is thus preferred over c4, which has a
promise of 1+13/6 = 3.17.

5. Then c14 (3+9/6 = 4.5) and c15 (4+4/6 = 4.67) are selected, a new path of length
5 is found and sφ is updated.
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Fig. 1: Selected nodes in the graph R(A,T,cinit)

At this stage, all configurations for which the sum of the depth and the potential is
smaller or equal than 5 can be cut (cf. red crosses in Fig. 1).

This algorithm is an heuristic in the sense that it sometimes finds the worst-case
faster, but the exploration remains exhaustive as only branches that cannot lead to a
worst-case are cut. Another exploration heuristics would have been to select configura-
tions according to the sum of their depth and their potential. But using such a heuristic
would delay the discovering of new longest paths (in step 4 above, c4 would have been
chosen over c11), which in turn would prevent to cut branches. More generally, favor-
ing depth over breadth allows to find longer paths sooner, which allows to cut more
branches sooner and speed up the exhaustive exploration – which make this idea inter-
esting even without using timeouts.

When No Potential Function is Available. Finding a potential function can be chal-
lenging for some algorithms. But note that any function that is able to approximate
accurately enough the distance between a configuration and the set of legitimate con-
figurations could be used to guide the exploration of R(A,T,cinit) with the heuristics
described above. The result of an exhaustive exploration using such a pseudo-potential
function should be interpreted with care using the optimization described so far since
the actual best solution can be missed.

Benchmark Algorithms. Those ideas have been implemented in SASA. We propose
to experiment them on the following set of algorithms:
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1. token is the first token ring algorithm proposed by Dijkstra [15]. It stabilizes to a
legitimate configuration from which a unique token circulates in the ring. We use
the potential function given in [5].

2. coloring is a vertex coloring algorithm [7]. The potential function, proposed
in [7], counts the number of conflicting nodes.

3. te-a5sf consists of the two last layers of the algorithm given in chapter 7 of [7]
to illustrate some algorithm composition. It consists of a bottom-up computation
followed by a top-down computation of the rooted tree. Its potential function is
inspired from the general method proposed in [8].

4. k-clust computes sub-graphs (clusters) of radius at most k [12] in rooted trees. Its
potential function is made of the sum of enabled node levels in the tree, as described
in [4].

5. st-algo1 computes a spanning tree (the first of the 2 algorithms proposed in [23]).
Its potential function, also given in [23], consists of counting the number of cor-
rectly directed edges.

6. unison is a clock synchronization algorithm that stabilizes to a configuration from
which clocks of neighboring nodes differ from at most one [10]. To the best of our
knowledge, no potential function has been ever proposed for this algorithm. We use
instead a pseudo-potential function that consists of counting the number of nodes
that are not synchronized.

20

40

60

80

0.00e+00 2.50e+07 5.00e+07 7.50e+07 1.00e+08 1.25e+08

explored edges number

le
n
g
th

 o
f 
th

e
 lo

n
g
e
st

 p
a
th

Strategy

bfs
dfs
promising

Fig. 2: Comparing exhaustive exploration strate-
gies on te-a5sf/rtree5.

Simulations are performed on
different topologies: directed rings
(noted diring), random rooted trees
(rtree), Erdős–Rényi random graphs
(er), lines, grids and stars; in the se-
quel, the size of those graphs (in
number of nodes) is noted aside the
graph name. For example, diring5
denotes a directed ring with 5 nodes.

Finding Longest Paths First. The
motivation for defining promising
daemons is to find the longest paths
as soon as possible during the ex-
ploration. In order to assess our de-
sign choices, we have conducted an
experiment where, during a simula-
tion of the te-a5sf algorithm on
a rooted tree of size 5 under the
promising daemon, we store the number of edges explored in R(A,T,cinit) each time
a new longest path is found. Fig. 2 shows the result of this experiment together with
the result obtained with a Depth-First Search (DFS) and a Breadth-First Search (BFS)
exploration using the same parameters. One can see on Fig. 2 that indeed, on this par-
ticular example at least, the promising heuristic is better than a DFS exploration: the
longest paths are discovered sooner, which allows to cut more branches and leads to
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less explored edges (less than 12 millions versus more than 55 millions for DFS and
120 millions for BFS) to perform the exhaustive exploration. Notice that it is just an
heuristic, that sometimes gives better result, and sometimes doesn’t.

Measuring the Effect of Branch Cuts and Tabu Lists. We ran the promising heuristic
(values are similar with a Depth-First Search) with and without the optimizations of
branch-cuts and tabu list.

