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Abstract. The development of trustworthy self-stabilizing algorithms requires
the verification of some key properties with respect to the formal specification of
the expected system executions. The atomic-state model (ASM) is the most com-
monly used computational model to reason on self-stabilizing algorithms. In this
work, we propose methods and tools to automatically verify the self-stabilization
of distributed algorithms defined in that model. To that goal, we exploit the simi-
larities between the ASM and computational models issued from the synchronous
programming area to reuse their associated verification tools, and in particular
their model checkers. This allows the automatic verification of all safety (and
bounded liveness) properties of any algorithm, regardless of any assumptions on
network topologies and execution scheduling.

1 Introduction

Designing a distributed algorithm, checking its validity, and analyzing its performance
is often difficult. Indeed, locality of information and asynchrony of communications
imply numerous possible interleavings in executions of such algorithms. This is even
more exacerbated in the context of fault-tolerant distributed computing, where failures,
occurring at unpredictable times, have a drastic impact on the system behavior. Yet,
in this research area, correctness and complexity analyses are usually made by pencil-
and-paper proofs. As progress is made in distributed fault-tolerant computing, systems
become more complex and require stronger correctness properties As a consequence,
the combinatorics in the proofs establishing functional and complexity properties of
these distributed systems constantly increases and requires ever more subtle arguments.
In this context, computer-aided tools such as simulators, proof assistants, and model
checkers are appropriate, and sometimes even mandatory, to help the design of a solu-
tion and to increase the confidence in its soundness.

Simulation tools [3,4] are interesting to test and find flaws early in the design pro-
cess. However, simulators only partially cover the set of possible executions and so are
not suited to formally establish properties. In contrast, proof assistants [24] offer strong
formal guarantees. However, they are semi-automatic in the sense that the user must
write the proof in a formal language specific to the software, which then mechanically
checks it. Usually, proof assistants require a considerable amount of effort since they
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often necessitate a full reengineering of the initial pencil-and-paper proof. Finally, and
contrary to the two previous methods, model checking [9] allows a complete and fully
automatic verification of the soundness of a distributed system for a given topology.

We consider model checking for self-stabilization, a versatile lightweight fault-
tolerant paradigm [2,11]. A self-stabilizing algorithm makes the system eventually reach
a so-called legitimate configuration from which every possible execution satisfies the
intended specification, regardless of its configuration – the initial one, or any config-
uration resulting from a finite number of transient faults. Our goal is to automatically
verify the self-stabilization of distributed algorithms written in the atomic-state model
(ASM), the most commonly used model in the area. To that end, we exploit the similar-
ities between the ASM and computational models issued from formal methods based
on synchronous programming languages [15], such as LUSTRE [16], to reuse their as-
sociated verification tools, in particular model checkers such as KIND2 [5]. This allows
the automatic verification of all safety (and bounded liveness) properties of any algo-
rithm, regardless the assumptions made on network topologies and the asynchrony of
the execution model (daemons).

Contribution. We propose a language-based framework, named SALUT, to verify the
self-stabilization of distributed algorithms written in ASM. In particular, we implement
a translation from the network topology to a LUSTRE program, this latter calling upon
an API designed to encode the algorithm. The verification then comes down to a state-
space exploration problem performed by the model checker KIND2 [5]. Our proposal
is modular and flexible thanks to a clear separation between the description of algo-
rithms, daemons (which are also programmable), topologies, and properties to check.
As a result, our framework is versatile and induces more simplicity by maximizing the
code reuse. For example, using classical daemons (e.g., synchronous, distributed, cen-
tral) and standard network topologies (e.g., rings, trees, random graphs) provided in the
framework, the user just has to encode the algorithm and the properties to verify.

We demonstrate the versatility and scalability of our method by verifying many
different self-stabilizing algorithms of the literature, solving both static and dynamic
tasks in various contexts in terms of topologies and daemons. In particular, we include
the common benchmarks (namely, Dijkstra’s K-state algorithm [11], Ghosh’s mutual
exclusion [14], Hoepman’s ring-orientation [18]) studied by the state-of-the-art, yet ad
hoc, approaches [6,7,26] for comparison purposes. Our results show that the versatility
of our solution does not come at the price of sacrificing too much efficiency in terms of
scalability and verification time.

Related Work. Pioneer works on verification of distributed self-stabilizing algorithm
have been led by Lakhnech and Siegel [23,25]. They propose formal frameworks to
open the possibility of computer-aided-verification machinery. However, these two pre-
liminary works do not propose any toolbox to apply and validate their approach.

