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We derive accurate, closed-form analytical approximations for the phase-plane trajectories of the standard susceptible-infectious-removed (SIR) epidemic model, including host births and deaths. Our approximations for the SIR ordinary differential equations also allow us to provide convenient, accurate analytical approximations for the associated Poinaré map, and the minimum and maximum susceptible and infected host densities in each epidemic wave. Our analysis involves matching asymptotic expansions across branch cuts of the Lambert W function.

Introduction

Infectious disease transmission dynamics have been modelled with a susceptible-infectious-removed (SIR) compartmental framework since the early 20th century [START_REF] Mckendrick | Applications of mathematics to medical problems[END_REF][START_REF] Bacaër | A Short History of Mathematical Population Dynamics, Chapter 16: "McKendrick and Kermack on epidemic modelling[END_REF]. What has become the standard SIR ordinary differential equation (ODE) model [Equation [START_REF] Anderson | Ludwig Prandtl's boundary layer[END_REF] below] was first published by Kermack and McKendrick in 1927 [START_REF] Kermack | A contribution to the mathematical theory of epidemics[END_REF] (hereafter KM).

An exact solution for the time course of the state variables in the standard SIR ODEs has never been found, though KM did find an approximate analytical solution that is reasonably accurate for weakly transmissible diseases, and has often been used to obtain (usually qualitative) insights (e.g., [START_REF] Bacaër | The model of Kermack and McKendrick for the plague epidemic in Bombay and the type reproduction number with seasonality[END_REF][START_REF] Stone | Seasonal dynamics of recurrent epidemics[END_REF][START_REF] Olinky | Seasonal dynamics and thresholds governing recurrent epidemics[END_REF]).

If we ignore the recruitment of new susceptible individuals-whether they result from births, immigration, or decay of immunity-then the SIR ODEs can be solved exactly in the susceptible-infectious phase plane.

No such exact analytical solution in the phase plane is available for the more realistic situation in which susceptible recruitment is not negligible.

In this paper, we use multiple scale and singular perturbation methods [START_REF] O'malley | Singular Perturbation Methods for Ordinary Differential Equations[END_REF][START_REF] Kevorkian | Multiple Scale and Singular Perturbation Methods[END_REF] to obtain accurate analytical approximations to the phase-plane trajectories of the standard SIR ODEs with vital dynamics (i.e., with host births and deaths). A natural small parameter is the infectious period relative to host lifetime (denoted ε), but we find that substantially simpler expressions are obtained by expanding in the (even smaller) parameter ϵ = ε/R 0 , where R 0 is the basic reproduction number.

Our interest in approximating the phase-plane solutions of the SIR ODEs was motivated by a problem in stochastic epidemic theory, namely estimating the probability of persistence of a pathogen after an initial epidemic in a naïve population. Our solution to that problem [START_REF] Parsons | The probability of epidemic burnout in the stochastic SIR model with demography[END_REF] depends on an analytical estimate of the fraction susceptible near the end of a major outbreak [Equation (117) below], which is one of many expressions that we derive here.

We are not the first to attempt to approximate solutions of the SIR ODEs in the phase plane. In particular, van Herwaarden [START_REF] Van Herwaarden | Stochastic epidemics: the probability of extinction of an infectious disease at the end of a major outbreak[END_REF]-who was also motivated by (a different approach to) the stochastic extinction problem-presented some closely related approximations that are valid in specific regions of the phase plane.

Here, we provide approximations that are uniformly valid throughout the phase plane, and we derive approximate expressions for a number of epidemiologically important quantities (e.g., the peak and minimum prevalence, and the minimum and maximum susceptible frequency, following initial disease invasion and following subsequent epidemics).

Our matching yields simple expressions that can, unlike previous results, be applied to an arbitrary number of epidemic cycles and allows us to find an accurate analytical approximation to the Poincaré map for the SIR model.

The related expressions that van Herwaarden [START_REF] Van Herwaarden | Stochastic epidemics: the probability of extinction of an infectious disease at the end of a major outbreak[END_REF] has presented previously-in addition to applying only to restricted subregions of the phase plane-depend on the numerical evaluation of integrals for which explicit analytical forms cannot be found. In contrast, our results are fully analytical closed-form expressions that are valid everywhere in phase space. We succeed by exploiting Lambert's W function [START_REF] Corless | On the Lambert W function[END_REF] to invert implicit relations, and by asymptotic matching across branch cuts of the W function. The asymptotic techniques that we use are non-trivial and not part of the standard technical toolbox employed in mathematical epidemiology.

Consequently, we present our analyses without assuming any familiarity with matched asymptotics, and hope that in so doing we have made it easier for readers to apply the methods to other problems.

For convenience in using our approximations, all of our major results are summarized in Tables 2 and3.

The SIR Model with Vital Dynamics

Writing the proportions of the host population that are susceptible, infective, and removed as X, Y , and Z, respectively, the standard SIR ordinary differential equations (ODEs) are [START_REF] Anderson | Infectious Diseases of Humans: Dynamics and Control[END_REF] 

dX dt = µ(1 -X) -βXY , (1a) 
dY dt = (βX -γ -µ)Y , (1b) 
dZ dt = γY -µZ , ( 1c 
)
where µ is the per capita rate of birth and death, β is the transmission rate, and γ is the recovery (or removal) rate. Our focus in this paper is on solutions of these deterministic equations [START_REF] Anderson | Ludwig Prandtl's boundary layer[END_REF], but elsewhere [START_REF] Parsons | The probability of epidemic burnout in the stochastic SIR model with demography[END_REF] we show how they can be used together with a branching process approximation to obtain accurate analytical results

for the fully stochastic model (including the probability of pathogen extinction due to stochastic effects). In keeping with our stochastic analysis [START_REF] Parsons | The probability of epidemic burnout in the stochastic SIR model with demography[END_REF], we reserve S, I, and R for the number of individuals in each state.

For the sake of clarity, we adopt the convention of using lower case letters to indicate independent variables and capitals to indicate dependent variables.

We henceforth work with dimensionless parameters. To that end, we first note that a natural timescale is the expected duration of an individual's infectious period,

T inf = 1 γ + µ . ( 2 
)
Expressing the expected infectious period in units of the expected host lifetime (1/µ), we define

ε = µ γ + µ . (3) 
The basic reproduction number (R 0 ) is the product of the transmission rate β and the mean infectious period,

R 0 = β γ + µ , (4) 
which gives the expected total number of new infections caused by a single infective individual introduced into a naïve population. We define a new time variable, τ = t/(γ + µ) , so that one time unit corresponds to the expected duration of an individual's infectious period. The SIR model then becomes

dX dτ = ε(1 -X) -R 0 XY , (5a) 
dY dτ = (R 0 X -1)Y . ( 5b 
)
Since X(τ )+Y (τ )+Z(τ ) = 1 for all τ ≥ 0, the two equations above completely describe the dynamical system [START_REF] Anderson | Ludwig Prandtl's boundary layer[END_REF]. The ratio of ε and R 0 ,

ϵ = ε R 0 , (6) 
turns out to be a better choice of small parameter to use in our analysis, because it leads to simpler asymptotic expressions.1 

Equations ( 5) have two nullclines. The y nullcline, dY dτ = 0, is the line

x = 1 R 0 , (7a) 
whereas the x nullcline, dX dτ = 0, is the curve

y = ϵ( 1 x -1) . (7b) 
When R 0 > 1, these two nullclines intersect at (x ⋆ , y ⋆ ), where

x ⋆ = 1 R 0 , (8a) 
y ⋆ = ε(1 - 1 R 0 ) = ε(1 -x ⋆ ) . (8b) 
It is well known that any trajectory departing from an initial point (x i , y i ) in the positive cone {(x, y) ∶

x > 0, y > 0} eventually converges on a globally asymptomatically stable endemic equilibrium (EE) at (x ⋆ , y ⋆ ), whereas the disease-free equilibrium (DFE) at (1, 0) is a saddle attracting the set {(x, y) ∶ y = 0}.

Approach to the EE occurs via damped oscillations provided [10, eq. 13] ε < 4(R 0 -1)

R 0 2 = 4x ⋆ (1 -x ⋆ ) . ( 9 
)
This condition is satisfied for most diseases of interest; we restrict our focus to this typical behaviour.

We will be primarily concerned with the phase-plane trajectories of (5), so rather than using those equations directly, we will make use of the phase-plane equations,

dY dx = (R 0 x -1)Y ε(1 -x) -R 0 xY = (x -x ⋆ )Y ϵ(1 -x) -xY (10) 
and

dX dy = ε(1 -X) -R 0 Xy (R 0 X -1)y = ϵ(1 -X) -Xy (X -x ⋆ )y . ( 11 
)
Thus, Y (x) and X(y) indicate phase-plane solutions where x (resp. y) is the independent variable, whereas we use X(τ ) and Y (τ ) to indicate the solution to the time-parametrized equations [START_REF] Bender | Advanced Mathematical Methods for Scientists and Engineers[END_REF]. We shall need both equations [START_REF] He | Epidemiological effects of seasonal oscillations in birth rates[END_REF] and [START_REF] Hollingsworth | HIV-1 transmission, by stage of infection[END_REF]. Equation [START_REF] He | Epidemiological effects of seasonal oscillations in birth rates[END_REF] [ [START_REF] Hollingsworth | HIV-1 transmission, by stage of infection[END_REF]] is singular where the susceptible [infected] hosts attain their minimum and maximum density, x and x [y and y ], for a given cycle (these are points where nullclines, (7a) and (7b), are crossed). These singular points (see Figures 1 and2) divide different branches of the multifunctions Y (x) and X(y), and we will need each equation to extend the solution beyond the singularities of the other. No exact analytical form is available for any of these turning points, but with our matched asymptotic expansions, we obtain asymptotic approximations to all of them (see Table 2 for a summary).

