
HAL Id: hal-04178969
https://cnrs.hal.science/hal-04178969

Preprint submitted on 8 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analytical approximations for the phase plane
trajectories of the SIR model with vital dynamics

Todd L Parsons, David J D Earn

To cite this version:
Todd L Parsons, David J D Earn. Analytical approximations for the phase plane trajectories of the
SIR model with vital dynamics. 2023. �hal-04178969�

https://cnrs.hal.science/hal-04178969
https://hal.archives-ouvertes.fr


Analytical approximations for the phase plane trajectories of the

SIR model with vital dynamics

Todd L. Parsons1 and David J.D. Earn2

1Laboratoire de Probabilités, Statistique et Modélisation (LPSM), Sorbonne Université, CNRS UMR 8001,
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Abstract1

We derive accurate, closed-form analytical approximations for the phase-plane trajectories of the2

standard susceptible-infectious-removed (SIR) epidemic model, including host births and deaths. Our3

approximations for the SIR ordinary differential equations also allow us to provide convenient, accurate4

analytical approximations for the associated Poinaré map, and the minimum and maximum susceptible5

and infected host densities in each epidemic wave. Our analysis involves matching asymptotic expansions6

across branch cuts of the Lambert W function.7

1 Introduction8

Infectious disease transmission dynamics have been modelled with a susceptible-infectious-removed (SIR)9

compartmental framework since the early 20th century [18, 3]. What has become the standard SIR ordinary10

differential equation (ODE) model [Equation (1) below] was first published by Kermack and McKendrick in11

1927 [12] (hereafter KM).12

An exact solution for the time course of the state variables in the standard SIR ODEs has never been13

found, though KM did find an approximate analytical solution that is reasonably accurate for weakly trans-14

missible diseases, and has often been used to obtain (usually qualitative) insights (e.g., [4, 24, 20]).15

If we ignore the recruitment of new susceptible individuals—whether they result from births, immigration,16

or decay of immunity—then the SIR ODEs can be solved exactly in the susceptible-infectious phase plane.17

No such exact analytical solution in the phase plane is available for the more realistic situation in which18

susceptible recruitment is not negligible.19

In this paper, we use multiple scale and singular perturbation methods [22, 13] to obtain accurate20

analytical approximations to the phase-plane trajectories of the standard SIR ODEs with vital dynamics21

(i.e., with host births and deaths). A natural small parameter is the infectious period relative to host22

lifetime (denoted ε), but we find that substantially simpler expressions are obtained by expanding in the23

(even smaller) parameter ϵ = ε/R0, where R0 is the basic reproduction number.24

Our interest in approximating the phase-plane solutions of the SIR ODEs was motivated by a problem25

in stochastic epidemic theory, namely estimating the probability of persistence of a pathogen after an initial26

epidemic in a näıve population. Our solution to that problem [23] depends on an analytical estimate of27

the fraction susceptible near the end of a major outbreak [Equation (117) below], which is one of many28

expressions that we derive here.29

Key words and phrases. epidemics, SIR model, matched asymptotics, Poincaré map.
1991 Mathematics subject classification. 34E05, 34E13, 37N25, 92D30
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We are not the first to attempt to approximate solutions of the SIR ODEs in the phase plane. In par-30

ticular, van Herwaarden [25]—who was also motivated by (a different approach to) the stochastic extinction31

problem—presented some closely related approximations that are valid in specific regions of the phase plane.32

Here, we provide approximations that are uniformly valid throughout the phase plane, and we derive ap-33

proximate expressions for a number of epidemiologically important quantities (e.g., the peak and minimum34

prevalence, and the minimum and maximum susceptible frequency, following initial disease invasion and35

following subsequent epidemics).36

Our matching yields simple expressions that can, unlike previous results, be applied to an arbitrary37

number of epidemic cycles and allows us to find an accurate analytical approximation to the Poincaré map38

for the SIR model.39

The related expressions that van Herwaarden [25] has presented previously—in addition to applying only40

to restricted subregions of the phase plane—depend on the numerical evaluation of integrals for which explicit41

analytical forms cannot be found. In contrast, our results are fully analytical closed-form expressions that42

are valid everywhere in phase space. We succeed by exploiting Lambert’s W function [7] to invert implicit43

relations, and by asymptotic matching across branch cuts of the W function. The asymptotic techniques that44

we use are non-trivial and not part of the standard technical toolbox employed in mathematical epidemiology.45

Consequently, we present our analyses without assuming any familiarity with matched asymptotics, and hope46

that in so doing we have made it easier for readers to apply the methods to other problems.47

For convenience in using our approximations, all of our major results are summarized in Tables 2 and 3.48

1.1 The SIR Model with Vital Dynamics49

Writing the proportions of the host population that are susceptible, infective, and removed as X, Y , and Z,50

respectively, the standard SIR ordinary differential equations (ODEs) are [2]51

dX

dt
= µ(1 −X) − βXY , (1a)52

dY

dt
= (βX − γ − µ)Y , (1b)53

dZ

dt
= γY − µZ , (1c)54

where µ is the per capita rate of birth and death, β is the transmission rate, and γ is the recovery (or removal)55

rate. Our focus in this paper is on solutions of these deterministic equations (1), but elsewhere [23] we show56

how they can be used together with a branching process approximation to obtain accurate analytical results57

for the fully stochastic model (including the probability of pathogen extinction due to stochastic effects). In58

keeping with our stochastic analysis [23], we reserve S, I, and R for the number of individuals in each state.59

For the sake of clarity, we adopt the convention of using lower case letters to indicate independent variables60

and capitals to indicate dependent variables.61

We henceforth work with dimensionless parameters. To that end, we first note that a natural timescale62

is the expected duration of an individual’s infectious period,63

Tinf =
1

γ + µ
. (2)64

Expressing the expected infectious period in units of the expected host lifetime (1/µ), we define65