In 2001, Tsuchiya et al. [26] proposed to use the symbolic model checker NuSMV [8].
They validate their approach by verifying several self-stabilizing algorithms defined in
ASM under the central and distributed daemon assumptions. These case studies are rep-
resentative since they cover various settings in terms of topologies and problem specifi-
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cations. Yet, their approach is not generic since it mixes in the same user-written SMV
file the description of the algorithm, the expected property, and the the topology.

In 2006, Whittlesey-Harris and Nesterenko [27] modeled in SPIN [19] a specific
yet practical self-stabilizing application, namely the fluids and combustion facility of
the international space station, to automatically verify it. A few experimental results are
given, but no analysis or comparison with [26] is given.

Chen et al. [6] focus on the bottlenecks, in particular related to fairness issues, in-
volved by the verification of self-stabilizing algorithms. They also use the NuSMV [8]
model checker. Chen and Kulkarni [7] use SMT solvers to verify stabilizing algo-
rithms [12]. They apply bounded model-checking techniques to determine whether a
given algorithm is stabilizing. They highlight trade-offs between verification with SMT
solvers and the previously mentioned works on symbolic model checking [6,26]. Ap-
proaches in [6,7] are limited in terms of versatility and code reuse since, by construc-
tion, the verification is restricted to the central daemon, and again the whole system
modeling is ad hoc and stored in to a single user-written file.

SASA [3] is an open-source tool dedicated to the simulation of self-stabilizing al-
gorithms in the ASM. It provides all features needed to test, debug and evaluate self-
stabilizing algorithms (such as an interactive debugger with graphical support, prede-
fined daemons and custom test oracles). The SASA simulation facilities can actually be
used with SALUT. The main difference is that algorithms should be written in OCAML
rather than in LUSTRE – which is more convenient as LUSTRE is a more constrainted
language (it targets critical systems) and has a less rich programming environnement.
On the other hand, with SASA, one can only perform simulations.

Roadmap. The rest of the paper is organized as follows. Sections 2 and 3 respectively
present the ASM and a theoretical model that grounds the synchronous programming
paradigm. Section 4 proposes a general way of embedding the ASM into a synchronous
programming model. Section 5 shows how to take advantage of this embedding to for-
mulate ASM algorithm verification problems. Section 6 describes a possible implemen-
tation of this general framework using the LUSTRE language and Section 7 explains how
to use the LUSTRE toolbox to perform automatic verifications in practice. Section 8
presents some experimentation results. We make concluding remarks in Section 9.

2 The Atomic-state Model

Inputs: K, a positive integer ≥ n; and q.Pred,
the predecessor in the ring
Variables: v ∈ {0, ..., K−1}
Actions for non-root processes:
Tp :: q.v ̸= q.Pred.v ↪→ q.v← q.Pred.v
Actions for the root:
Troot :: q.v = q.Pred.v ↪→ q.v← (q.v+1) mod K

Fig. 1: The Dijkstra’s K-state algorithm for
n-size rooted unidirectional rings [11].

A distributed system is a finite set of pro-
cesses, each equipped with a local algo-
rithm working on a finite set of local vari-
ables. Processes can communicate with
other processes through communication
links that define the network topology.
In the ASM model [11], communications
are abstracted away as follows: each pro-
cess can read its variables and those of its
neighbors or predecessors (depending on
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whether or not communication links are bidirectionnal) and can only write to its own
variables. The local algorithm of a process is given as a collection of guarded actions of
the following form: ⟨label⟩ :: ⟨guard⟩ ↪→⟨statement⟩. The label is only used to identify
the action. The guard is a Boolean predicate involving variables the process can read.
The statement describes modifications of the process variables. An action is enabled if
its guard evaluates to true. A process can execute an action (its statement) only if the
action is enabled. By extension, a process is said to be enabled when at least one of its
action is enabled. An example of distributed algorithm is given in Fig. 1.