We shall refer to the part of the trajectory above the x nullcline (7b) as the epidemic phase or simply as epidemic (e.g., we will speak of the initial epidemic, second epidemic, and so on) and the part below the x nullcline as the trough. (y j )]; we derive approximations to these optima and denote them x 0,j , etc. (see Table 2). Dashed lines indicate the endemic equilibrium (8) of the model [START_REF] Anderson | Ludwig Prandtl's boundary layer[END_REF]. Bottom left: the frequency of infected individuals (on a log scale) as a function of time. Right: trajectories in the susceptible-infected phase plane with the nullclines (top right: linear scale, bottom right: log scale). 

The Method of Matched Asymptotic Expansions

Given a small parameter ϵ, an asymptotic sequence is a collection of functions2 {φ j (ϵ), j = 1, 2, . . .} , such that φ j+1 (ϵ) ≪ φ j (ϵ)

(a typical choice is φ j (ϵ) = ϵ j-1 , but as we shall see below, other choices are often necessary). Given an equation-which may be an ordinary or partial differential equation-for an unknown function Y that depends on ϵ, we can look for a formal asymptotic series solution:

Y (x; ϵ) = ∞ ∑ j=0 Y j (x)φ j (ϵ) . (13) 
Note that we do not demand that the series converge; the infinite upper limit on the sum is to indicate that one could in principle compute an arbitrary number of terms.

Substituting the formal series into the exact equation ( 10) and equating terms of common order φ j (ϵ),

we obtain a hierarchy of equations that can be solved sequentially for the Y j (x). The first few terms of such a series solution often yield a good approximation to the exact solution. However, this approach may fail in regions of rapid change (e.g., near boundaries or singularities) called layers3 , especially in differential equations where one or more derivatives have coefficients depending on ϵ, which can make imposing all boundary (or initial or terminal) conditions impossible. The method of matched asymptotic expansions begins by identifying layers where different approximations better capture the correct quantitative and qualitative behaviour of the solution. These layers coincide with regions where some term in the equation is implicitly of size comparable to ϵ (i.e., of order η(ϵ) for some function η), even when it doesn't explicitly contain ϵ, so that neglecting terms including ϵ fails to capture the correct dynamics. Boundary layers refer to subsets of the domain adjacent to the boundary (where one of the dependent variables is small compared to some function of ϵ) whereas interior layers occur away from the boundaries (e.g., shear flow4 in a vector field could result in a region where one or more derivatives is small compared to a function of ϵ). Corner layers arise where boundary and/or interior layers intersect. (For the SIR model that we study here, there are boundary and corner layers, but no interior layers.)

Outside of such layers, the so-called outer solution provides a good approximation to the exact solution, but inside the layers it fails to capture the correct qualitative behaviour. Within a layer, rescaling of the independent and/or dependent variables by appropriately chosen factors η(ϵ) is used to amplify the local behaviour, and the resulting equation is then solved via another asymptotic series to obtain an inner solution that performs well in the layer, but typically is a poor approximation outside the layer. Inner and outer solutions are bridged by determining values for the constants of integration in the inner and outer solutions so that the various solutions intersect, and can thus be combined into a continuous approximation to the solution. When a combined solution is continuous, but not differentiable, a corner layer (and corner layer solution) near the point of intersection can be included in the matching to form a smooth approximation to the true trajectory that performs equally well across the entire domain (a uniform asymptotic solution).

We discuss the matching procedure in greater detail in §3 below.

Table 1 lists estimates of natural history of infection parameters for a variety of common diseases. For the problem at hand, observing that infectious periods are typically of order days or weeks, whereas typical human lifetimes are longer than 50 years, we see that ϵ (6) will generally be quite small. Consequently, we anticipate that matched asymptotic solutions Y (x; ϵ) and X(y; ϵ) will provide good approximations to the exact solutions of ( 10) and [START_REF] Hollingsworth | HIV-1 transmission, by stage of infection[END_REF]. In subsequent sections, we derive and compare these asymptotic solutions to numerically computed trajectories for an illustrative parameter set (chosen with ε larger than for any acute infectious disease of humans so that discrepancies between the exact and asymptotic solutions are visible). The observed parameters are the basic reproduction number (R 0 ), the mean latent period (T lat ), and the mean infectious period (T inf ). The values of the other parameters were derived using Equations ( 2), ( 3), ( 6) and (8a). Note that the mean intrinsic generation interval in the SIR model ( 1) is T gen = 1/γ ≃ T inf , whereas in the SEIR model (which includes an exposed state in which individuals are not yet infectious), T gen ≃ T lat + T inf [START_REF] Krylova | Effects of the infectious period distribution on predicted transitions in childhood disease dynamics[END_REF][START_REF] Champredon | Equivalence of the Erlang SEIR epidemic model and the renewal equation[END_REF]; consequently, SIR and SEIR dynamics correspond most closely if we set 1/γ in the SIR model to be the sum of the observed mean latent and infectious periods. We set µ = 0.02/year to mimic human birth and death rates, and compute ε = µ/(γ + µ) [Equation [START_REF] Bacaër | A Short History of Mathematical Population Dynamics, Chapter 16: "McKendrick and Kermack on epidemic modelling[END_REF]]. Where original sources present a range, we have listed the midpoint. Many of the estimates come from Anderson and May [START_REF] Anderson | Infectious Diseases of Humans: Dynamics and Control[END_REF] (R 0 from their Table 4.1 [2, p. 70]; the mean latent and infectious periods from their Table 3.1 [2, p. 31]).

Disease

Outer and Inner Solutions

As a first step in our analysis, in this section we derive solutions in the various subdomains where different approximations are natural. Then, in §3, we match local approximations to obtain a single global approximation that is uniformly valid throughout phase space.

Outer Solution

An outer solution is an asymptotic solution-obtained in the original variables-that captures the behaviour of the exact solution in the majority of phase space. Replacing Y in Equation ( 10)

with out Y (x; ϵ) = ∞ ∑ j=0 out Y j (x)ϵ j , (14) 
and equating terms of similar order in ϵ, we obtain a hierarchy of equations that can be solved inductively

for out Y 0 (x), out Y 1 (x)
, and so on. The lowest order equation is

d out Y 0 dx = x ⋆ x -1 , (15) 
which has generic solution out

Y 0 (x) = out C 0 -x + x ⋆ ln x , (16) 
where out C 0 is an arbitrary constant5 . We can determine out C 0 by specifying initial conditions (x i , y i ), in which case Equation ( 16) gives the phase-plane trajectory of the SIR ODEs without vital dynamics, i.e., for ϵ = 0; see §3.1.1 below. In §3.1.2, we derive "effective initial conditions" that allow us to approximate subsequent epidemic waves.

x-axis Boundary Layer

The outer solution out Y (x; ϵ) [Equation ( 14)] is a function of x, and cannot have the same qualitative behaviour as the exact trajectories, which have multiple branches as the fraction susceptible decreases to a minimum (x ) and then recovers (Figures 1 and2). We thus seek a boundary layer solution along the x-axis that will capture the dynamics when the infected hosts are rare (i.e., y ≪ 1). Knowing that the equilibrium infective

frequency y ⋆ is O(ϵ) [Equation (8b)], we might plausibly posit a solution xb Y (x; ϵ) = ϵΥ(x; ϵ) , (17) 
where Υ = O(1). Substituting ϵΥ for Y in Equation ( 10) yields

ϵ((1 -x) -xΥ(x; ϵ)) dΥ dx = (x -x ⋆ )Υ(x; ϵ) . (18) 
Searching for a series solution,

Υ(x; ϵ) = ∞ ∑ j=0 Υ j (x)ϵ j , (19) 
and collecting terms of common order ϵ j yields, for j = 0,

0 = (x -x ⋆ )Υ 0 (x) , (20a) 
which implies that Υ 0 (x) ≡ 0. Now, suppose that Υ 0 (x) ≡ ⋯ ≡ Υ j-1 (x) ≡ 0; then, for j ≥ 1, collecting terms of order ϵ j in Equation ( 18) yields

0 = (x -x ⋆ )Υ j (x) . (20b) 
By induction, it follows that Υ j (x) ≡ 0 for all j, and hence that xb Y (x; ϵ) ≡ 0, which is a contradiction. We must conclude that our assumption in Equation ( 19) that Υ(x; ϵ) can be expanded in a series of powers of ϵ is incorrect. Instead, it must be that Υ(x; ϵ) is transcendentally small, i.e., vanishes more rapidly than any power ϵ j as ϵ → 0 [13, p. 4].

As a means to guess the asymptotic dependence of Υ(x; ϵ) on ϵ, we formally solve Equation ( 18) from the point of entry to the boundary layer (x in ) to an arbitrary point within it (x), which yields

Υ(x; ϵ) = Υ(x in ; ϵ) exp (- 1 ϵ ∫ x x in x ⋆ -u (1 -u) -uΥ(u; ϵ) du) . (21) 
We first note that x < x ⋆ in the x-axis boundary layer, so 1 -ξ > x ⋆ -ξ > 0 in the integrand above. Moreover, since ξΥ(ξ; ϵ) is transcendentally small we can expect that ξΥ(ξ; ϵ) ≪ 1 -ξ. Thus, the integrand can be expected to be positive throughout the layer, and the integral can be expected to be O(1) with respect to ϵ.