ε =
µ

γ + µ
. (3)66

The basic reproduction number (R0) is the product of the transmission rate β and the mean infectious67

period,68

R0 =
β

γ + µ
, (4)69
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which gives the expected total number of new infections caused by a single infective individual introduced70

into a näıve population. We define a new time variable, τ = t/(γ + µ) , so that one time unit corresponds to71

the expected duration of an individual’s infectious period. The SIR model then becomes72

dX

dτ
= ε(1 −X) −R0XY , (5a)73

dY

dτ
= (R0X − 1)Y . (5b)74

Since X(τ)+Y (τ)+Z(τ) = 1 for all τ ≥ 0, the two equations above completely describe the dynamical system75

(1). The ratio of ε and R0,76

ϵ =
ε

R0
, (6)77

turns out to be a better choice of small parameter to use in our analysis, because it leads to simpler asymptotic78

expressions.179

Equations (5) have two nullclines. The y nullcline, dY
dτ
= 0, is the line80

x =
1

R0
, (7a)81

whereas the x nullcline, dX
dτ
= 0, is the curve82

y = ϵ(
1

x
− 1) . (7b)83

When R0 > 1, these two nullclines intersect at (x⋆ , y⋆), where84

x⋆ =
1

R0
, (8a)85

y⋆ = ε(1 −
1

R0
) = ε(1 − x⋆) . (8b)86

It is well known that any trajectory departing from an initial point (x
i
, y

i
) in the positive cone {(x, y) ∶87

x > 0, y > 0} eventually converges on a globally asymptomatically stable endemic equilibrium (EE) at88

(x⋆ , y⋆), whereas the disease-free equilibrium (DFE) at (1,0) is a saddle attracting the set {(x, y) ∶ y = 0}.89

Approach to the EE occurs via damped oscillations provided [10, eq. 13]90

ε <
4(R0 − 1)

R0
2

= 4x⋆(1 − x⋆) . (9)

This condition is satisfied for most diseases of interest; we restrict our focus to this typical behaviour.91

We will be primarily concerned with the phase-plane trajectories of (5), so rather than using those92

equations directly, we will make use of the phase-plane equations,93

dY

dx
=
(R0x − 1)Y

ε(1 − x) −R0xY
=
(x − x⋆)Y

ϵ(1 − x) − xY
(10)

and94

dX

dy
=
ε(1 −X) −R0Xy

(R0X − 1)y
=
ϵ(1 −X) −Xy

(X − x⋆)y
. (11)

Thus, Y (x) and X(y) indicate phase-plane solutions where x (resp. y) is the independent variable, whereas95

we use X(τ) and Y (τ) to indicate the solution to the time-parametrized equations (5). We shall need both96

1The biological meaning of ϵ is the time—in units of the mean infectious period—that can be expected to elapse before an
infected individual that enters a fully susceptible population infects one other individual.
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equations (10) and (11). Equation (10) [(11)] is singular where the susceptible [infected] hosts attain their97

minimum and maximum density, x and x [y and y ], for a given cycle (these are points where nullclines, (7a)98

and (7b), are crossed). These singular points (see Figures 1 and 2) divide different branches of the multi-99

functions Y (x) and X(y), and we will need each equation to extend the solution beyond the singularities100

of the other. No exact analytical form is available for any of these turning points, but with our matched101

asymptotic expansions, we obtain asymptotic approximations to all of them (see Table 2 for a summary).102

We shall refer to the part of the trajectory above the x nullcline (7b) as the epidemic phase or simply as103

epidemic (e.g., we will speak of the initial epidemic, second epidemic, and so on) and the part below104

the x nullcline as the trough.105
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Figure 1: Sample solution of the SIR model Equation (1) for R0 = 2. Top left: the frequencies of susceptible
and infected individuals. Symbols indicate the critical points of the curve of the corresponding colour. The
jth local minimum (maximum) of the susceptible [infective] frequency is labelled x

j
(xj ) [y

j
(y

j
)]; we derive

approximations to these optima and denote them x
0,j
, etc. (see Table 2). Dashed lines indicate the endemic

equilibrium (8) of the model (1). Bottom left: the frequency of infected individuals (on a log scale) as a
function of time. Right: trajectories in the susceptible-infected phase plane with the nullclines (top right:
linear scale, bottom right: log scale).
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Figure 2: Sample solution of the SIR model Equation (1) for R0 = 17. See caption to Figure 1, but note
that unlike Figure 1 both axes are logarithmic in the bottom right panel above.
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1.2 The Method of Matched Asymptotic Expansions106

Given a small parameter ϵ, an asymptotic sequence is a collection of functions2107

{φj(ϵ), j = 1,2, . . .} , such that φj+1(ϵ)≪ φj(ϵ) (12)108

(a typical choice is φj(ϵ) = ϵj−1, but as we shall see below, other choices are often necessary). Given109

an equation—which may be an ordinary or partial differential equation—for an unknown function Y that110

depends on ϵ, we can look for a formal asymptotic series solution:111

Y (x; ϵ) =
∞
∑
j=0

Yj(x)φj(ϵ) . (13)112

Note that we do not demand that the series converge; the infinite upper limit on the sum is to indicate that113

one could in principle compute an arbitrary number of terms.114

Substituting the formal series into the exact equation (10) and equating terms of common order φj(ϵ),115

we obtain a hierarchy of equations that can be solved sequentially for the Yj(x). The first few terms of such116

a series solution often yield a good approximation to the exact solution. However, this approach may fail117

in regions of rapid change (e.g., near boundaries or singularities) called layers3, especially in differential118