Table 1 contains the results of the following experiments. We chose small enough
topologies to get a result in a reasonable amount of time when computing without op-
timization (we use random rooted trees for unison, as for k-clust and te-a5sf).
For a given algorithm and once the topology is fixed, an experiment consists of picking
an initial configuration uniformly at random and running a simulation on it with four
different sets of options. Column 2 contains the number of edges explored during the
simulation using a promising daemon with no optimization at all. Column 3 contains
the gain factor compared to the values of Column 2 using the branch-cuts and the tabu
list optimizations. Column 4 (resp. 5) contains the same gain factor but using only the
branch-cuts (resp. the tabu list) optimization. Each number in this table is the aver-
age of x experiments that were performed with different initial configurations picked
at random. It is given (at the right-hand-side of the ± symbol) with the bounds of the
corresponding confidence interval at 95% (1.96×σ/

√
x, where σ is the standard devi-

ation). In order to get a tight enough interval, experiments were repeated from x = 200
to x = 100000 times.

Table 1: Measuring the effect of branch-cuts and tabu list.
algo/topology no optimization cut + tabu cut tabu

edges number gain factor gain factor gain factor
token/diring5 1400±100 11±0.7 11±0.7 6±0.3
token/diring6 4 ·106 ±2 ·106 8500±4000 4700±3000 2200±800
k-clust/rtree5 380±30 5.4±0.3 2.9±0.1 4±0.2
k-clust/rtree6 2900±70 18±0.4 5.6±0.2 12±0.2
k-clust/rtree7 2 ·104 ±2 ·103 58±5 7±0.8 39±3
k-clust/rtree8 7 ·105 ±8 ·104 850±90 59±20 400±30
te-a5sf/rtree3 2800±7 12±0.02 3±0 10±0.01
te-a5sf/rtree4 6 ·106 ±6 ·104 2000±10 6.2±0.05 1800±10
unison/rtree3 12±0.1 1.2±0 1.2±0 1.1±0
unison/rtree4 3900±100 76±2 73±2 13±0.3
unison/rtree5 4 ·107 ±1 ·107 3 ·105 ±2 ·105 3 ·105 ±2 ·105 1 ·104 ±7 ·103

Table 1 shows that, on those algorithms and topologies, the optimization gain factor
grows exponentially with the topology size. It also shows that the two optimizations are
complementary in the sense that their effects are cumulative.

Note that we do not show any result for coloring nor st-algo1 since their poten-
tial functions are perfect which makes promising exploration useless.

Daemons Comparison. Given an algorithm and a topology with a particular initial
configuration, the simplest way to search for the longest path is to perform several
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simulations using a random daemon. In order to assess the idea of using more elaborated
methods based on a potential function and use greedy or promising daemons, we ran
another set of simulations. Note that, as for the random daemon, we have performed
several runs of the greedy one since it also has a random behavior with SASA: indeed,
when several choices lead to the same potential, one is chosen uniformly at random. On
the contrary, the promising daemon only needs to be run once.

The results obtained with those three kinds of daemons are provided in Table 2.
This table is obtained, for each algorithm and topology, by repeating 1000 times the
following experiment:

1. choose an initial configuration I;
2. run once the promising daemon on I and report the resulting move number in col-

umn 2;
3. run n1 (resp. n2) times the algorithm on I with a greedy (resp. random) daemon and

report the maximum move number in column 3 (resp. column 4). The numbers of
simulations n1 and n2 are chosen in such a way that the same amount of CPU time
budget is used for the three daemons.

Table 2 the shows average values for those 1000 experiments, as well as the cor-
responding 95% confidence interval bounds. The last column indicates the total wall-
clock simulation time.

Table 2: The longest path obtained with different daemons.
algo/topology Promising Greedy Random time
coloring/er11 4.6±0.1 4.6±0.1 4.2±0.08 28m
st-algo1/er20 24±0.4 24±0.4 23±0.4 1h
k-clust/rtree14 24±0.3 22±0.3 18±0.2 3h
token/diring12 69±0.8 66±0.8 28±0.4 47m
te-a5sf/rtree5 32±0.07 30±0.05 22±0.1 1h

The potential functions of coloring and st-algo1 being perfect, the result is the
same for greedy and promising daemons. Moreover, they do not significantly improve
the result of the random daemon.

For token, k-clust, and te-a5sf, greedy daemons give better results than ran-
dom ones, but fail to find the best solution given by the promising daemon.