Finally, the coefficient Υ(x in ; ϵ) is evaluated at the edge of the boundary layer and can therefore be expected to be O(1). Putting these heuristic insights together, we hypothesize that Υ(x; ϵ) is exponentially small in x with rate proportional to 

Y (x; ϵ) = e -ϕ(x;ϵ) ϵ ( 22 
)
for some non-negative function ϕ(x; ϵ) that can be expanded in an asymptotic series in ϵ. Substituting this ansatz [START_REF] O'malley | Singular Perturbation Methods for Ordinary Differential Equations[END_REF] into Equation [START_REF] He | Epidemiological effects of seasonal oscillations in birth rates[END_REF] gives us

1 ϵ dϕ dx = x ⋆ -x ϵ(1 -x) -xe -ϕ(x;ϵ) ϵ , (23) 
for which we posit a series solution,

ϕ(x; ϵ) = ∞ ∑ j=0 ϕ j (x)ϵ j , (24) 
so that

e -ϕ(x;ϵ) ϵ = e -ϕ 0 (x) ϵ e -ϕ1(x) e -ϵϕ2(x)-ϵ 2 ϕ3(x)+⋯ = e -ϕ 0 (x) ϵ e -ϕ1(x) (1 -(ϵϕ 2 (x) + ϵ 2 ϕ 3 (x) + ⋯) + 1 2! (ϵϕ 2 (x) + ϵ 2 ϕ 3 (x) + ⋯) 2 + ⋯) = e -ϕ 0 (x) ϵ e -ϕ1(x) (1 -ϵϕ 2 (x) + ϵ 2 ( ϕ 2 (x) 2 2 -ϕ 3 (x)) + ⋯) , (25) 
which is transcendentally small on any set where ϕ 0 (x) is strictly positive (below we determine conditions under which ϕ 0 (x) > 0 on at least part of the interval (0, 1)). If ϕ 0 (x) > 0 then the term e -ϕ(x;ϵ) ϵ in Equation ( 23) is transcendentally small and we can omit it to obtain

dϕ 0 dx = x ⋆ -x 1 -x , (26) 
and hence

ϕ 0 (x) = C ϕ 0 -x -(1 -x ⋆ ) ln(1 -x) . (27) 
In contrast, we obtain dϕ1 dx = 0, and hence

ϕ 1 (x) = C ϕ 1 (28) 
(and similarly ϕ j (x) = C ϕ j for all j > 1). From the derivative (26), we see that ϕ 0 (x) is increasing for x < x ⋆ , decreasing for x > x ⋆ , and has a vertical asymptote for x = 1. In particular, provided

C ϕ 0 < x ⋆ + (1 -x ⋆ ) ln(1 -x ⋆ ) , (29) 
ϕ 0 (x) will be strictly positive on some subinterval of (0, 1), as required. Inserting Equations ( 27) and (28)

in Equation ( 25), we have an approximate solution in the x-axis boundary layer,

xb Y (x; ϵ) = (1 -x) -1 ϵ (1-x ⋆ ) e 1 ϵ (C ϕ 0 -x)+C ϕ 1 . (30) 

Corner layers

Close to the minimum susceptible frequency (x ), our outer ( 16) and inner (30) solutions have tangents of positive and negative slope respectively (see Figure 4), and thus meet in a non-differentiable corner, which we address by seeking a corner layer solution [13, p. 67]. The trajectories have vertical slope at x , i.e., dY dx is singular, so we will instead work with dX dy . The increase from x is caused by importation of new susceptible hosts at a rate proportional to ϵ [see Equation [START_REF] Hollingsworth | HIV-1 transmission, by stage of infection[END_REF]], so we would expect the "turn-around" (change in sign of derivative) only when the frequency of infectives is sufficiently low that the first term dominates the second term in the numerator of Equation [START_REF] Hollingsworth | HIV-1 transmission, by stage of infection[END_REF], i.e., when y is O(ϵ). We therefore amplify the behaviour near the

x-axis, making a change of variable, y = ϵυ, which converts Equation [START_REF] Hollingsworth | HIV-1 transmission, by stage of infection[END_REF] to

dX dυ = ϵ 1 -X(υ) -X(υ)υ (X(υ) -x ⋆ )υ . ( 31 
)
Positing a series solution cor

X (υ; ϵ) = ∞ ∑ j=0 cor X j (υ)ϵ j , (32) 
yields, to lowest order,

d cor X 0 dυ = 0, so cor X 0 is constant, cor X 0 (υ) = cor C 0 . (33) 
The next order term is

d cor X 1 dυ = -( 1 - cor C 0 x ⋆ - cor C 0 ) 1 υ + ( cor C 0 x ⋆ - cor C 0 ), (34) 
with solution

cor X 1 (υ) = -( 1 
- cor C 0 x ⋆ - cor C 0 ) ln υ + ( cor C 0 x ⋆ - cor C 0 )υ + cor C 1 . (35) 
We now insert Equations ( 33) and (35) in Equation ( 32), and convert back to the original variable y.

Noting that ln υ = ln y + ln ϵ -1 , we obtain cor

X (y; ϵ) = cor C 0 + ( cor C 0 x ⋆ - cor C 0 )y + ϵ ln ϵ -1 ( 1 - cor C 0 x ⋆ - cor C 0 ) -ϵ ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ ( 1 - cor C 0 x ⋆ - cor C 0 ) ln y - cor C 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ + O(ϵ 2 ). (36) 
This solution contains a term of order ϵ ln ϵ 

X (υ; ϵ) = cor X 0 (υ) + ϵ ln ϵ -1 cor X ln (υ) + ϵ cor X 1 (υ) + O(ϵ 2 ) , (37) 
which includes a term of order ϵ ln ϵ -1 in addition to powers of ϵ. We will refer to the corner solutions near x and x as the "left" and "right" corner solutions, lc X and rc X , respectively.

X (y; ϵ) = cor C 0 + ( cor C 0 x ⋆ - cor C 0 )y + ϵ ln ϵ -1 ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ cor C ln + ( 1 - cor C 0 x ⋆ - cor C 0 ) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ -ϵ ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ ( 1 - cor C 0 x ⋆ - cor C 0 ) ln y - cor C 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ + O(ϵ 2 ) , (40) 

y-axis Boundary Layer

For large values of R 0 , the trajectories of the SIR model approach the y-axis very closely, even when y is far from 0 (compare Figure 1 with R 0 = 2 to Figure 2 with R 0 = 17). Consequently, if R 0 is large then there will be substantial periods during which x will be O(ϵ) or smaller, and we can no longer assume that the effects of terms proportional to ϵ in Equation ( 10) can be safely neglected. Instead, we consider a boundary layer solution along the y-axis, making a change of variables x = ϵξ in Equation ( 10) to get

dY dξ = (ϵξ -x ⋆ )Y (ξ) 1 -ϵξ -ξY (ξ) . ( 41 
)
Positing a series solution,

xb Y (ξ; ϵ) = ∞ ∑ j=0 xb Y j (ξ)ϵ j , (42) 
we get, to lowest order,

d xb Y 0 dξ = x ⋆ xb Y 0 (ξ) ξ xb Y 0 (ξ) -1 . ( 43 
)
It is not immediately obvious how to solve this equation. However, if we invert the ODE, we have

dΞ 0 dy = Ξ 0 (y) x ⋆ - 1 x ⋆ y , (44) 
and we can now find a solution, ξ = Ξ 0 (y), using the method of integrating factors, which yields

yb X 0 (y) = ϵ Ξ 0 (y) = ϵ x ⋆ e y x ⋆ (E 1 ( y x ⋆ ) + ') , (45) 
where

E 1 (z) = ∫ ∞ z e -u
u du is the exponential integral function (see, e.g., [21, §6.2(i)]).

Scaled exponential and Lambert W functions

To match our various solutions, some functions of x, some functions of y, we need to write all expressions as functions of the same variable. For our matching, the common variable will be y, which is facilitated by two functions that we introduce in this section.

The expression ze z occurs frequently in our analysis, with u often being a non-trivial expression itself.

Consequently, in order to reduce equation clutter and emphasize patterns in expressions more clearly, we define the scaled exponential function,

E (z) = z e z . ( 46 
)
The second function is the Lambert W function [START_REF] Corless | On the Lambert W function[END_REF], a transcendental multi-function defined by the implicit relation

E (W (z)) = z . (47) 
Thus, W is a Lambert W function if E is its left inverse. There are countably many such functions of a complex argument, leading to countably many branches W i (z). There are two branches that are real-valued for real arguments. We will need both real-valued branches, which are denoted W -1 and W 0 . They have overlapping domains, but non-overlapping ranges,

W -1 ∶ [- 1 e , 0) → (-∞, -1] , (48a) 
W 0 ∶ [- 1 e , ∞) → [-1, ∞) . (48b) 
Thus, these two branches meet at -1,

W -1 (-1) = W 0 (-1) = - 1 e = E (-1) . (49) 
For any i, E is also a partial right inverse of W i , i.e., W i (E (z)) = z on part of the domain of E . The set on which W i (E (z)) = z depends on i; for i ∈ {-1, 0},

W -1 (E (z)) = z if z ≤ -1 , W 0 (E (z)) = z if z ≥ -1 . (50) 
However, W i (E (z)) is well-defined outside the region on which E is a right inverse, and it is on the domain where W i (E (z)) ≠ z that we frequently need to evaluate it. Indeed, the explicit final size formula for the SIR model (and many other models) is [17, Eq. (A.

2)]

Z(R 0 ) = 1 + 1 R 0 W 0 (E (-R 0 )) . (51) 
Graphs of E (z) and W i (E (z)) are shown in Figure 3. We briefly recall some series and asymptotic expansions of the Lambert W function that we will need below. See [START_REF] Corless | On the Lambert W function[END_REF] for details and proofs.