equations where one or more derivatives have coefficients depending on ϵ, which can make imposing all119

boundary (or initial or terminal) conditions impossible. Themethod of matched asymptotic expansions120

begins by identifying layers where different approximations better capture the correct quantitative and121

qualitative behaviour of the solution. These layers coincide with regions where some term in the equation122

is implicitly of size comparable to ϵ (i.e., of order η(ϵ) for some function η), even when it doesn’t explicitly123

contain ϵ, so that neglecting terms including ϵ fails to capture the correct dynamics. Boundary layers refer124

to subsets of the domain adjacent to the boundary (where one of the dependent variables is small compared125

to some function of ϵ) whereas interior layers occur away from the boundaries (e.g., shear flow4 in a vector126

field could result in a region where one or more derivatives is small compared to a function of ϵ). Corner127

layers arise where boundary and/or interior layers intersect. (For the SIR model that we study here, there128

are boundary and corner layers, but no interior layers.)129

Outside of such layers, the so-called outer solution provides a good approximation to the exact solution,130

but inside the layers it fails to capture the correct qualitative behaviour. Within a layer, rescaling of the131

independent and/or dependent variables by appropriately chosen factors η(ϵ) is used to amplify the local132

behaviour, and the resulting equation is then solved via another asymptotic series to obtain an inner solu-133

tion that performs well in the layer, but typically is a poor approximation outside the layer. Inner and outer134

solutions are bridged by determining values for the constants of integration in the inner and outer solutions135

so that the various solutions intersect, and can thus be combined into a continuous approximation to the136

solution. When a combined solution is continuous, but not differentiable, a corner layer (and corner layer137

solution) near the point of intersection can be included in the matching to form a smooth approximation to138

the true trajectory that performs equally well across the entire domain (a uniform asymptotic solution).139

We discuss the matching procedure in greater detail in §3 below.140

Table 1 lists estimates of natural history of infection parameters for a variety of common diseases. For141

the problem at hand, observing that infectious periods are typically of order days or weeks, whereas typical142

human lifetimes are longer than 50 years, we see that ϵ (6) will generally be quite small. Consequently, we143

anticipate that matched asymptotic solutions Y (x; ϵ) and X(y; ϵ) will provide good approximations to the144

exact solutions of (10) and (11). In subsequent sections, we derive and compare these asymptotic solutions145

to numerically computed trajectories for an illustrative parameter set (chosen with ε larger than for any146

acute infectious disease of humans so that discrepancies between the exact and asymptotic solutions are147

visible).148

2We use the Hardy-Vinogradov notation: f(ϵ) ≪ g(ϵ) if and only if limϵ→0
f(ϵ)
g(ϵ)

= 0. We also use Landau’s “O” notation

where convenient: f(ϵ) = o(g(ϵ)) if f(ϵ)≪ g(ϵ), and f(ϵ) = O(g(ϵ)) if there exists a positive constant C such that ∣f(ϵ)∣ ≤ C∣g(ϵ)∣
as ϵ→ 0.

3The terminology reflects the origins of the method in fluid mechanics [1].
4Shearing flow refers to adjacent regions where a vector field has substantially different magnitudes.
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Disease R0 x⋆
Tlat Tinf ε × 103 ϵ × 103 Source

[days] [days]
measles 17 0.059 8 5 0.71 0.042 [2]
pertussis 17 0.059 8 14 1.2 0.071 [2]
mumps 12 0.08 15 6 1.1 0.092 [2]
chickenpox 11 0.091 10 5 0.82 0.075 [2]
COVID-19 (Delta) 6.8 0.15 5.8 14 1.1 0.16 [16]
rubella 6.5 0.15 10 7 0.93 0.14 [2]
scarlet fever 5.5 0.18 1.5 18 1 0.19 [2]
smallpox 4.5 0.22 15 7 1.2 0.27 [14]
COVID-19 (ancestral) 3 0.33 3.7 14 0.97 0.32 [16]
HIV 2.2 0.47 87 270 19 8.9 [11]
influenza (1918) 1.8 0.56 2 2.5 0.25 0.14 [19, 2]
Ebola 1.6 0.62 9.3 7 0.89 0.56 [26]
pneumonic plague 1.3 0.77 4.3 2.5 0.37 0.29 [9]

Table 1: Estimates of parameters associated with the natural history of infection for a variety of diseases.
The observed parameters are the basic reproduction number (R0), the mean latent period (Tlat), and the
mean infectious period (Tinf). The values of the other parameters were derived using Equations (2), (3),
(6) and (8a). Note that the mean intrinsic generation interval in the SIR model (1) is Tgen = 1/γ ≃ Tinf ,
whereas in the SEIR model (which includes an exposed state in which individuals are not yet infectious),
Tgen ≃ Tlat + Tinf [15, 6]; consequently, SIR and SEIR dynamics correspond most closely if we set 1/γ in the
SIR model to be the sum of the observed mean latent and infectious periods. We set µ = 0.02/year to mimic
human birth and death rates, and compute ε = µ/(γ + µ) [Equation (3)]. Where original sources present a
range, we have listed the midpoint. Many of the estimates come from Anderson and May [2] (R0 from their
Table 4.1 [2, p. 70]; the mean latent and infectious periods from their Table 3.1 [2, p. 31]).