The semantics of a distributed system in the ASM is defined as follows. A configu-
ration consists of the set of values of all process states, the state of each process being
defined by the values its variables. An execution is a sequence of configurations, two
consecutive configurations being linked by a step. The system atomically steps into a
different configuration when at least one process is enabled. In this case, a non-empty
set of enabled nodes is activated by an adversary, called daemon, which models the
asynchronism of the system. Each activated process executes the statement of one of its
enabled actions, producing the next configuration of the execution. Many assumptions
can be made on such a daemon. Daemons are usually defined as the conjunction of their
spreading and fairness properties [2]. In this paper, we consider four classical spreading
properties: central, locally central, synchronous, and distributed. A central daemon acti-
vates only one process per step. A locally central daemon never activates two neighbors
simultaneously. At each step, the synchronous daemon activates all enabled processes.
A distributed daemon activates at least one process, maybe more, at each step. Every
daemon we deal with in this paper is considered to be unfair, meaning that it might
never select an enabled process unless it is the only remaining one.

p5 v=3p0 v=4

p4
Tp

v=3

p3
Tp

v=4
p2

Tp

v=5

p1
Tp

v=1

Fig. 2: Unidirectional ring of
six processes rooted at p0.

Fig. 2 displays an example of distributed system
where the algorithm of Fig. 1 runs. This algorithm is
executed on a rooted unidirectional ring. By rooted,
we mean that all processes except one, the root (here,
p0), executes the same local algorithm. In the fig-
ure, each enabled process, given in color, is decorated
by the enabled action label (top-right). In the current
configuration, processes from p1 to p4 are enabled
because their v-variable is different from that of their
predecessor; see Action Tp. The root process, p0, is
disabled since its v-variable is different from that of
its predecessor; see Action Troot . So, the daemon has
to chose any non-empty subset of {p1, p2, p3, p4} to

be activated. In the present case, each activated process will copy its predecessor value
during the step; see Action Tp.

A distributed system is meant to execute under a set of assumptions, which are in
particular related by the topology (in the above example, a rooted unidirectional ring)
and the daemon (in the above example, the distributed daemon) and to achieve a given
specification (in the above example, the token circulation). Under a given set of assump-
tions, a distributed system is said to be self-stabilizing w.r.t. a specification if it reaches a
set of configurations, called the legitimate configurations, satisfying the following three
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properties: Correctness: every execution satisfying the assumptions and starting from
a legitimate configuration satisfies the specification; Closure: every execution satisfy-
ing the assumptions and starting from a legitimate configuration only contains legiti-
mate configurations; Convergence: every execution satisfying the assumptions eventu-
ally reaches a legitimate configuration.

3 The Synchronous Programming Model

We now briefly present the main concepts grounding the synchronous programming
paradigm [15] that are used in the sequel. At top level, a synchronous program can
be activated periodically (time-triggered) or sporadically (event-triggered). A program
execution is therefore made of a sequence of steps. To perform such a step, the envi-
ronment has to provide inputs. The step itself consists in (1) computing outputs, as a
function of the inputs and the internal state of the program, and (2) updating the pro-
gram internal state.

The specific feature of synchronous programs is the way internal components in-
teract when composed: one step of the whole composition consists of a “simultaneous”
step of all the components, which communicate atomically with each other. Moreover,
programs have a formal deterministic semantics: this enables to validate the program
using testing and formal verification.

Following the presentation in [15], a synchronous node4 is a straightforward gener-
alization of synchronous circuits (Mealy machines) that work with arbitrary datatypes:
such a machine has a memory (a state) and a combinational part, and that computes the
output and the next state as a function of the current input and the current state. The
general dataflow scheme of a synchronous node is depicted in Fig. 3.a: it has a vector of
inputs, i, and a vector of outputs, o; its internal state variable is denoted by s. A step of
the node is defined by a function made of two parts, f = ( fo, fs): fo (resp. fs) computes
the output (resp. the next state, s′) from the current input and the current state:

o = fo(i,s) s′ = fs(i,s)

The behavior of the node is the following: it starts in some initial state s0. In a given
state s, it deterministically reacts to an input valuation i by returning the output o =
fo(i,s) and by updating its state by s′ = fs(i,s) for the next reaction. Those nodes can
be composed, by plugging one’s outputs to the other’s inputs, as long as those wires
do not introduce any combinational loop. The general scheme of the (synchronous)
composition between two nodes is shown in Fig. 3.b, where the step is computed by

o1 = fo(i1,o2,s1) o2 = go(i2,o1,s2) s′1 = fs(i1,o2,s1) s′2 = gs(i2,o1,s2)

and either the result of fo(i1,o2,s1) should not depend on o2 or the result of go(i2,o1,s2)
should not depend on o1.