(i) Implicitly differentiating the identity E (W i (z)) = W i (z)e Wi(z) = z and solving for dWi dz one finds that

dW i dz = W i (z) z(1 + W i (z)) . ( 52 
)
(ii) Applying the Lagrange inversion theorem (see, e.g., [8, p. 180]) to the power series for E (x), one finds that near 0,

W 0 (z) = ∞ ∑ n=1 (-n) n-1 n! z n = z + O(z 2 ) , (53) 
with radius of convergence 1 e .

(iii) For large z, there is a (convergent) asymptotic series representation,

W 0 (z) = L 1 -L 2 + ∞ ∑ m=0 ∞ ∑ n=1 (-1) m m! L n 2 L m+n 1 , z → ∞, (54) 
where L 1 = ln z and L 2 = ln (ln z). The same expansion applies for W -1 (z) as z → -0 if one replaces L 1 and L 2 with L1 = ln (-z) and L2 = ln (-ln (-z)).

(iv) We will also find it useful to expand

f i (z) = W i (-Ae -A+z ) = W i (E (-A)e z ) ( 55 
)
in a series about z = 0 for various values of A. Using Equation (52), we find

f i (z) = W i (E (-A)) + W i (E (-A)) 1 + W i (E (-A)) z + O(z 2 ) . (56) 
In particular, Equation (50) tells us that

f i (z) = -A - A 1 -A z + O(z 2 ) , if i = 0 and A ≤ 1 or i = -1 and A ≥ 1. ( 57 
)

Inverting the outer and inner solutions

To facilitate matching, we now exploit the scaled exponential E [Equation ( 46)] and Lambert's W [Equation (47)] to invert some of our asymptotic solutions.

Our outer solution ( 16) can be rearranged by setting out Y 0 (x) = y and using Equation (46),

- 1 x ⋆ e y- out C 0 x ⋆ = E (- x x ⋆ ) . (58) 
Next, using Equation (50), we have

W i ( - 1 x ⋆ e y- out C 0 x ⋆ ) = W i (E (- x x ⋆ )) = - x x ⋆ , (59) 
where the i = -1 branch is to be used in the half-plane x ≥ x ⋆ (since W -1 ≤ -1, Equation (48a)), whereas the i = 0 branch is to be used in the half-plane x ≤ x ⋆ (since W 0 ≥ -1, Equation (48b)). From Equation (59), we obtain out

X i 0 (y) = x = -x ⋆ W i ( - 1 x ⋆ e y- out C 0 x ⋆ ) . (60) 
Thus, the inversion yields a multi-function out X i 0 (y) with two branches, both of which we need. These branches correspond to the growth (i = -1) and decline (i = 0) phases of the epidemic, which meet at y

= out Y 0 (x ⋆ ) (the maximum of out Y 0 (x)
, and thus also the upper bound of the domain of its inverse,

out X i 0 (y)).
Similarly, we can invert our inner solution in the x-axis boundary layer [Equation (30)] to get

xb X i 0 (y) = 1 + (1 -x ⋆ )W i ( - 1 1 -x ⋆ e - 1-C ϕ 0 1-x ⋆ ( e C ϕ 1 y ) ϵ 1-x ⋆ ), (61) 
where now the i = -1 and i = 0 branches give the solution for x ≤ x ⋆ and x ≥ x ⋆ , respectively (the opposite of the situation for out X i 0 (y) in Equation ( 60), where i = -1 and i = 0 correspond to the right and left half-planes, respectively).

Remark 2 Once the constants have been determined by matching, we will be able to exploit the resulting symmetry (and the function E ) to simplify the inverted expressions considerably.
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We now turn to the task of identifying the unknown constants in the solutions above and combining these local approximations into a uniform approximation of the trajectory. Suppose we have two or more solutions defined at different asymptotic scales (e.g., our outer ( §2.1) and corner ( §2.3) solutions). The local solutions are obtained by imposing a scale on dependent or independent variables (e.g., we supposed x is O(1) to get the outer solution, and assumed y was O(ϵ) to get the corner solution, whereas we obtained the y-axis boundary layer solution ( §2.4) by assuming X is O(ϵ)). In practice, however, each local solution remains valid over some larger domain that can be characterized with another asymptotic scale. Matching (see, e.g.,

[13, §2.1]) is achieved by considering an intermediate scale η = η(ϵ) on which all solutions remain valid.

Solutions to be matched are evaluated at x = ηx η (or y = ηy η ) for some x η (or y η ) independent of ϵ (for readability, we suppress the explicit dependence of η itself on ϵ). The constants of integration (e.g.,

cor C 0 , C ϕ 1 , etc.
) are then chosen so that the two solutions agree as well as possible (i.e., so that they coincide on as many orders as possible when both are expanded as an asymptotic series). The matched solution is obtained by summing the component solutions-with the choice of constants of integration that maximizes their mutual agreement-and subtracting their common overlap (the sum of all terms occurring in both asymptotic series).

To illustrate the process without getting bogged down in details, suppose F (x) and G(x) are outer and inner (e.g., boundary layer) asymptotic series approximations for a given (exact) function E(x). Moreover, suppose we have

F (x) = f 0 (x) + f 1 (x)φ 1 (ϵ) + f 2 (x)φ 2 (ϵ) + f 3 (x)φ 3 (ϵ) + O(φ 4 (ϵ)) , (62) 
G(x) = g 2 (x)φ 2 (ϵ) + g 3 (x)φ 3 (ϵ) + O(φ 4 (ϵ)) , (63) 
where the functions f j and g j contain arbitrary constants, and {φ j } is an asymptotic sequence [ §1.2] (which typically refines the asymptotic sequences initially defined for the outer and inner solutions). If, say, the constants in f 2 (x) and g 2 (x) can be chosen so that these functions coincide exactly for all x, then f 2 (x)φ 2 (ϵ) = g 2 (x)φ 2 (ϵ) is the overlap, and our matched approximation to E(x) would be

F (x) + G(x) -f 2 (x)φ 2 (ϵ) . (64) 
If it were possible to choose the values of constants so that F and G agree in more than one order, so the overlap contains multiple orders (the more the better) then the resulting matched solution would be smoother (just as matching a function and its derivative at a single point leads to a smoother approximation at that point).

The matched solution has the virtue of being a valid approximation in both the inner and outer domains, so that one does not need to decide a priori which local solution (e.g., outer, boundary, or corner) best approximates a given part of the trajectory.

In what follows, we will focus on matching the trajectory that escapes the DFE [(x i , y i ) = (1, 0)] along its unstable manifold, because that is the trajectory corresponding to disease invasion. We will give a detailed treatment of the first matching, and describe the second matching much more briefly. For easy reference, we summarize our results in Tables 2 and3, while the matching constants are listed in Table 4.

Matching outer, corner and x-axis boundary layer solutions

Kermack and McKendrick's phase plane solution

Given an initial condition (x i , y i ), the constant of integration in Equation ( 16) is readily found to be out

C 0 = y i + x i -x ⋆ ln x i , (65) 
so that out Y 0 (x, x i , y i ) = y i + x i -x + x ⋆ ln ( x x i ) , (66) 
which is the phase plane solution first discovered by KM. Equivalently, using Equation (60), we can express the solution as a function of y,

out X i 0 (y, x i , y i ) = -x ⋆ W i ( -(x i /x ⋆ ) e y-y i -x i x ⋆ ) = -x ⋆ W i (E (-x i /x ⋆ ) e y-y i x ⋆ ) . (67) 
Provided x i ≥ x ⋆ and y i ≥ 0, the solution (66) is non-negative and concave, with two positive roots [x f ∈ (0, x ⋆ ) and another in (x ⋆ , 1)], and a unique maximum y 0 at x ⋆ ,

y 0 (x i , y i ) = out Y 0 (x ⋆ , x i , y i ) = y i + x i -x ⋆ (1 + ln (x i /x ⋆ )) . (68) 
Note that y 0 (x i , y i ) and x f (x i , y i ) are the true peak prevalence and final size for the SIR model without vital dynamics (ϵ = 0) started from (x i , y i ); y 0 only approximates the peak prevalence for the model with demography, and there is no "final" size if there is a continuous source of new susceptibles. Nevertheless, we informally refer to x f as the "final size" for convenience (note that there is a minimum fraction susceptible,

x , near x f (x i , y i ); see Equation (92) below).

Using the i = 0 branch to give the solution in the half-plane x ≤ x ⋆ , Equation (67) gives us an explicit expression for x f (x i , y i ) [START_REF] Ma | Generality of the final size formula for an epidemic of a newly invading infectious disease[END_REF],

x f (x i , y i ) = out X 0 0 (0) = -x ⋆ W 0 (E (-x i /x ⋆ )e - y i x ⋆ ) . (69) 
The series expansion for Lambert's W function (53) then yields

x f (x i , y i ) = x i e -(x i +y i )/x ⋆ + O((x i,2 /x ⋆ )e -2(x i +y i )/x ⋆ ) = x i e -R0(x i +y i ) + O(R 0 (x i e -R0(x i +y i ) ) 2 ) , (70) 
so the final size is exponentially small in R 0 , with a correction of exponentially smaller order.