2 Outer and Inner Solutions149

As a first step in our analysis, in this section we derive solutions in the various subdomains where dif-150

ferent approximations are natural. Then, in §3, we match local approximations to obtain a single global151

approximation that is uniformly valid throughout phase space.152

2.1 Outer Solution153

An outer solution is an asymptotic solution—obtained in the original variables—that captures the behaviour154

of the exact solution in the majority of phase space. Replacing Y in Equation (10) with155

out

Y (x; ϵ) =
∞
∑
j=0

out

Yj(x)ϵ
j , (14)

and equating terms of similar order in ϵ, we obtain a hierarchy of equations that can be solved inductively156

for
out

Y0(x),
out

Y1(x), and so on. The lowest order equation is157

d
out

Y0

dx
=
x⋆
x
− 1 , (15)

which has generic solution158

out

Y0(x) =
out

C0 − x + x⋆ lnx , (16)
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where
out

C0 is an arbitrary constant5. We can determine
out

C0 by specifying initial conditions (x
i
, y

i
), in which159

case Equation (16) gives the phase-plane trajectory of the SIR ODEs without vital dynamics, i.e., for ϵ = 0;160

see §3.1.1 below. In §3.1.2, we derive “effective initial conditions” that allow us to approximate subsequent161

epidemic waves.162

2.2 x-axis Boundary Layer163

The outer solution
out

Y (x; ϵ) [Equation (14)] is a function of x, and cannot have the same qualitative behaviour164

as the exact trajectories, which have multiple branches as the fraction susceptible decreases to a minimum165

(x) and then recovers (Figures 1 and 2). We thus seek a boundary layer solution along the x-axis that will166

capture the dynamics when the infected hosts are rare (i.e., y ≪ 1). Knowing that the equilibrium infective167

frequency y⋆ is O(ϵ) [Equation (8b)], we might plausibly posit a solution168

xb

Y (x; ϵ) = ϵΥ(x; ϵ) , (17)

where Υ = O(1). Substituting ϵΥ for Y in Equation (10) yields169

ϵ((1 − x) − xΥ(x; ϵ))
dΥ

dx
= (x − x⋆)Υ(x; ϵ) . (18)

Searching for a series solution,170

Υ(x; ϵ) =
∞
∑
j=0

Υj(x)ϵ
j , (19)

and collecting terms of common order ϵj yields, for j = 0,171

0 = (x − x⋆)Υ0(x) , (20a)

which implies that Υ0(x) ≡ 0. Now, suppose that Υ0(x) ≡ ⋯ ≡ Υj−1(x) ≡ 0; then, for j ≥ 1, collecting terms172

of order ϵj in Equation (18) yields173

0 = (x − x⋆)Υj(x) . (20b)

By induction, it follows that Υj(x) ≡ 0 for all j, and hence that
xb

Y (x; ϵ) ≡ 0, which is a contradiction. We174

must conclude that our assumption in Equation (19) that Υ(x; ϵ) can be expanded in a series of powers of ϵ175

is incorrect. Instead, it must be that Υ(x; ϵ) is transcendentally small, i.e., vanishes more rapidly than176

any power ϵj as ϵ→ 0 [13, p. 4].177

As a means to guess the asymptotic dependence of Υ(x; ϵ) on ϵ, we formally solve Equation (18) from178

the point of entry to the boundary layer (xin) to an arbitrary point within it (x), which yields179

Υ(x; ϵ) = Υ(xin; ϵ) exp(−
1

ϵ
∫

x

xin

x⋆ − u

(1 − u) − uΥ(u; ϵ)
du) . (21)

We first note that x < x⋆ in the x-axis boundary layer, so 1− ξ > x⋆ − ξ > 0 in the integrand above. Moreover,180

since ξΥ(ξ; ϵ) is transcendentally small we can expect that ξΥ(ξ; ϵ) ≪ 1 − ξ. Thus, the integrand can be181

expected to be positive throughout the layer, and the integral can be expected to be O(1) with respect to ϵ.182

Finally, the coefficient Υ(xin; ϵ) is evaluated at the edge of the boundary layer and can therefore be expected183

to be O(1). Putting these heuristic insights together, we hypothesize that Υ(x; ϵ) is exponentially small in184

x with rate proportional to 1
ϵ
. Consequently, we are led to what is known as a WKB ansatz [5, Chapter185

10], that is, we postulate a solution of the form186

xb

Y (x; ϵ) = e−
ϕ(x;ϵ)

ϵ (22)

5Throughout, we adopt the convention that C, with any combination of sub- and/or superscripts, indicates a constant of
integration.
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for some non-negative function ϕ(x; ϵ) that can be expanded in an asymptotic series in ϵ. Substituting this187

ansatz (22) into Equation (10) gives us188

1

ϵ

dϕ

dx
=

x⋆ − x

ϵ(1 − x) − xe−
ϕ(x;ϵ)

ϵ

, (23)

for which we posit a series solution,189

ϕ(x; ϵ) =
∞
∑
j=0

ϕj(x)ϵ
j , (24)

so that190

e−
ϕ(x;ϵ)

ϵ = e−
ϕ0(x)

ϵ e−ϕ1(x)e−ϵϕ2(x)−ϵ2ϕ3(x)+⋯
191

= e−
ϕ0(x)

ϵ e−ϕ1(x)(1 − (ϵϕ2(x) + ϵ
2ϕ3(x) +⋯) +

1

2!
(ϵϕ2(x) + ϵ

2ϕ3(x) +⋯)
2
+⋯)192

= e−
ϕ0(x)

ϵ e−ϕ1(x) (1 − ϵϕ2(x) + ϵ
2(

ϕ2(x)
2

2
− ϕ3(x)) +⋯) , (25)193

which is transcendentally small on any set where ϕ0(x) is strictly positive (below we determine conditions194

under which ϕ0(x) > 0 on at least part of the interval (0,1)). If ϕ0(x) > 0 then the term e−
ϕ(x;ϵ)

ϵ in195

Equation (23) is transcendentally small and we can omit it to obtain196

dϕ0

dx
=
x⋆ − x

1 − x
, (26)

and hence197

ϕ0(x) = C
ϕ
0 − x − (1 − x⋆) ln(1 − x) . (27)