The case of unison and its pseudo-potential function requires a special attention.
Indeed, as previously noticed, the promising daemon with the branch-cut optimization
is not exhaustive. This is why the results of the experimentation of this algorithm is
in a different table (Table 3), which has an extra column (Column 2) that contains the
result of the promising daemon run without this optimization. We can observe that
the promising daemon finds much better solutions than the greedy daemon, provided
that the cut optimization is inhibited. The greedy daemon is itself much better than
the random daemon on most topologies. Note that the greedy daemon sometimes does
better than the promising daemon (e.g., on grid16), which seems counter-intuitive as
the promising daemon starts its exploration by a greedy search. This can be explained
since greedy daemons have randomness, and in Column 4, each experiment consists of
several (n1) simulations.
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Table 3: The longest path obtained with different daemons for unison.
algo/topology Promising Promising Greedy Random time

no cut
unison/ring10 42±2 27±0.3 26±0.2 18±0.4 19m
unison/er11 83±4 35±0.6 39±0.6 22±0.5 6h
unison/grid16 59±1 37±0.5 40±0.3 29±0.4 29h
unison/chain10 75±2 36±0.4 37±0.4 19±0.3 3h
unison/rtree10 55±3 27±0.6 24±0.7 19±0.4 7h
unison/star8 23±0.6 15±0.3 16±0.4 14±0.2 4h

3 Exploring Initial Configurations

For a given topology, the stabilization time is also impacted by the choice of the initial
configuration. Here again, simulations can help to experimentally figure out the worst
case, and check whether the known bounds are tight.

3.1 Assessing Initial Configurations

Given an initial configuration I, a way to evaluate its ability to lead to worst case sta-
bilization time is to exhaustively explore R(A,T,cI) and seek for the longest path. Of
course this is costly4, in particular if we want to do that on a large number of configura-
tions. Using a greedy or a random daemon to approximate this configuration evaluation
would be cheaper, but how could we know if a good configuration, that leads to a long
path, for a random or a greedy daemon, is also a good configuration w.r.t. an exhaus-
tive exploration? In other words, are the results of those different evaluations methods
correlated? In order to get some insights on this question, we study this hypothesis ex-
perimentally, by running simulations using those three different daemons, and looking
at the resulting stabilization time.
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4 Even using the optimizations of Section 2.
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Fig. 3 shows the result of such an experiment on the token algorithm over a di-
rected ring of size 12. Each of the 1000 points in both graphics is computed by running
a simulation from a different random configuration; its abscissa corresponds to the sta-
bilization time (in moves) obtained using a greedy (left) and a random (right) daemon;
its ordinate corresponds to the stabilization time obtained using a promising (and thus
exhaustive) daemon. One can notice that on this set of simulations, the worst case ob-
tained by the greedy daemon (rightmost point of the left-hand-side graphics) is also
the worst case for the exhaustive daemon (topmost point), whereas it is not the case
for the worst case of the random daemon (cf. the rightmost point of the right-hand-side
graphics). In order to synthesize this analysis numerically, we propose the following
experiment. Given an algorithm A and a topology T :

– choose n initial configurations of the system at random;
– for each configuration j, measure (by simulations) the stabilization time R j, G j,

and E j using respectively a random, a greedy and an exhaustive daemon;
– let jr, jg, je be the index of the maximum of the sets {R j} j, {G j} j, and {E j} j

respectively; compute τ(R,E) = E jr/E je and τ(G,E) = E jg/E je to estimate the
loss ratio that one gets by approximating the exhaustive daemon based evaluation
of a configuration by a random and a greedy daemon.

Table 4: Measuring the correlation between worst cases obtained with various daemons

algo/topology τ(G,E) τ(R,E)
te-a5sf/rtree5 0.91 0.91
k-clust/rtree10 1.00 0.73
token/diring12 1.00 0.62
unison/er20 0.85 0.53
unison/ring20 1.00 0.57
unison/rtree20 0.99 0.47

Table 4 shows the result of such an experiment performed with 10000 random initial
configurations. We did not use the coloring nor the st-algo1, as greedy and exhaus-
tive (with perfect φ ) daemons produce the same results. One can observe that the worst
cases obtained with exhaustive daemon-based evaluation and the greedy daemon-based
one are indeed very well correlated. It is therefore interesting to approximate exhaustive
daemons with greedy ones during the search of worst-case initial configuration.

When no potential function is available, using random daemons may be a stopgap,
even if the correlation between random and exhaustive daemons is weaker. The exhaus-
tive exploration of the daemons state space can then always be done, but without the
branch-cut optimization. Smaller topologies should thus be considered.

3.2 Local Search

We can define a notion of distance between two configurations, for instance by count-
ing the number of node states that differ (Hamming distance), and by which amount



12 E. Jahier et al.

they differ (using a user-defined function). One practical question to find efficiently
worst-case configurations is then the following: do close configurations lead to similar
stabilization time in moves? If the answer is yes, it means that it should be interesting
to perform a so-called local search, which consists of:

1. choosing a configuration I;
2. choosing a configuration I′ that is close to I;
3. evaluating I by running a simulation (using, e.g., a greedy daemon);
4. continuing in step 1 with the configuration I′ if it leads to a higher stabilization time

than I, and with I otherwise.