When refering specifically to the focal solution emanating from the DFE [(x i , y i ) = (1, 0)] we suppress the dependence on x i and y i and write out Y 0 (x), out X i 0 (x), y 0 , and x f . While approximating this focal solution is our principal goal, in §3.1.3 below we will need to use solutions with y i = 0 and 0 < x i < 1; for these solutions with infection-free endpoints, we write out Y 0 (x, x i ) or out X i 0 (y, x i ), and refer to y 0 (x i ) and x f (x i ). [x f (x i , 0), x i ] is the interval on which out Y 0 (x, x i ) is non-negative, and thus its domain for practical purposes; its range, [0, y 0 (x i )],

is the domain for its inverse out X i 0 (y, x i ). In order to consider the behaviour near (x f , 0) on scales intermediate between the outer solution (67) and the corner solution (40), we take y = ηy η with

ϵ ≪ η ≪ 1 . (71) 
We haven't yet identified an appropriate intermediate scale, but examples that satisfy Equation (71) include η = ϵ 1/2 and η = ϵ ln ϵ -1 .

Inserting (x i , y i ) = (1, 0) in the outer solution (67), and expanding it using Equation (56), we obtain

out X 0 0 (ηy η ) = -x ⋆ W i (E (-1/x ⋆ ) e ηyη x ⋆ ) = x f + η x f x ⋆ -x f y η + O(η 2 ) . (72) 
On the other hand, inserting y = ηy η in the corner solution (40) and expanding

ln (ηy η ) = -ln η -1 + ln y η , (73) 
we can write cor X (ηy η ; ϵ)

= cor C 0 + η cor C 0 x ⋆ - cor C 0 y η + ϵ ln ϵ -1 ⎛ ⎝ cor C ln + 1 - cor C 0 x ⋆ - cor C 0 ⎞ ⎠ + ϵ ln η -1 ⎛ ⎝ 1 - cor C 0 x ⋆ - cor C 0 ⎞ ⎠ -ϵ ⎛ ⎝ 1 - cor C 0 x ⋆ - cor C 0 ln (y η ) - cor C 1 ⎞ ⎠ + O(ϵ 2
).

(74) If we now refine our initial assumption (71) to

ϵ ln ϵ -1 ≪ η ≪ (ϵ ln ϵ -1 ) 1/2 ≪ 1 (75)
then in the expansions (72,74) each term has a distinct asymptotic order. Our scaling assumptions (75) ensure that

ϵ ≪ ϵ ln η -1 ≪ ϵ ln ϵ -1 ≪ η ≪ (ϵ ln ϵ -1 ) 1/2 ≪ 1 , (76) 
so if we take

cor C 0 = x f and cor C ln = -( 1 
- cor C 0 x ⋆ - cor C 0 ) = - 1 -x f x ⋆ -x f ( 77 
)
then the two solutions (72,74) coincide to6 O(ϵ ln ϵ -1 ). For the moment, cor C 1 remains undetermined, but we will use it to match with the inner solution.

To match the corner layer solution with the inner (x-axis boundary layer) solution we now let η denote a different asymptotic order,

e -C ϵ ≪ η ≪ ϵ ≪ 1 for all C > 0. ( 78 
)
Since we are interested in x ≤ x ⋆ , as noted after Equation (61) we must use the i = -1 branch of the inner solution xb X i 0 (y). (Once we have determined the constants C ϕ 0 and C ϕ 1 in Equation ( 61) by matching with i = -1, the i = 0 branch will give the solution for x ≥ x ⋆ without further work). We will use Equation ( 56) to derive an asymptotic expansion, which motivates us-after some algebraic exploration-to set

C ϕ 0 = c ϕ 0 -(1 -x ⋆ ) ln (1 -c ϕ 0 ) . ( 79 
)
This choice for C ϕ 0 in Equation (61) leads to

xb X i 0 (ηy η ) = 1 + (1 -x ⋆ ) W i ⎛ ⎝ - 1 -c ϕ 0 1 -x ⋆ e - 1-c ϕ 0 1-x ⋆ ( e C ϕ 1 ηy η ) ϵ 1-x ⋆ ⎞ ⎠ = 1 + (1 -x ⋆ ) W i (E ( - 1 -c ϕ 0 1 -x ⋆ ) e z ) , (80a) 
where

z = ϵ 1 -x ⋆ ln ( e C ϕ 1 ηy η ) = ϵ 1 -x ⋆ (C ϕ 1 -ln η -ln y η ) . (80b) 
Because z contains a factor ϵ, it is guaranteed to be small, so we can apply Equations ( 55) and (57) to

Equation (80) to obtain xb X -1 0 (ηy η ) = c ϕ 0 + ϵ( 1 -c ϕ 0 x ⋆ -c ϕ 0 )(C ϕ 1 -ln y η ) + ϵ ln η -1 ( 1 -c ϕ 0 x ⋆ -c ϕ 0 ) + O(ϵ 2 ). ( 81 
)
Our assumption that η ≪ ϵ ≪ 1 [Equation (78)] implies that

η ≪ ϵ ≪ ϵ ln ϵ -1 ≪ ϵ ln η -1 ≪ 1 . ( 82 
)
Consequently, comparing Equations ( 74) and (81) to order O(ϵ), we see that the overlap is maximized by taking 77)), and

c ϕ 0 = cor C 0 = x f (see Equation (
cor C 1 = 1 -x f x ⋆ -x f C ϕ 1 , (83) 
whereas C ϕ 1 is yet to be determined.

With the values of the constants determined above, the outer (72) and corner (74) solutions have a common overlap of

x f + η x f x ⋆ -x f y η , (84) 
whereas for the corner and inner (81) solutions, the overlap is

x f -ϵ 1 -x f x ⋆ -x f (C ϕ 1 -ln y η ) + ϵ ln η -1 1 -x f x ⋆ -x f . ( 85 
)
Summing the outer (72), inner (81) and corner (74) solutions and subtracting these two overlaps yields a matched solution to the left of x ⋆ ,

← X (y; ϵ) = out X 0 0 (y; ϵ) + xb X -1 0 (y; ϵ) -x f . ( 86 
)
(Subtracting the overlaps (84,85) removes the corner solution (74) from the matched solution; the corner was nonetheless necessary to determine the matching constant c ϕ 0 .) For the matched solution to be continuous, ← X must agree at (x ⋆ , y 0 ) with the outer solution (67) in the right half plane, i.e., we need

← X (y 0 ; ϵ) = x ⋆ = out X -1 0 (y 0 ) . ( 87 
)
This requirement is satisfied provided

C ϕ 1 = ln y 0 . ( 88 
)
Substituting the values of the matching constants C ϕ 0 and C ϕ 1 into Equation (61), we find that the boundary layer inner solution expressed as a function of y is

xb X i 0 (y; ϵ) = 1 + (1 -x ⋆ ) W i (E ( - 1 -x f 1 -x ⋆ ) ( y 0 y ) ϵ 1-x ⋆ ). ( 89 
)
Substituting the values of C ϕ 0 and C ϕ 1 into Equation (30) gives us an alternative description of the boundary layer dynamics as a function of x, 

xb Y (x; ϵ) = y 0 ( 1 -x f 1 -x ) 1-x ⋆ ϵ e - x-x f ϵ . ( 90 
)
X (y; ϵ) = x f + x f x ⋆ -x f y + ϵ x f x ⋆ -x f ln ( y 0 y ) , (91) 
where, as noted in ?? 1, we use "lc" to emphasize that this is a "left corner" solution lying in the left half-plane. We will consider a right corner solution below.

tory near x , the point where the fraction susceptible is minimized. Solving d cor X / dυ = 0 [Equation ( 31)], we find that its minimum occurs at υ = ( 1x f -1), whence the minimum fraction susceptible is approximately

x 0 = x 0 (x f ) = lc X (ϵ( 1 x f -1); ϵ) = x f + ϵ( 1 -x f x ⋆ -x f )[1 + ln ( ϵ( 1 x f -1) y 0 )] (92) = x f -ϵ ln ϵ -1 ( 1 -x f x ⋆ -x f ) + ϵ( 1 -x f x ⋆ -x f )[1 + ln ( 1 x f -1 y 0 )] .
Prevalence trough Substituting x = x ⋆ into Equation (90) gives us an approximation to y , the minimum fraction infected after the initial epidemic,

y 0 = y 0 ( 1 -x f 1 -x ⋆ ) 1-x ⋆ ϵ e - x ⋆ -x f ϵ . ( 93 
)
Point of entry into the boundary layer With the known values of the matching constants c ϕ 0 and C ϕ 0 , we can write the leading term (27) in the asymptotic series ( 25) by which we obtained the inner solution as

ϕ 0 (x) = (x -x f ) -(1 -x ⋆ ) ln ( 1 -x f 1 -x ) . ( 94 
)
The inner solution [START_REF] O'malley | Singular Perturbation Methods for Ordinary Differential Equations[END_REF]30) is proportional to e -ϕ 0 (x) ϵ [see Equation [START_REF] Van Herwaarden | Stochastic epidemics: the probability of extinction of an infectious disease at the end of a major outbreak[END_REF]]. Consequently, as we observed in §2.2, the inner solution is trancendentally small in ϵ -1 on the set of x where ϕ 0 (x) > 0, whereas we see from Equation (94) that ϕ 0 (x f ) = 0. Thus, x f is effectively the point of entry into the boundary layer:

e -ϕ0(x f )/ϵ = 1 = O(1)
, whereas for x > x f (near x f ), e -ϕ0(x)/ϵ is transcendentally small.