In contrast, we obtain dϕ1

dx
= 0, and hence198

ϕ1(x) = C
ϕ
1 (28)

(and similarly ϕj(x) = C
ϕ
j for all j > 1). From the derivative (26), we see that ϕ0(x) is increasing for x < x⋆ ,199

decreasing for x > x⋆ , and has a vertical asymptote for x = 1. In particular, provided200

Cϕ
0 < x⋆ + (1 − x⋆) ln(1 − x⋆) , (29)

ϕ0(x) will be strictly positive on some subinterval of (0,1), as required. Inserting Equations (27) and (28)201

in Equation (25), we have an approximate solution in the x-axis boundary layer,202

xb

Y (x; ϵ) = (1 − x)−
1
ϵ (1−x⋆) e

1
ϵ (C

ϕ
0 −x)+C

ϕ
1 . (30)

2.3 Corner layers203

Close to the minimum susceptible frequency (x), our outer (16) and inner (30) solutions have tangents of204

positive and negative slope respectively (see Figure 4), and thus meet in a non-differentiable corner, which205

we address by seeking a corner layer solution [13, p. 67]. The trajectories have vertical slope at x , i.e., dY
dx

is206

singular, so we will instead work with dX
dy

. The increase from x is caused by importation of new susceptible207

hosts at a rate proportional to ϵ [see Equation (11)], so we would expect the “turn-around” (change in sign of208

derivative) only when the frequency of infectives is sufficiently low that the first term dominates the second209

term in the numerator of Equation (11), i.e., when y is O(ϵ). We therefore amplify the behaviour near the210

x-axis, making a change of variable, y = ϵυ, which converts Equation (11) to211

dX

dυ
= ϵ

1 −X(υ) −X(υ)υ

(X(υ) − x⋆)υ
. (31)
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Positing a series solution212

cor

X (υ; ϵ) =
∞
∑
j=0

cor

Xj(υ)ϵ
j , (32)

yields, to lowest order,
d
cor
X 0

dυ
= 0, so

cor

X0 is constant,213

cor

X0(υ) =
cor

C 0 . (33)

The next order term is214

d
cor

X1

dυ
= −(

1 −
cor

C 0

x⋆ −
cor

C 0

)
1

υ
+ (

cor

C 0

x⋆ −
cor

C 0

), (34)

with solution215

cor

X1(υ) = −(
1 −

cor

C 0

x⋆ −
cor

C 0

) lnυ + (

cor

C 0

x⋆ −
cor

C 0

)υ +
cor

C 1 . (35)

We now insert Equations (33) and (35) in Equation (32), and convert back to the original variable y.216

Noting that lnυ = ln y + ln ϵ−1, we obtain217

cor

X (y; ϵ) =
cor

C 0 + (

cor

C 0

x⋆ −
cor

C 0

)y + ϵ ln ϵ−1(
1 −

cor

C 0

x⋆ −
cor

C 0

) − ϵ

⎡
⎢
⎢
⎢
⎢
⎣

(
1 −

cor

C 0

x⋆ −
cor

C 0

) ln y −
cor

C 1

⎤
⎥
⎥
⎥
⎥
⎦

+O(ϵ2). (36)

This solution contains a term of order ϵ ln ϵ−1, which is intermediate between O(1) and O(ϵ), and which we218

did not include in our proposed asymptotic series in υ [Equation (32)]. The emergence of such a term when219

switching back to original variables is known as “transcendental switchback” [22, p. 71], and experience has220

shown that when this phenomenon occurs it is best to go back and include the intermediate order explicitly221

in the asymptotic sequence at the outset. Thus, we replace our initial ansatz (32) with222

cor

X (υ; ϵ) =
cor

X0(υ) + ϵ ln ϵ
−1cor

X ln(υ) + ϵ
cor

X1(υ) +O(ϵ
2
) , (37)

which includes a term of order ϵ ln ϵ−1 in addition to powers of ϵ. Inserting Equation (37) in Equation (31)223

we obtain a new hierarchy of ODEs, with one new equation,224

d
cor

X ln

dy
= 0, (38)

which yields a new constant,225
cor

X ln(y) =
cor

C ln . (39)

Our revised expansion is226

cor

X (y; ϵ) =
cor

C 0 + (

cor

C 0

x⋆ −
cor

C 0

)y + ϵ ln ϵ−1
⎡
⎢
⎢
⎢
⎢
⎣

cor

C ln + (
1 −

cor

C 0

x⋆ −
cor

C 0

)

⎤
⎥
⎥
⎥
⎥
⎦

− ϵ

⎡
⎢
⎢
⎢
⎢
⎣

(
1 −

cor

C 0

x⋆ −
cor

C 0

) ln y −
cor

C 1

⎤
⎥
⎥
⎥
⎥
⎦

+O(ϵ2) , (40)

which differs from Equation (36) only in that it includes
cor

C ln in the O(ϵ ln ϵ−1) term. Below, in §3.1.2, we227

will see that the additional degree of freedom provided by the constant
cor

C ln is essential to successfully match228

other asymptotic solutions.229

Remark 1 While this section concerns dynamics near x , a virtually identical analysis provides a corner230

solution near x , where the fraction susceptible is at its maximum prior to a second epidemic wave. In231

particular, we again have a solution of the form (40), albeit for different values of the constants
cor

C 0 and
cor

C 1.232

We will refer to the corner solutions near x and x as the “left” and “right” corner solutions,
lc

X and
rc

X ,233

respectively.234
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2.4 y-axis Boundary Layer235