We now introduce two simple synchronous nodes that are used in the sequel. The
first one is a single delay node, noted δ (Fig. 4.a): it receives an input i of some generic

4 Here, what we name a (ASM) process is also often called a node in the literature; we have
chosen to call it a process to avoid confusion with synchronous nodes.
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i

Fig. 3: General scheme of a synchronous node (a)
and synchronous composition (b).
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s0

t

e

(b)

i δ

c

Fig. 4: Delay (a) and if-then-else
(b) synchronous nodes.

type τ and returns its input delayed by one step; it has a state variable s of type τ . A
step of δ is computed by:

f δ
o (i,s) = s f δ

s (i,s) = i

The second node (see Fig. 4.b) is a stateless if-then-else operator: it returns its sec-
ond input when its first input is true, and its third input otherwise:

f ite
o (c, t,e) = if c then t else e f ite

s (c, t,e) =

Since this node is stateless, f ite
s (c, t,e) returns nothing.

4 From ASM Processes to Synchronous Nodes

The ASM and synchronous programming models have a lot in common, in particular
with respect to the atomicity of steps: all nodes of the program (resp. all processes
of the network) react at the same logical instant, using the same global configuration;
moreover, at the end of a global step, all nodes (resp. processes) outputs are broadcasted
away instantaneously to define the new configuration. Another important similarity is
the way the non-determinism is handled. As a synchronous program is deterministic,
non-determinism is handled by adding external inputs – often called oracles in the
programming language community. On the other hand, in the ASM, non-determinism
due to asynchronism is modeled by daemons. For those reasons, using synchronous
programs (and their associate toolboxes) is very natural to simulate and formally verify
ASM algorithms.

step

input states

activates

enables

state

enable

δ

Fig. 5: Formalizing an ASM process as a
synchronous node.

We now explain how to encode ASM
processes into synchronous nodes. In a
network of n processes, each process
is mapped to a synchronous node. This
node contains two inner nodes encoding
the ASM guarded actions of the process
(see Fig. 5): (1) enable, whose inputs
are the states the process can read (the
predecessors in the graph); this node has
a single output, a Boolean array, which
elements are true if and only if the corre-
sponding processes guards are enabled; (2) step, with the same inputs as enable, and
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that outputs a new state (as computed by the statement of the enabled action); this state
is used as the new value of the corresponding process state if the daemon chooses to
activate the process; the previous value is used otherwise.

The communication links in the network topology are translated into data wires in
the synchronous model. For each process, the state output wire of its node instance is
plugged onto some other node instances, corresponding to its neighbors, as defined by
the network topology – see the left-most node in Fig. 6.

5 ASM Algorithms Verification via Synchronous Observers

Once we have a formal model (made of synchronous nodes) of the process local al-
gorithms and the network, it is possible to automatically verify some properties using
so-called synchronous observers [17]: the desired properties can be expressed by the
means of another synchronous node that observes the behavior of the outputs and re-
turns a Boolean that states whether configurations sequences are correct.

ok

property ok

Daemon

p1

p2

p3

p4

p5

p0

activates

configuration

enables

Fig. 6: Verifying a property using syn-
chronous observers.

Classically, the assumptions of the
environment of the system under ver-
ification is also formalized by a syn-
chronous observer; here, those assump-
tions are handled by the daemon, which
decides which processes should be ac-
tivated among the enabled ones. There-
fore, the assumption observer is named
daemon; it has 2 × n input wires: n
activate wires and n enable wires,
one each per process; it outputs a
Boolean whose value states whether the
assumption made on the daemon (e.g., synchronous, distributed, central) is satisfied.
Those classical daemon assumptions, encoded as synchronous nodes, are provided as a
library [1].

The verification of a given property then consists in checking that the synchronous
composition of the synchronous nodes encoding the processes topology, the daemon ob-
server, and the property observer never causes the latter to return false while the daemon
observer has always returned true; this boils down to a state-space exploration problem.
The composition is illustrated in Fig. 6, where a property is checked against ASM al-
gorithms running on the network of Fig. 2. For the sake of clarity, we have omitted
some wires: the processes output wires from left-to-right holding the state values are
plugged into the configuration wire of the property node; the processes output wires
from left-to-right holding the enables values are plugged into the enables wire of
the daemon node; the processes input wires from up-to-down holding the activation
values, that are also used as inputs for the daemon observer, are plugged into the corre-
sponding processes.

In order to prove the closure property of the self-stabilization definition (Section. 2),
which states that an algorithm never steps from a legitimate to an illegitimate config-
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uration, one can use the observer of Fig. 7. It checks that if the previous configuration
(computed by the δ node) was legitimate, then so is the current one.

true

ok
configuration

legitimate =>

δ

Fig. 7: The closure property Observer.