Point of exit from the boundary layer In addition to x f , ϕ 0 (x) has a second root that we denote

x i,2 (for reasons that will become clear when we complete the matching). The point x i,2 is where the trajectory exits the boundary layer: ϕ 0 (x) > 0 for x ∈ (x f , x i,2 ), and ϕ 0 (x) < 0 for x > x i,2 . Just as we used a corner solution at x f to characterize the transition from the outer solution to the inner solution entering the boundary layer, 7 a right corner solution at x i,2 allows us to match the inner solution to a new outer solution corresponding to the second epidemic wave. To find an expression for x i,2 we substitute x = x i,2 into Equation (94) and obtain

(1 -x ⋆ ) ln ( 1 -x f 1 -x i,2 ) -(x i,2 -x f ) = 0. (95) 
As in §(2.6), we solve this for x i,2 using the Lambert W -function and find

x i,2 = 1 + (1 -x ⋆ ) W 0 (E ( - 1 -x f 1 -x ⋆ )) . (96) 
3.1.3 Matching in the right half-plane (x ≥ x ⋆ )

Our matched inner layer solution (89) can be continued to the right of x ⋆ by switching from the i = -1 to the i = 0 branch of Lambert's W . As we observed above, this boundary layer solution is transcendentally 7 The pedantic reader (or author) might observe that the corner solution was obtained by assuming that y = O(ϵ), whereas the outer and inner solutions correspond to y = O(1) and transcendentally small y, respectively. This apparent incongruity is reconciled by considering the solutions in a very small neighbourhood of x f : for C > 0, exp ( -

ϕ 0 (x f +Cϵ ln ϵ -1
) ϵ ) = O(ϵ), and it is in this O(ϵ ln ϵ -1 ) neighbourhood of x f that the solutions match, which is reflected in the scaling (75) required when matching the solutions in §3.1.2. small for x < x i,2 , i.e., for all y such that xb X 0 0 (y; ϵ) < x i,2 . As the trajectory leaves the boundary layer, the fraction infected goes from transcendentally small to O(1), until eventually the rate of infection exceeds the rate of replenishment of susceptible hosts by host demography, causing a second turn-around, where now the fraction susceptible starts to decrease. Our inner solution fails to capture this turn-around, which we now address, as in §3.1.2, with a (right) corner solution near x i,2 .

We begin by considering our solutions on a scale η that is intermediate between O(ϵ) and transcendentally small [Equation ( 78)]. Expanding the inner solution xb X 0 0 (ηy η ) as in Equation ( 81), we find that

xb X 0 0 (ηy η ) = x i,2 + ϵ 1 -x i,2 x ⋆ -x i,2 (ln y 0 -ln y η ) + ϵ ln η -1 1 -x i,2 x ⋆ -x i,2 + O(ϵ 2 ). (97) 
Comparing this expansion to the corner series (74), we see that a maximal matching is obtained by taking

cor C 0 = x i,2 , cor C ln = - 1 -x i,2 x ⋆ -x i,2
, and

cor C 1 = 1 -x i,2 x ⋆ -x i,2 ln y 0 . (98) 
Substituting these values in Equation (74) gives us the right corner solution, rc

X (y; ϵ) = x i,2 + x i,2 x ⋆ -x i,2 y + ϵ 1 -x i,2 x ⋆ -x i,2 ln ( y 0 y ) + O(ϵ 2 ) . (99) 
Beyond the turn-around at the corner, we are again in the domain of validity of the outer solution

out X i 0 (y) 
[Equation ( 60)], where we now use the i = -1 branch as we are matching in the right half-plane. To match corner and outer solutions, we choose

ϵ ≪ η ≪ 1 (100) 
and set y = ηy η . As we did for C ϕ 0 in the inner solution in §3.1.2 [Equation ( 79)], we make a change of constants, out

C 0 = out c 0 -x ⋆ ln out c 0 , (101) 
in Equation (60) to get out

X -1 0 (ηy η ) = -x ⋆ W -1 ( -( out c 0 /x ⋆ )e - out c 0 -ηyη x ⋆ ) = -x ⋆ W -1 (E ( -( out c 0 /x ⋆ ))e ηyη x ⋆ ) . (102) 
Expanding this expression using Equations ( 55) and (57) then gives us out

X -1 0 (ηy η ) = out c 0 + η out c 0 x ⋆ - out c 0 y η + O(η 2 ) . (103) 
Substituting y = ηy η in Equation (99) and expanding exactly as in Equation (74), we find that Equations ( 99) and (103) agree to order O(η)

provided out c 0 = x i,2 . (104) 
Thus, the matched solution is out

X -1 0 (y, x i,2 ) = -x ⋆ W -1 (E (-x i,2 /x ⋆ ) e y x ⋆ ) . (105) 
As in our derivation of the left solution ← X (y; ϵ) [Equation (86)], we now sum the outer (105), inner (89), and corner (99) solutions, and subtract their overlaps to obtain a uniform asymptotic solution to the right

of x ⋆ , → X (y; ϵ) = out X -1 0 (y, x i,2 ) + xb X 0 0 (y; ϵ) -x i,2 . (106) 
Consistent approximations We now have consistent approximations to the trajectory that starts from the DFE, (x i , y i ) = (1, 0). From the initial time until the peak prevalence is reached, the trajectory is in the right half-plane and we use the KM solution (66) for the model without vital dynamics (ϵ = 0). We then continue into the left half-plane using ← X (y; ϵ) [Equation ( 86)] until the first prevalence trough is reached at x = x ⋆ , where we switch to → X (y; ϵ) [Equation ( 106)] to approximate the rising segment of the second epidemic.

The switches from one approximation to another are differentiable and always occur when x = x ⋆ , and the combined approximation is uniformly valid (i.e., valid to the same order throughout the phase plane). 67)], we see that (x i,2 , 0) is an effective initial condition for the second epidemic: if (x i,2 , 0) were used as the initial state in the KM (ϵ = 0) solution, the resulting trajectory would meet the second rise of the actual solution as it curves up from the left in the phase plane at (approximately) x 0 (see below). Thus, while (x i,2 , 0) is not a point on the actual trajectory, it represents an "effective" initial condition that would give rise to the true dynamics after the end (i.e., trough) of the first epidemic. This observation motivates our choice of notation x i,2 .

Effective initial conditions

Comparing out X -1 0 (y, x i,2 ) [(105)] to out X i 0 (y, x i , y i ) [(
Maximum fraction susceptible Just as the minimum value of the left corner solution near x f (91) gives an estimate of x [Equation (92)], the maximum value for the right corner solution near x i,2 (99) gives us an estimate of x , the maximum fraction susceptible before a second epidemic wave,

x 0 = x 0 (x i,2 ) = x i,2 -ϵ 1 -x i,2 x i,2 -x ⋆ (1 + ln (ϵ( 1 x i,2 -1)/y 0 )) , (107) 
which occurs at y = ϵ( 1

x i,2 -1) 
.

Peak prevalence for the second wave Writing Equation (105) as a function of x via KM's formula (66),

out Y 0 (x) = x i,2 -x + x ⋆ ln (x/x i,2 ), (108) 
we can also obtain an approximation of the second epidemic's prevalence peak,

y 0,2 ≈ x i,2 -x ⋆ (1 + ln (x i,2 /x ⋆ )) . (109) 

Matching beyond the first epidemic wave

Our uniform matched asymptotic solutions, ← X and → X (86,106), were derived starting from the DFE at (x i , y i ) = (1, 0). However, a straightforward observation allows us to use the formulae for ← X and → X for the entire trajectory (i.e., all epidemic waves). Other than x ⋆ and ϵ (or the more fundamental parameters R 0 and ε), the only parameters on which our approximations depend are the initial condition (x i ), the approximate maximum size of the epidemic (y 0 ) [(68)], the final size of the epidemic without vital dynamics (x f ) [( 69)],

and the effective initial condition for the next epidemic (x i,2 ) [( 96)].

Epidemic iteration Setting x i,1 = x i , we iteratively obtain x i,j+1 from x i,j by computing

x f,j = x f (x i,j , 0) = -x ⋆ W 0 (E (-x i,j /x ⋆ )), (110a) 
y 0,j = y 0 (x i,j , 0) = x i,j -x ⋆ (1 + ln (x i,j /x ⋆ )) , (110b) 
x i,j+1 = 1 + (1 -x ⋆ )W 0 (E ( - 1 -x f,j 1 -x ⋆ )). (110c) 
The intermediate quantities in this recurrence relation, x f,j and y 0,j , are the final fraction susceptible and maximal fraction infected, respectively, for the SIR model without vital dynamics (ε = 0) with initial condition (x i,j , 0). approximations to the full j th epidemic wave for all j ≥ 1, ← X ( → X ) valid on [x 0,j , x ⋆ ] (resp., [x ⋆ , x 0,j ]), where

x 0,j = x 0 (x f,j , y 0,j ) = x f,j + ϵ

1 -x f,j x ⋆ -x f,j (1 + ln (ϵ( 1 x f,j -1)/ y 0,j )) , (111a) 
x 0,j = x 0 (x i,j+1 , y 0,j ) = x i,j+1 -ϵ

1 -x i,j+1 x i,j+1 -x ⋆ (1 + ln (ϵ( 1 x i,j+1
-1)/y 0,j )).

Poincaré map If we think of the y nullcline (x = x ⋆ ) as a surface of section, we can use Equation (110) to explicitly write down the associated Poincaré map. Using Equation (93), we define

y 0,j = y 0 (x f,j , y 0,j ) = y 0,j ( 1 -x f j 1 -x ⋆ ) 1-x ⋆ ϵ e - x ⋆ -x f j ϵ . ( 112 
)
We can then iteratively define the time-forward Poincaré map on the y nullcline via

y 0,1 → y 0,1 → y 0,2 → y 0,2 → y 0,3 → y 0,3 → ⋯ (113)

Matching with the y-axis boundary layer solution

We conclude our analysis with a matching between the outer solution on the unstable manifold, out Y 0 (x) (66), and the boundary layer solution along the y-axis, yb X 0 (y) (45). For biologically relevant parameters, this new matching improves significantly upon our formulae for ← X (86) and → X (106).