For large values of R0, the trajectories of the SIR model approach the y-axis very closely, even when y is far236

from 0 (compare Figure 1 with R0 = 2 to Figure 2 with R0 = 17). Consequently, if R0 is large then there237

will be substantial periods during which x will be O(ϵ) or smaller, and we can no longer assume that the238

effects of terms proportional to ϵ in Equation (10) can be safely neglected. Instead, we consider a boundary239

layer solution along the y-axis, making a change of variables x = ϵξ in Equation (10) to get240

dY

dξ
=
(ϵξ − x⋆)Y (ξ)

1 − ϵξ − ξY (ξ)
. (41)

Positing a series solution,241

xb

Y (ξ; ϵ) =
∞
∑
j=0

xb

Yj(ξ)ϵ
j , (42)

we get, to lowest order,242

d
xb

Y0

dξ
=

x⋆
xb

Y0(ξ)

ξ
xb

Y0(ξ) − 1
. (43)

It is not immediately obvious how to solve this equation. However, if we invert the ODE, we have243

dΞ0

dy
=
Ξ0(y)

x⋆
−

1

x⋆y
, (44)

and we can now find a solution, ξ = Ξ0(y), using the method of integrating factors, which yields244

yb

X0(y) = ϵΞ0(y) =
ϵ

x⋆
e

y
x⋆ (E1(

y

x⋆
) + ‘) , (45)

where E1(z) = ∫
∞
z

e−u
u

du is the exponential integral function (see, e.g., [21, §6.2(i)]).245

2.5 Scaled exponential and Lambert W functions246

To match our various solutions, some functions of x, some functions of y, we need to write all expressions247

as functions of the same variable. For our matching, the common variable will be y, which is facilitated by248

two functions that we introduce in this section.249

The expression zez occurs frequently in our analysis, with u often being a non-trivial expression itself.250

Consequently, in order to reduce equation clutter and emphasize patterns in expressions more clearly, we251

define the scaled exponential function,252

E (z) = z ez . (46)

The second function is the Lambert W function [7], a transcendental multi-function defined by the253

implicit relation254

E (W (z)) = z . (47)

Thus, W is a Lambert W function if E is its left inverse. There are countably many such functions of a255

complex argument, leading to countably many branches Wi(z). There are two branches that are real-valued256

for real arguments. We will need both real-valued branches, which are denoted W−1 and W0. They have257

overlapping domains, but non-overlapping ranges,258

W−1 ∶ [−
1

e
,0)→ (−∞,−1] , (48a)259

W0 ∶ [−
1

e
,∞)→ [−1,∞) . (48b)260
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Thus, these two branches meet at −1,261

W−1(−1) =W0(−1) = −
1

e
= E (−1) . (49)

For any i, E is also a partial right inverse of Wi, i.e., Wi(E (z)) = z on part of the domain of E . The set on262

which Wi(E (z)) = z depends on i; for i ∈ {−1,0},263

W−1(E (z)) = z if z ≤ −1 ,

W0(E (z)) = z if z ≥ −1 .
(50)

However, Wi(E (z)) is well-defined outside the region on which E is a right inverse, and it is on the domain264

where Wi(E (z)) ≠ z that we frequently need to evaluate it. Indeed, the explicit final size formula for the265

SIR model (and many other models) is [17, Eq. (A.2)]266

Z(R0) = 1 +
1

R0
W0(E (−R0)) . (51)

Graphs of E (z) and Wi(E (z)) are shown in Figure 3.267

-0.4
-0.2
0.0
0.2
0.4
0.6
0.8

z

-5 -4 -3 -2 -1 0 z

−1/e

+1/e
zez

-5

-4

-3

-2

-1

0

z

-5 -4 -3 -2 -1 0 z

W0(ze
z)

W−1(ze
z)

Figure 3: E (z) = zez (46) and Lambert W functions (47) evaluated at E (z).

We briefly recall some series and asymptotic expansions of the Lambert W function that we will need268

below. See [7] for details and proofs.269

(i) Implicitly differentiating the identity E (Wi(z)) =Wi(z)e
Wi(z) = z and solving for dWi

dz
one finds that270

dWi

dz
=

Wi(z)

z(1 +Wi(z))
. (52)

(ii) Applying the Lagrange inversion theorem (see, e.g., [8, p. 180]) to the power series for E (x), one finds271

that near 0,272

W0(z) =
∞
∑
n=1

(−n)n−1

n!
zn = z +O(z2) , (53)

with radius of convergence 1
e
.273
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(iii) For large z, there is a (convergent) asymptotic series representation,274

W0(z) = L1 −L2 +
∞
∑
m=0

∞
∑
n=1

(−1)m

m!

Ln
2

Lm+n
1

, z →∞, (54)

where L1 = ln z and L2 = ln (ln z). The same expansion applies for W−1(z) as z → −0 if one replaces L1275

and L2 with L̃1 = ln (−z) and L̃2 = ln (− ln (−z)).276

(iv) We will also find it useful to expand277

fi(z) =Wi(−Ae−A+z) =Wi(E (−A)e
z
) (55)

in a series about z = 0 for various values of A. Using Equation (52), we find278

fi(z) =Wi(E (−A)) +
Wi(E (−A))

1 +Wi(E (−A))
z +O(z2) . (56)

In particular, Equation (50) tells us that279

fi(z) = −A −
A

1 −A
z +O(z2) , if i = 0 and A ≤ 1 or i = −1 and A ≥ 1. (57)

2.6 Inverting the outer and inner solutions280

To facilitate matching, we now exploit the scaled exponential E [Equation (46)] and Lambert’s W [Equa-281

tion (47)] to invert some of our asymptotic solutions.282

Our outer solution (16) can be rearranged by setting
out

Y0(x) = y and using Equation (46),283

−
1

x⋆
e

y−
out
C0

x⋆ = E (−
x

x⋆
) . (58)