Similarly to the closure property, one
can formalize classical convergence theo-
rems, such as, “if K ≥ n and the daemon is
distributed, then the stabilization time of the
algorithm of Fig. 1 is at most 2n−3 rounds”
5 (Theorem 6.37 of [2]). For some ASM algo-
rithms, called silent, the legitimate configura-
tions are the terminal ones, where no process
is enabled. But for other algorithms, such as the one presented in Section 2, a definition
of legitimacy needs to be provided.

Using synchronous observers, one can just specify safety properties, which state
that nothing bad will happen. Liveness properties, such as “the algorithm will eventually
converge”, cannot be expressed. But stronger (and equally interesting) properties such
as “the algorithm will converge in at most f (n) steps” can. Moreover, observers can be
executed and used during simulations to implement test oracles [21]: this allows to test
the whole model at first hand, before verification.

6 SALUT: Self-stabilizing Algorithms in LUsTre

In this section, we describe SALUT, a framework that implements the ideas presented so
far. In order to implement such a framework, one has to (i) chose a format to describe
the network, (ii) chose a language to implement synchronous nodes, (iii) propose an
API for that language to define enable and step functions, and (iv) implement a trans-
lator from the format chosen in (i) to the language chosen in (ii).

Network description. We have chosen to base the network description on DOT [13]:
the rationale for choosing DOT was that many visualization tools and graph editors
support the DOT format and many bridges from one and to another graph syntax exist.
DOT graphs are defined as sets of nodes and edges. Graphs, nodes, and edges can have
attributes specified by name-value pairs, so that we can take advantage of DOT attributes
to (1) associate nodes with their algorithms, (2) optionally associate nodes with their
initial states, and (3) associate graphs with parameters.

LUSTRE, a language to implement synchronous nodes. LUSTRE is a dataflow syn-
chronous programming language designed for the development and verification of crit-
ical reactive systems [16]. It combines the synchronous model – where the system re-
acts instantaneously to a flow of input events at a precise discrete time scale – with the
dataflow paradigm – which is based on block diagrams, where blocks are parallel op-
erators concurrently computing their own output and possibly maintaining some states.
Choosing LUSTRE to implement the synchronous nodes of Section 3 is natural as they

5 A round is a time unit that captures the execution time according to the speed of the slowest
processes; see [2] for a formal definition.
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were designed to model LUSTRE programs in the first place [17]. Moreover, two LUS-
TRE model checkers are freely available to perform formal verifications (cf. Section 7).

A LUSTRE API to define ASM algorithms. The LUSTRE API for SALUT follows the
formalization of Section 4. For each algorithm, one needs to define the process state
datatype. Then, for each local algorithm, one needs to define a LUSTRE version of the
enable and step nodes – the 2 left-most inner nodes of Fig. 5.

For Dijkstra’s algorithm of Fig. 1, the state of each process is an integer and there
is one action for the root process and one action for non-root processes:

type state = int;
const actions_number = 1;

The root enable and root step are implemented in Listing 1 and 2 for the root
process. Their interfaces (Lines 1-2) are the same for all nodes and all algorithms.
1 function root_enable <<const d: int>>(st:state; ngbrs:neigh^d)
2 returns (enabled: bool^actions_number);
3 let
4 enabled = [ st = state (ngbrs[0]) ];
5 tel ;

Listing 1: The Lustre enable for the root process

Enable nodes take as inputs the state of the process (of type state) and an array
containing the states the process has access to – namely, the ones of its neighbors. Such
states are provided as an array of size d, where d is the degree of the process. As in
LUSTRE, array sizes should be compile-time constants, the d parameter is provided as
a static parameter (within <<>>). Type neigh contains information about every process
neighbors, in particular its state, accessed using the state getter (see Line 4 of List-
ing 1). Enable nodes return an array of Booleans of size actions number, stating for
each action whether it is enabled or not.

The K-state algorithm of the root process is enabled when the process state value
is equal to that of its predecessor (Line 4 of Listing 1), as stated in the guard of the
root action in Fig. 1. In LUSTRE, stateless nodes are declared as function (Line 1 of
Listing 1 and 2) and square brackets ([index]) gives access to the content of the array
at a particular index.
1 function root_step <<const d: int>>(st: state; ngbrs: neigh^d; a:action)
2 returns (new: state);
3 let
4 new = (st + 1) mod k;
5 tel;

Listing 2: The Lustre step node for the root process

Step nodes have the same input parameters as enable ones, plus the active action
label (see a in Listing 2, Line 1). It returns the new value of the process state (Line 2).
The node body (Line 4) is a direct encoding of the statement of the root action given
in Fig. 1. The predefined node mod computes the modulo operation. For this algorithm,
there is only one possible action, so the argument a is not used.