Having a boundary layer along the y-axis is sensible only for trajectories that approach the y-axis.

Consequently, when studying this layer, we are assuming implicitly that x f = O(ϵ) (since x f < x and no trajectory gets closer than x to the y-axis). In particular, since

x f = -x ⋆ W 0 (E ( - 1 x ⋆ )) = - 1 R 0 W 0 (E (-R 0 )) = e -R0 + O(R 0 e -2R0 ), (114) 
we are implicitly assuming that e -R0 = O(ϵ) or, equivalently, R 0 = O(ln ϵ -1 ). For the diseases listed in Table 1, R 0 / ln ϵ -1 ranges from ∼ 0.17 (for pneumonic plague and influenza) to ∼ 1.7 (for measles and pertussis), suggesting it is not unreasonable to assume R 0 / ln ϵ -1 . For the example in the top panels of We set yb

C 0 = -E 1 ( y 0 (x i ) x ⋆ ) (115) 
so that yb X 0 (y) vanishes when evaluated at (x ⋆ , y 0 ) and consequently the sum out X 0 0 (y, x i ) + yb X 0 (y) agrees at (x ⋆ , y 0 ) with out X -1 0 (y) (67), the corresponding focal approximation in the right half-plane (x ≥ x ⋆ ). Thus,

yb X 0 (y) becomes yb X 0 (y) = ϵ x ⋆ e -y x ⋆ (E 1 ( y x ⋆ ) -E 1 ( y 0 (x i ) x ⋆ )) . (116) 
With the choice (115) for yb C 0 , the sum

X in (y; ϵ) ∶= out X 0 0 (y, x i ) + yb X 0 (y) = -x ⋆ W 0 (E (- x i x ⋆ )e y x ⋆ ) + ϵ e y x ⋆ x ⋆ (E 1 ( y x ⋆ ) -E 1 ( y 0 (x i ) x ⋆ )) (117) 
is a very good approximation to the trajectory, except in the x-axis boundary layer. Elsewhere [START_REF] Parsons | The probability of epidemic burnout in the stochastic SIR model with demography[END_REF], we use Equation (117) to approximate the fraction susceptible at the point of entry into the set {y ≤ y ⋆ } (hence "in").

We next match with the inner solution expressed as a function of y, To expand the matched outer and y-axis boundary layer solutions (117), we introduce the complementary exponential integral ([21, 6.2.4]),

Ein(z) = ∫ z 0 1 -e -u u du, (118) 
an entire function that satisfies Ein(z) = z + O(z 2 ) and

E 1 (z) = Ein(z) -ln z -γ, (119) 
where γ ≃ 0.57721 is the Euler-Mascheroni constant [21, 5.9.18] (not the recovery rate in the SIR model ( 1)).

Using Equation (119), Equation (117) becomes

X in (y; ϵ) = x f + η( x f x ⋆ -x f )y η + ϵ ln η -1 1 x ⋆ + ϵ 1 x ⋆ ( ln y 0 -ln y η + Ein ( y 0 x ⋆ )) + O(ϵη). (120) 
Comparing this expression with the asymptotic series expansion for the x-axis boundary layer solution (81), we see that the coefficient of ln y η appears to be different in the two expansions ( ϵ x ⋆ in (120) versus ϵ

1-x f x ⋆ -x f in (81))
. This apparent difference is a consequence of the assumption implicit throughout this section that

x f = O(ϵ), which implies that ϵ 1 -x f x ⋆ -x f = ϵ x ⋆ + O(ϵ 2 ), (121) 
so the two coefficients are in fact asymptotically equal. With this in mind, we see that, as in the original matching,

c ϕ 0 = x f , (122) 
from which we obtain C ϕ 0 via Equation (79), whereas now

C ϕ 1 = ln y 0 -Ein ( y 0 x ⋆ ) . (123) 
Substituting c ϕ 0 and c ϕ 1 into Equation (61) yields yb

X 0 i (y) = 1 + (1 -x ⋆ ) W i (E (- 1 -x f 1 -x ⋆ ) ( y 0 y ) ϵ 1-x ⋆ e -ϵ 1-x ⋆ Ein( y 0 x ⋆ ) ) . (124) 
This expression differs from the matched boundary layer solution yb X -1 0 (y) (89) by an additional factor

e -ϵ 1-x ⋆ Ein( y 0 x ⋆ ) = 1 - ϵ 1 -x ⋆ Ein ( y 0 x ⋆ ) + O(ϵ 2 ), (125) 

Quantity Expression Equation

Equilibrium susceptible density

x ⋆ 1 R0 (8a) 
Peak prevalence (KM)

y 0 1 -x ⋆ (1 -ln (x ⋆ )) (68) 
Final size (KM)

x f -x ⋆ W 0 (E (-1/x ⋆ )) (69) 
Minimum prevalence y

0 y 0 ( 1-x f 1-x ⋆ ) 1-x ⋆ ϵ e - x ⋆ -x f ϵ e -Ein( y 0 x ⋆ ) (93) 
Minimum susceptible density

x 0 x f + ϵ 1-x f x ⋆ -x f (1 + ln (ϵ( 1 x f -1)/ y 0 )) (92) 
Effective initial condition

x i,2 1 + (1 -x ⋆ ) W 0 (E (- 1-x f 1-x ⋆ )) (96) 
Maximum susceptible density

x 0 x i,2 -ϵ 1-x i,2 x i,2 -x ⋆ (1 + ln (ϵ( 1 x i,2 -1)/y 0 )) (107) 
Peak prevalence, second wave y 0,2

x i,2 -x ⋆ (1 + ln (x i,2 /x ⋆ )) (109) 
Table 2: Approximations of quantities of epidemiological interest for disease invasions, i.e., on the trajectory that emanates from the disease-free equilibrium (DFE), (x i , y i ) = (1, 0). Each entry may depend upon entries above it in the table (but never on entries below). These quantities are used in our approximations to the full trajectories in Table 3. We use "(KM)" to indicate quantities that are exact for the Kermack-McKendrick SIR model without vital dynamics (ϵ = 0). With vital dynamics (ϵ > 0), the peak prevalence y 0 is an approximation, and there is no "final" size, but the quantity x f appears in the approximation to the minimum fraction susceptible (x 0 ). Replacing x i , by x i,j as defined in Equation (110) gives asymptotic approximations for the j th epidemic wave, given that the first wave starts on the trajectory emanating from the DFE. We discuss the effective initial condition (x 1 i ) in §3.1.3. The expressions for the minimum and maximum susceptible densities (x 0 , x 0 ) are identical except that x 0 is evaluated at x f and x 0 is evaluated at x i,2 . In these expressions, note that (x f , ϵ( 1

x f -1)) and (x i,2 , ϵ( 1 x i,2
-1)) are points on the x nullcline dX/ dτ = 0. We write the formulae for x 0 and x 0 as compactly as possible here; see Equation (92) for the same expression written out with separate terms for each asymptotic order.

Solution Notation Expression

Branch Domain Equation

Outer out X i 0 (y, x i ) -x ⋆ W i (E (-x i /x ⋆ ) e y x ⋆ ) i = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 0 x ≤ x ⋆ -1 x ≥ x ⋆ [0, y 0 ] (60), (67) 
y-axis bdry yb X 0 (y)

ϵ x ⋆ e -y x ⋆ (E 1 ( y x ⋆ ) -E 1 ( y 0 x ⋆ )) - [y 0 , y 0 ] (116) Left corner lc X (y; ϵ) x f + x f x ⋆ -x f y + ϵ 1-x f x ⋆ -x f ln (y 0 /y) - [y 0 , y 0 ] (36), (91) 
x-axis bdry

xb X i 0 (y) 1 + (1 -x ⋆ ) W i (E (- 1-x f 1-x ⋆ ) ( y 0 y ) ϵ 1-x ⋆ e -ϵ 1-x ⋆ Ein( y 0 x ⋆ ) ) i = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ -1 x ≤ x ⋆ 0 x ≥ x ⋆ [y 0 , y 0 ] (124) Right corner rc X (y; ϵ) x i,2 - x i,2 x i,2 -x ⋆ y -ϵ 1-x i,2 x i,2 -x ⋆ ln (y 0 /y) - [y 0 , y 0,2 ] (36),(99) 
Matched, left

← X (y; ϵ) out X 0 0 (y, 1) + xb X -1 0 (y) -x f + yb X 0 (y) + ϵ x ⋆ (ln ( y y 0 ) + Ein ( y 0 x ⋆ )) - [y 0 , y 0 ] (126) Matched, right → X (y; ϵ) out X -1 0 (y, x i,2 ) + xb X 0 0 (y; ϵ) -x i,2 - [y 0 , y 0,2 ] (106) 
Table 3: Matched solutions for disease invasions [(x i , y i ) = (1, 0)]. The quantities x ⋆ , x f , y 0 , x i,2 , and y 0,2 are expressed in terms of the parameters R 0 and ϵ in Table 2. Left and right corner solutions are valid in a neighbourhood of the points (x f , 0) and (x i,2 , 0), respectively (and are identical up to swapping x f and x i,2 ). Left and right matched solutions are uniformly valid to the left and right of the y nullcline (x = x ⋆ ). Setting x i = 1 gives the first epidemic wave emanating from the DFE. Asymptotic approximations for the j th epidemic wave (for j ≥ 1) are obtained by replacing x i with x i,j , x f by x j f , x i,2 by x i,j+1 , y 0 by y 0,j , and y 0,2 and y 0,j+1 in the expressions and domains [Equation ( 110)]. For each of the outer, inner, and left and right corner solutions, the equation reference first is the "raw" expression with undetermined matching constants (the matched values are listed in Table 4) and then the "matched" expression with the matched values of the constants inserted. Grey text is used to emphasize a factor in the x-axis boundary layer approximation and a term in the left matched solution that appear when we include the y-axis boundary layer approximation in the matching; Figure 4 shows results without the grey quantities, whereas Figure 5 shows the improvement obtained by including them. 3). Top panel: R 0 = 2, ε = 0.01. Bottom panel: R 0 = 17, ε = 0.001; similar to measles and whooping cough (Table 1). Various outer and inner approximations are shown in grey, and the matched approximation is in black. The numerically computed solutions are red, as in Figures 1 and2. Nonlinear differential equations can rarely be solved exactly. Creative analyses leading to approximate analytical solutions were once the only way to study nonlinear systems (see [22, pp. 201-204] has a very concise history), but interest in such approximations has diminished as computers have become more powerful and software for efficient and accurate numerical solution of differential equations has become so easily accessible. However, closed-form analytical expressions can often lead to valuable insights, and can facilitate further analyses that would be impossible or exceedingly challenging to conduct numerically.