Next, using Equation (50), we have284

Wi( −
1

x⋆
e

y−
out
C0

x⋆ ) =Wi (E (−
x

x⋆
)) = −

x

x⋆
, (59)

where the i = −1 branch is to be used in the half-plane x ≥ x⋆ (since W−1 ≤ −1, Equation (48a)), whereas the285

i = 0 branch is to be used in the half-plane x ≤ x⋆ (since W0 ≥ −1, Equation (48b)). From Equation (59), we286

obtain287

out

X i
0(y) = x = −x⋆Wi( −

1

x⋆
e

y−
out
C0

x⋆ ) . (60)

Thus, the inversion yields a multi-function
out

X i
0(y) with two branches, both of which we need. These branches288

correspond to the growth (i = −1) and decline (i = 0) phases of the epidemic, which meet at y =
out

Y0(x⋆) (the289

maximum of
out

Y0(x), and thus also the upper bound of the domain of its inverse,
out

X i
0(y)).290

Similarly, we can invert our inner solution in the x-axis boundary layer [Equation (30)] to get291

xb

Xi
0(y) = 1 + (1 − x⋆)Wi( −

1

1 − x⋆
e
−

1−Cϕ
0

1−x⋆ (
eC

ϕ
1

y
)

ϵ
1−x⋆
), (61)

where now the i = −1 and i = 0 branches give the solution for x ≤ x⋆ and x ≥ x⋆ , respectively (the opposite of292

the situation for
out

X i
0(y) in Equation (60), where i = −1 and i = 0 correspond to the right and left half-planes,293

respectively).294

Remark 2 Once the constants have been determined by matching, we will be able to exploit the resulting295

symmetry (and the function E ) to simplify the inverted expressions considerably.296
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3 Matched asymptotic solutions297

We now turn to the task of identifying the unknown constants in the solutions above and combining these298

local approximations into a uniform approximation of the trajectory. Suppose we have two or more solutions299

defined at different asymptotic scales (e.g., our outer (§2.1) and corner (§2.3) solutions). The local solutions300

are obtained by imposing a scale on dependent or independent variables (e.g., we supposed x is O(1) to301

get the outer solution, and assumed y was O(ϵ) to get the corner solution, whereas we obtained the y-axis302

boundary layer solution (§2.4) by assuming X is O(ϵ)). In practice, however, each local solution remains303

valid over some larger domain that can be characterized with another asymptotic scale. Matching (see, e.g.,304

[13, §2.1]) is achieved by considering an intermediate scale η = η(ϵ) on which all solutions remain valid.305

Solutions to be matched are evaluated at x = ηxη (or y = ηyη) for some xη (or yη) independent of ϵ (for306

readability, we suppress the explicit dependence of η itself on ϵ). The constants of integration (e.g.,
cor

C 0,307

Cϕ
1 , etc.) are then chosen so that the two solutions agree as well as possible (i.e., so that they coincide on308

as many orders as possible when both are expanded as an asymptotic series). The matched solution is309

obtained by summing the component solutions—with the choice of constants of integration that maximizes310

their mutual agreement—and subtracting their common overlap (the sum of all terms occurring in both311

asymptotic series).312

To illustrate the process without getting bogged down in details, suppose F (x) and G(x) are outer and313

inner (e.g., boundary layer) asymptotic series approximations for a given (exact) function E(x). Moreover,314

suppose we have315

F (x) = f0(x) + f1(x)φ1(ϵ) + f2(x)φ2(ϵ) + f3(x)φ3(ϵ) +O(φ4(ϵ)) , (62)316

G(x) = g2(x)φ2(ϵ) + g3(x)φ3(ϵ) +O(φ4(ϵ)) , (63)317

where the functions fj and gj contain arbitrary constants, and {φj} is an asymptotic sequence [§1.2] (which318

typically refines the asymptotic sequences initially defined for the outer and inner solutions). If, say, the319

constants in f2(x) and g2(x) can be chosen so that these functions coincide exactly for all x, then f2(x)φ2(ϵ) =320

g2(x)φ2(ϵ) is the overlap, and our matched approximation to E(x) would be321

F (x) +G(x) − f2(x)φ2(ϵ) . (64)

If it were possible to choose the values of constants so that F and G agree in more than one order, so322

the overlap contains multiple orders (the more the better) then the resulting matched solution would be323

smoother (just as matching a function and its derivative at a single point leads to a smoother approximation324

at that point).325

The matched solution has the virtue of being a valid approximation in both the inner and outer domains,326

so that one does not need to decide a priori which local solution (e.g., outer, boundary, or corner) best327

approximates a given part of the trajectory.328

In what follows, we will focus on matching the trajectory that escapes the DFE [(x
i
, y

i
) = (1,0)] along its329

unstable manifold, because that is the trajectory corresponding to disease invasion. We will give a detailed330

treatment of the first matching, and describe the second matching much more briefly. For easy reference, we331

summarize our results in Tables 2 and 3, while the matching constants are listed in Table 4.332

3.1 Matching outer, corner and x-axis boundary layer solutions333

3.1.1 Kermack and McKendrick’s phase plane solution334

Given an initial condition (x
i
, y

i
), the constant of integration in Equation (16) is readily found to be335

out

C0 = yi
+ x

i
− x⋆ lnxi

, (65)

so that
out

Y0(x,xi
, y

i
) = y

i
+ x

i
− x + x⋆ ln (

x

x
i

) , (66)
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which is the phase plane solution first discovered by KM. Equivalently, using Equation (60), we can express336

the solution as a function of y,337

out

X i
0(y, xi

, y
i
) = −x⋆Wi( − (xi

/x⋆) e
y−y

i
−x

i
x⋆ ) = −x⋆Wi(E (−xi

/x⋆) e
y−y

i
x⋆ ) . (67)