The enable and step nodes are similarly implemented for the non-root processes
(see [20] for the complete implementation).



10 E. Jahier et al.

The SALUT translator. All the nodes required to describe the ASM algorithms are
then generated automatically from the network topology using a DOT to LUSTRE trans-
lator. The two nodes, enable and step, are the only LUSTRE programs that need to
be provided. SALUT generates from the DOT file a node, called topology (the leftmost
node in Fig. 6). In particular, SALUT takes care of wiring the enable and the step node
instances to the right processed and the right values of the degree d parameter, that can
vary from one node instance to another.

7 Automatic Formal Verification

We have seen that properties on ASM algorithms can be proven using synchronous
observers (cf. Fig. 6). By defining such observers in LUSTRE, we can perform the ver-
ification of these properties automatically using existing verification tools for LUSTRE
such as KIND2 [5]. Technically, to use such a tool, one just needs to point out a node
Boolean variable. Then, the tool will try to prove that the designated variable is always
true for all possible sequences of the node inputs, by performing a symbolic state space
exploration. Hence, one just needs to encode the desired properties into a Boolean, as
done in the verify node given in Listing 3. This section is devoted to the explanation
of this listing.

1 const n = card; -- processes number extracted from the dot file
2 const worst_case = n*(n-1) + (n-4)*(n+1) div 2 + 1; -- in steps
3
4 node verify(active: bool ^1^n; init_config: state^n)
5 returns (ok: bool);
6 var
7 config: state^n;
8 enabled: bool ^1^n; -- 1 since the algorithm has only 1 rule per process
9 enabled1: bool^n; -- enabled projection

10 legitimate , round: bool;
11 closure , converge_cost , converge_wc: bool;
12 steps , cost , round_nb: int;
13 let
14 config , enabled , round , round_nb = topology(active , init_config);
15 assert(true -> daemon_is_central<<1,n>>(active , pre enabled));
16 enabled1 = map<<nary_or<<1>>,n>> (enabled); -- projection
17 legitimate = nary_xor<<n>>(enabled1);
18 closure = true -> (pre(legitimate) => legitimate);
19 cost = cost(enabled , config);
20 converge_cost = (true -> legitimate or pre(cost)>cost);
21 steps = 0 -> (pre(steps) + 1); -- 0, 1, 2, ...
22 converge_wc = (steps >= worst_case) => legitimate;
23 ok = closure and converge_cost and converge_wc;
24 tel;

Listing 3: LUSTRE formalization of some properties of the K-state algorithm.

This node is a particular instance of Fig. 6. The information related to process en-
abling (enabled variable in Listing 3) and activation (active) are contained into 2-
dimensional Boolean arrays. The first dimension is used to deal with algorithms that
are made of several guarded actions (here only one is used). The second dimension is
used to deal with topologies that have more than one process.

According to the current configuration and an array of Booleans active indicating
which processes have been activated by the daemon, the topology node computes a
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new configuration config, which is an integer array of size n, and a matrix of Booleans
enabled of size 1 × n to indicate which processes are enabled (Line 14). The topology
node also outputs elements relative to round computation, which are not used here. At
the first step, the current configuration returned by Node topology is the initial one,
i.e, its argument init config; for all other steps, the configuration is computed by
topology from the previous configuration (which is stored as an internal memory in
topology, cf. Fig. 5) and the process activations. At every step, the set of enabled
processes is computed according to the configuration. The verification tools will try to
prove that, e.g., ok is always true for all possible values of its inputs, namely for every
initial configuration, and all process activation scheduling.

Daemon assumptions. As already mentioned, in order to fully encode the ASM al-
gorithms, we need to express assumptions about the daemon; In LUSTRE, this can be
done through the assert directive (Line 15). Here, a central daemon is used (the node
daemon is central not shown here): it checks that, at each step, only enabled nodes
can be activated, and that exactly one can be activated. Note that such a property is
not checked at the first instant (true->...6) since pre(enabled), which returns the
previous value of enabled, is undefined at that instant.

Closure. The node verify should also define the properties involved in the definition
of self-stabilization; see Section 2. The first expressed property is the closure: once
the system has reached a legitimate configuration, it remains in legitimate configu-
rations forever. The definition of a legitimate configuration is done with the variable
legitimate in Line 17, which checks that exactly one process is enabled using a XOR
operator (n.b., nary xor is a node that returns true if and only if exactly one element
of its input Boolean array is true). Then, the definition of closure is given in Line 18
and is a direct implementation of Fig. 7. Again, this property is not checked at the first
instant when pre(legitimate) is undefined.