We have derived new, fully analytical approximations for the phase plane dynamics of the SIR model with vital dynamics. In Table 2, we list our expressions for key epidemiological quantities, including peaks and troughs of the susceptible and infectious proportions of the host population. We present a closed-form analytical approximation to the Poincaré map for the SIR model in §3.1.4. A highly accurate approximation to the susceptible proportion as the trajectory enters the x-axis boundary layer is given in Equation (117), and is a critical ingredient in a stochastic disease persistence analysis that we present elsewhere [START_REF] Parsons | The probability of epidemic burnout in the stochastic SIR model with demography[END_REF].

Our approach has involved matching asymptotic expansions across branch cuts of a special function (the Lambert W function, §2.5). To our knowledge, this is the first example of asymptotic matching across branch cuts.

We have focused on the most relevant case of the invasion of a novel pathogen into an epidemiologically naïve population i.e., the trajectory escaping the DFE along its unstable manifold. Nonetheless, the solutions presented in §2 and the matching methodology remain valid for arbitrary initial conditions (x i , y i ). Obtaining approximations for any other initial condition would be a matter of determining new matching constants and modifying the expressions accordingly. We have considered only the standard SIR model, but the techniques we have presented can be adapted to other compartmental ODE models, which will explore in further work. x ⋆ -x i,2

Constant Expression Equations

(36), (98

) cor C 1 (right) 1-x i,2
x ⋆ -x i,2 ln y 0 (36), ( 98) 2 for x ⋆ , x f , y 0 , and x i,2 expressed in terms of R 0 and ϵ. The final expressions with these values for the matching constants are listed in Table 3.

out C 0 (2 nd ) x i,2 (16) 

8 R 0 1 Figure 1 :

 8011 Figure 1: Sample solution of the SIR model Equation (1) for R 0 = 2. Top left: the frequencies of susceptible and infected individuals. Symbols indicate the critical points of the curve of the corresponding colour. The j th local minimum (maximum) of the susceptible [infective] frequency is labelled x j (x j ) [y j

9 R 0 1 Figure 2 :

 9012 Figure 2: Sample solution of the SIR model Equation (1) for R 0 = 17. See caption to Figure 1, but note that unlike Figure 1 both axes are logarithmic in the bottom right panel above.

Remark 1

 1 which differs from Equation (36) only in that it includes cor C ln in the O(ϵ ln ϵ -1 ) term. Below, in §3.1.2, we will see that the additional degree of freedom provided by the constant cor C ln is essential to successfully match other asymptotic solutions. While this section concerns dynamics near x , a virtually identical analysis provides a corner solution near x , where the fraction susceptible is at its maximum prior to a second epidemic wave. In particular, we again have a solution of the form (40), albeit for different values of the constants cor C 0 and cor C 1 .

Figure 3 :

 3 Figure 3: E (z) = ze z (46) and Lambert W functions (47) evaluated at E (z).

3. 1 . 2

 12 Matching in the left half-plane (x ≤ x ⋆ ) Our next step is to match the outer solution out X 0 0 (y) [Equation (67) with (x i , y i ) = (1, 0)] with the corner solution cor X (y; ϵ) [Equation (40)]. Note that the DFE lies in the right half-plane (since x ⋆ < 1), but in the present subsection it is the i = 0 branch of the outer solution that we need because we are investigating only the part of the trajectory that lies in the left half-plane.

Figures 4 and 5 ,

 5 Figures 4 and 5, R 0 / ln ϵ -1 ≃ 0.38.As with our original matching ( §3.1), we use the outer solution expressed as a function of y,

xb X - 1 0

 1 (y) (61) (now the i = -1 branch gives the solution with x ≤ x ⋆ ), for which we obtained the asymptotic expansion for y = ηy η previously [Equation (81)].

  boundary layer corner layers y-axis boundary layer x nullcline y nullcline

Figure 4 :

 4 Figure 4: Solutions of the SIR ODEs Equation (1) and approximations (Table3). Top panel: R 0 = 2, ε = 0.01. Bottom panel: R 0 = 17, ε = 0.001; similar to measles and whooping cough (Table1). Various outer and inner approximations are shown in grey, and the matched approximation is in black. The numerically computed solutions are red, as in Figures1 and 2.

  boundary layer corner layers y-axis boundary layer x nullcline y nullcline

Figure 5 :

 5 Figure 5: Similar to Figure 4, but including the y-axis boundary layer approximation (

  i + x i -x ⋆ ln x i (16), (60), (65) (1 -x ⋆ ) ln (1 -x f ) (27), (30), (61), (79), (83) , (30), (61), (88) cor C 0 (right) x i,2(33), (36), (98) cor C ln (right) -1-x i,2

Table 4 :

 4 , (60), (104)out c 0 (2 nd ) x i,2 -x ⋆ ln x i,2(102), (101), (104) Matching constants for disease invasions [(x i , y i ) = (1, 0)]. Left and right indicate constants appearing in the left and right corner solutions, while 2 nd indicates constants for the second epidemic wave. See Table

Table 1 :

 1 Estimates of parameters associated with the natural history of infection for a variety of diseases.

		R 0	x ⋆	T lat [days] [days] T inf	ε × 10 3	ϵ × 10 3	Source
	measles	17	0.059	8	5	0.71	0.042	[2]
	pertussis	17	0.059	8	14	1.2	0.071	[2]
	mumps	12	0.08	15	6	1.1	0.092	[2]
	chickenpox	11	0.091	10	5	0.82	0.075	[2]
	COVID-19 (Delta)	6.8	0.15	5.8	14	1.1	0.16	[16]
	rubella	6.5	0.15	10	7	0.93	0.14	[2]
	scarlet fever	5.5	0.18	1.5	18	1	0.19	[2]
	smallpox	4.5	0.22	15	7	1.2	0.27	[14]
	COVID-19 (ancestral)	3	0.33	3.7	14	0.97	0.32	[16]
	HIV	2.2	0.47	87	270	19	8.9	[11]
	influenza (1918)	1.8	0.56	2	2.5	0.25	0.14	[19, 2]
	Ebola	1.6	0.62	9.3	7	0.89	0.56	[26]
	pneumonic plague	1.3	0.77	4.3	2.5	0.37	0.29	[9]

The biological meaning of ϵ is the time-in units of the mean infectious period-that can be expected to elapse before an infected individual that enters a fully susceptible population infects one other individual.

We use the Hardy-Vinogradov notation: f (ϵ) ≪ g(ϵ) if and only if lim ϵ→0 f (ϵ) g(ϵ) = 0. We also use Landau's "O" notation where convenient: f (ϵ) = o(g(ϵ)) if f (ϵ) ≪ g(ϵ), and f (ϵ) = O(g(ϵ)) if there exists a positive constant C such that |f (ϵ)| ≤ C|g(ϵ)| as ϵ → 0.

The terminology reflects the origins of the method in fluid mechanics[START_REF] Anderson | Ludwig Prandtl's boundary layer[END_REF].

Shearing flow refers to adjacent regions where a vector field has substantially different magnitudes.

Throughout, we adopt the convention that C, with any combination of sub-and/or superscripts, indicates a constant of integration.

The assumptions ϵ ≪ η and η ≪ (ϵ ln ϵ -1 ) 1/2 [Equation (76)] together imply that ϵ 2 ≪ η 2 ≪ ϵ ln ϵ -1 , which is necessary to ensure that the O(η 2 ) terms in Equation (72) are negligible in comparison to ϵ ln ϵ -1 .

Acknowledgements

This project was partially supported by the CNRS IEA grant "Structured Populations, Epidemics & Control Strategies (SPECS)". DJDE was supported by an NSERC Discovery Grant.

which multiplies the argument of the W -function, giving an O(ϵ) refinement to yb X -1 0 (y).

Summing the outer and two inner solutions and subtracting the common overlap yields a solution uniformly valid to the left of

This solution can be extended the right half-plane (x ≥ x ⋆ ) using the i = 0 branch of Equation ( 61), with c ϕ 0 , C ϕ 0 , and C ϕ 1 as determined above. The matching to the second epidemic wave then proceeds identically to §3.1.3 (except that the argument of the inner solution now has the additional factor e

We summarize these results in Table 3 and compare them to the numerically evaluated trajectory in Figure 5.

Subsequent epidemic waves Just as before ( §3.1.4), these solutions can be extended to subsequent epidemic waves, replacing y 0 , x f and x i,2 by y 0,j , x f,j and x i,j+1 defined using the iterative scheme in Equations (110a) to (110c).