It is difficult to answer to such a question in the general case, as the answer might
differ on the algorithm or on the topology. Once again, simulations can be useful to get
insights.

SASA implements the local search described above. The SASA API requires the
user to define a distance between two states, so that SASA can compute the configura-
tion neighborhood. In order to take advantage of multi-core architectures, SASA tries
several neighbors at each step, and puts them into a priority queue. The number of el-
ements that are tried at each step depends on the number of cores that are used. The
priority in the queue is computed by launching a simulation from the corresponding
initial configuration (and any daemon available in SASA can be used).

An Experiment to Compare Global and Local Search. In order to assess the idea
of using local search to speed up the discovery of worst-case initial configurations, we
ran another experiment on a set of algorithms and topologies. For each experiment, we
use 10000 initial configurations. Each experiment has been repeated between 100 and
1000 times, in order to obtain 95% confidence intervals (at the right-hand-side of the ±
sign) that are small enough.

Table 5: Comparing global and local searches of the initial configuration: number of
moves [simulation index]

algo/topology global local
coloring/er20 17±0.1 [3200±500] 17±0.2 [1100±100]
token/diring12 130±0.6 [4400±300] 140±1 [3800±300]
k-clust/rtree10 25±0.2 [3700±600] 26±0.1 [1900±400]
st-algo1/er20 44±0.3 [4200±500] 60±0.03 [1600±100]
te-a5sf/rtree5 31±0 [100±20] 31±0.02 [330±100]
unison/er20 99±0.6 [4800±200] 150±3 [3800±200]

The result of those experiments is provided in Table 5. The second column con-
tains moves numbers obtained by taking the maximum number of moves (the bigger,
the better) among the ones obtained by running a greedy daemon on 10000 random
initial configurations. The values between square brackets correspond to the simulation
indices j ∈ [1,10000] where the worst cases occur, in average (the smaller, the better).
The third column contains the same information as the second one, except that config-
urations are chosen via a local search, as described above.
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Fig. 4: One of the simulations performed for generating Table 5: token/diring12.

For token/diring12, st-algo1/er20, and unison/er20, we can observe in Table 5
that the local search is better, as we obtain better worst cases using less initial configu-
rations. For coloring/er20 and k-clust/rtree10, the resulting worst cases are similar,
but they are obtained quicker. For te-a5sf/rtree5 on the other hand, the global search
is slightly better.

Fig. 4 details those results on one of the (thousands of) experiments that were run to
compute the values in Table 5 in the particular case of token/diring12. The more we try
initial configurations (in abscissa) the longer path we find (in ordinate). On this figure,
we can see the local search approach winning on both counts: higher worst cases that
are found using less initial configurations.

4 Conclusion

In this paper, we present a methodology based on heuristics and an open-source tool
[9] to find or refine worst-case stabilization times of self-stabilizing algorithms imple-
mented in the atomic-state model using simulations.

We show how potential functions, designed for proving algorithm termination, can
also be used to improve simulation worst cases, using greedy or exhaustive explorations
of daemon behaviors. We propose a heuristic to speed up the exhaustive exploration and
to potentially find the best solution early in the exploration process, which is a desirable
property when timeouts are used. We experimentally show several results of practical
interests.

– When a potential function is available, it can significantly speed up the search of
the worst case.

– When no potential function is available, the use of a pseudo-potential function can
still enhance the worst-case search.

– Local search can speed up the search for worst-case initial configurations.
– The worst cases obtained by greedy daemons are correlated (on the algorithms and

topologies we tried) to the ones of (more costly) exhaustive daemons. This means
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that we can use greedy daemons to search for worst-case initial configurations, and
then use an exhaustive daemon only on the resulting configuration.

– The same result can be observed, to a lesser extent, for random daemons. This is
interesting as it allows to apply this idea on algorithms that have no known potential
(nor pseudo-potential) function.

Future Work. On the algorithms and topologies we have considered, local searches are
always better than global (i.e., fully random) searches, except for the te-a5sf/rtree4,
where the same worst case is found, but a little bit faster. Cases were global searches
give better results certainly exist, if the local search starts in a configuration that is far
from the ones that produce the worst cases. In such a case, it is easy to combine both
heuristics, and to start the local search with the best result found by the global one.
Another classical heuristic to combine local and global search would be to perform
simulated-annealing.
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