Convergence. We now focus on the convergence part. For algorithms with an avail-
able potential function, that quantifies how far a configuration is from the set of legiti-
mate configurations, we can check whether this function is decreasing; see the Boolean
convergence cost and Lines 19-20 (the cost node is not shown here). The existence
of a decreasing function guarantees the convergence. Note that once a legitimate config-
uration is reached, the potential function does not necessarily decrease anymore. This is
the kind of subtleties that a verification tool can spot (and have actually spotted) easily.

Alternatively, we can take advantage of known upper bounds for the convergence
time, being tight or not. In our case, we use Theorem 6.30 of [2] (Line 2). Then, we
can check this bound, and so the convergence, by stating that once the upper bound
is reached, the configuration should be legitimate; see the variable steps that counts
the number of steps elapsed since the beginning of the execution and the Boolean
convergence wc that checks the property (Lines 21-22).

6 The -> infix binary operator returns the value of its left-hand-side argument at the first instant,
and the one of its right-hand-side argument for all the remaining instants.
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8 Experimentations

One of the key advantages of our approach is that topologies, daemons, algorithms, and
properties to check are described separately, contrary to the related work [6,7,26] where
they are mixed into a single user-written SMV [8] or Yices [12] file. More precisely:

1. SALUT automatically translates into LUSTRE any topology described in the DOT
language (for which many graph generators exist).

2. Classical daemons, i.e., synchronous, distributed, central, and locally central, are
generically modeled in LUSTRE so that they can be used for any number of nodes
and actions (using 2-dimension arrays). Other daemons can be modeled similarly.

3. To model-check an algorithm, one thus just need to model its guarded actions,
using the API described in Section 6. Actually, we have done it for several different
algorithms: the Dijkstra’s K-state algorithm [11] whose LUSTRE encoding is made
of 37 lines of code (loc), the Ghosh’s mutual exclusion [14] (50 loc), a Bread-First
Search spanning tree construction [2] (80 loc), a synchronous unison [2] (40 loc);
a k-clustering (with k=2) algorithm [10] (130 loc), a vertex-coloring algorithm [2]
(30 loc), and the Hoepman’s ring orientation [18] (110 loc).

4. For all those algorithms, we have encoded the closure property and a convergence
property based on a known upper bound. We also have encoded a convergence
property based on a potential function, when available.

Once an algorithm and the properties to verify are written in LUSTRE,7 we can
model-check them using any daemon and any topology. Of course, not all combinations
make sense, e.g., the Dijkstra’s K-state algorithm only works on rooted unidirectional
rings and the synchronous unison only works under a synchronous daemon. Still, a lot
of combinations are possible. Table 1 presents results for a small subset of them.

Table 1: The maximum topology size that can be handled within an hour.
LUSTRE prog size for Max topo size for

Algorithm WC-conv (φ -conv) Topology Daemon WC-conv (φ -conv)
in loc in processes nb

K-state 7 (86) rooted unidirectional ring
synchronous 48 (15)

central 6 (8)
distributed 6 (8)

Ghosh 8 “ring-like”
central 18

distributed 16

Coloring 6 (8)
ring

central
10 (55)

random 11 (26)

Sync unison 6
random

synchronous
40

ring 17
BFS sp. tree 7 tree distributed 8
k-clustering 30 (20) rooted tree distributed 9 (10)
Hoepman 6 odd-size ring central 7

7 The LUSTRE code of those examples is given in the SALUT git repository [1]
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Table 1 summarizes experiments made with the KIND2 [5] model checker8 to prove
some properties against the corresponding algorithm encoding. Columns 1, 3, and 4
respectively contain the algorithm name, the topology,9 and the daemon used for the
experiment. Column 2 contains the number of lines of LUSTRE code used to encode the
worst-case-based convergence property, apart from the main node declarations (and in
parentheses the number of lines to encode the potential function property, when avail-
able). Column 5 contains the maximal number of processes for which we get a (positive)
result in less than 1 hour10 (and ditto for the potential-based convergence in parenthe-
ses).

The topology sizes we can handle are quite small, but large enough to spot faults in
algorithms, expected properties, or their LUSTRE encoding. Potential functions, when
available, sometimes allow to check bigger topologies; indeed, we are able to check in
less than one hour a ring of 55 processes using the potential function of the coloring
algorithm, whereas using the worst-case-based convergence, we are only able to check
the algorithm convergence on rings of size 10. The closure property is much cheaper
to model-check. For instance, in less than an hour, we are able to check the Dijkstra’s
K-state algorithm on a unidirectional rooted ring made of 45 processes.

Performance comparison. Table 2 reports the time (in seconds) necessary to check the
convergence of the K-state algorithm under a central daemon, using different topology
sizes, different solvers, and different problem encodings. We note “-” when the timeout
of one hour is reached. All experiments were conducted on the same computer, except
for the second column. Indeed, the exact encoding was not provided in the article, so we
simply report the number from Table 3 of [7]. Column 3 shows the result of the proposed
framework. Column 4 of Table 2 shows the result of a NuSMV program that was not
automatically generated by SALUT, but that mimics the corresponding generated Lustre
code (discussed below). Columns 5 and 6 show the result of a direct encoding of the
problem in NuSMV as described in [26] and [6], respectively.

On this algorithm (and on the Ghosh’s algorithm), the encoding performed using the
BDD-based solver NuSMV give better performances. Therefore, this allows to handle
topologies with a little bit more nodes. However:

– it seems unlikely that a problem occuring on topologies of size 10 can never occur
on ones of size 6;

– nothing guarantees that it would be the case for all algorithms; and
– the BDD-encoding is limited to finite domains.

Moreover, using our proposal to target (for example) NuSMV should be not too dif-
ficult. Indeed, once completely expanded (using the -ec of the Lustre V6 compiler), the
Lustre program provided to KIND2 is actually very close to a NuSMV program. In order

8 We use kind2 v1.9.0 with the following command line option: --smt solver Bitwuzla

--enable BMC --enable IND --timeout 3600 and uint8 for representing integers, ex-
cept for K-state/synchronous where uint16 is necessary (indeed, for n > 13, WC > 256).

9 Random graphs were generated using the Erdős–Rényi model.
10 We used a multi-core server, where each core is made of Intel(R) Xeon(R) Gold 6330 CPU @

2.00GHz. Note that KIND2 is able to use several cores in parallel.
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Table 2: Measuring the time to prove the convergence of the K-state algorithm.
topology Yices (SMT) SALUT+KIND2 “SALUT”+NuSMV NuSMV (BDD) NuSMV (BDD)

size encoding of [7] (SMT) (BDD) encoding of [6] encoding of [26]
5 200 (from [7]) 6 0 0 0
6 - 190 0 0 0
7 - 2 0 1
8 10 3 4
9 60 80 10
10 600 20 20
11 - 650 40
12 2800 180
13 - 2500

to try that idea out, we wrote a NuSMV program that mimics the Lustre code coming
from the Dijkstra’s K-state (and measured its performance in Column 4 of Table 2).

As far as SMT-based verification is concerned, the proposed framework used with
the KIND2 model checker (which delegates the solving part to external SMT solvers)
does not seem to pay the price of genericity, as we get performances that have the
same order of magnitude. Indeed, for the K-state and the Ghosh algorithms convergence
under a central daemon, and using a timeout of one hour as we did in Table 1, Chen
et al. [7] report to model-check topologies of size 5 and 14, respectively. We are able
to handle slightly bigger topologies (6 and 18, respectively). But the difference is not
significant and our numbers were obtained using a more recent computer.

9 Conclusion

This work presents an open-source framework that takes advantage of synchronous
languages and model-checking tools to formally verify self-stabilizing algorithms. The
encoding of the topology is automatically generated. Generic daemons are provided
and cover the most commonly used cases (synchronous, distributed, central, and locally
central). One just needs to formalize (in Lustre) the ASM actions and the properties to
verify.11 The article and its companion open-source repository contain many algorithm
encoding examples, as well as examples of checkable properties including stabilization
time upper bounds that can be expressed using steps, moves, or rounds.

It is worth noting that SALUT has been developed as a natural extension of SASA [3],
an open-source simulator dedicated to self-stabilizing algorithms defined in the ASM.
The integration of verification tools in the SASA suite is interesting from a technical
and methodological point of view as it offers a unified interface for both simulating and
verifying algorithms. In future works, it would be interesting to complete this suite with
bridges to proof assistants to obtain, in the spirit of TLA+ [22], an exhaustive toolbox
for computed-aided validation of self-stabilizing algorithms.

11 During a 4-weeks internship, a first-year student has been able to learn LUSTRE, the SALUT

framework, and encode and verify 3 of the 7 algorithms presented in this article.
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