Provided x
i
≥ x⋆ and y

i
≥ 0, the solution (66) is non-negative and concave, with two positive roots [x

f
∈ (0, x⋆)338

and another in (x⋆ ,1)], and a unique maximum y
0
at x⋆ ,339

y
0
(x

i
, y

i
) =

out

Y0(x⋆ , xi
, y

i
) = y

i
+ x

i
− x⋆(1 + ln (xi

/x⋆)) . (68)

Note that y
0
(x

i
, y

i
) and x

f
(x

i
, y

i
) are the true peak prevalence and final size for the SIR model without340

vital dynamics (ϵ = 0) started from (x
i
, y

i
); y

0
only approximates the peak prevalence for the model with341

demography, and there is no “final” size if there is a continuous source of new susceptibles. Nevertheless, we342

informally refer to x
f
as the “final size” for convenience (note that there is a minimum fraction susceptible,343

x , near x
f
(x

i
, y

i
); see Equation (92) below).344

Using the i = 0 branch to give the solution in the half-plane x ≤ x⋆ , Equation (67) gives us an explicit345

expression for x
f
(x

i
, y

i
) [17],346

x
f
(x

i
, y

i
) =

out

X0
0(0) = −x⋆W0 (E (−xi

/x⋆)e
−

y
i

x⋆ ) . (69)

The series expansion for Lambert’s W function (53) then yields347

x
f
(x

i
, y

i
) = x

i
e−(xi

+y
i
)/x⋆ +O((x

i,2
/x⋆)e

−2(x
i
+y

i
)/x⋆ ) = x

i
e−R0(xi

+y
i
)
+O(R0(xi

e−R0(xi
+y

i
)
)
2) , (70)348

so the final size is exponentially small in R0, with a correction of exponentially smaller order.349

When refering specifically to the focal solution emanating from the DFE [(x
i
, y

i
) = (1,0)] we suppress the350

dependence on x
i
and y

i
and write

out

Y0(x),
out

X i
0(x), y0

, and x
f
. While approximating this focal solution is our351

principal goal, in §3.1.3 below we will need to use solutions with y
i
= 0 and 0 < x

i
< 1; for these solutions with352

infection-free endpoints, we write
out

Y0(x,xi
) or

out

X i
0(y, xi

), and refer to y
0
(x

i
) and x

f
(x

i
). [x

f
(x

i
,0), x

i
] is the353

interval on which
out

Y0(x,xi
) is non-negative, and thus its domain for practical purposes; its range, [0, y

0
(x

i
)],354

is the domain for its inverse
out

X i
0(y, xi

).355

3.1.2 Matching in the left half-plane (x ≤ x⋆)356

Our next step is to match the outer solution
out

X0
0(y) [Equation (67) with (x

i
, y

i
) = (1,0)] with the corner357

solution
cor

X (y; ϵ) [Equation (40)]. Note that the DFE lies in the right half-plane (since x⋆ < 1), but in the358

present subsection it is the i = 0 branch of the outer solution that we need because we are investigating only359

the part of the trajectory that lies in the left half-plane.360

In order to consider the behaviour near (x
f
,0) on scales intermediate between the outer solution (67)361

and the corner solution (40), we take y = ηyη with362

ϵ≪ η ≪ 1 . (71)

We haven’t yet identified an appropriate intermediate scale, but examples that satisfy Equation (71) include363

η = ϵ1/2 and η = ϵ ln ϵ−1.364

Inserting (x
i
, y

i
) = (1,0) in the outer solution (67), and expanding it using Equation (56), we obtain365

out

X0
0(ηyη) = −x⋆Wi(E (−1/x⋆) e

ηyη
x⋆ ) = x

f
+ η

x
f

x⋆ − xf

yη +O(η
2
) . (72)

On the other hand, inserting y = ηyη in the corner solution (40) and expanding366

ln (ηyη) = − lnη
−1
+ ln yη , (73)
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we can write367

cor

X (ηyη; ϵ) =
cor

C 0 + η

cor

C 0

x⋆ −
cor

C 0

yη + ϵ ln ϵ
−1 ⎛

⎝

cor

C ln +
1 −

cor

C 0

x⋆ −
cor

C 0

⎞

⎠
+ ϵ lnη−1

⎛

⎝

1 −
cor

C 0

x⋆ −
cor

C 0

⎞

⎠
− ϵ
⎛

⎝

1 −
cor

C 0

x⋆ −
cor

C 0

ln (yη) −
cor

C 1

⎞

⎠
+O(ϵ2).

(74)
If we now refine our initial assumption (71) to368

ϵ ln ϵ−1 ≪ η ≪ (ϵ ln ϵ−1)1/2 ≪ 1 (75)

then in the expansions (72,74) each term has a distinct asymptotic order. Our scaling assumptions (75)369

ensure that370

ϵ≪ ϵ lnη−1 ≪ ϵ ln ϵ−1 ≪ η ≪ (ϵ ln ϵ−1)1/2 ≪ 1 , (76)

so if we take371

cor

C 0 = xf
and

cor

C ln = −(
1 −

cor

C 0

x⋆ −
cor

C 0

) = −
1 − x

f

x⋆ − xf

(77)372

then the two solutions (72,74) coincide to6 O(ϵ ln ϵ−1). For the moment,
cor

C 1 remains undetermined, but we373

will use it to match with the inner solution.374

To match the corner layer solution with the inner (x-axis boundary layer) solution we now let η denote375

a different asymptotic order,376

e−
C
ϵ ≪ η ≪ ϵ≪ 1 for all C > 0. (78)377

Since we are interested in x ≤ x⋆ , as noted after Equation (61) we must use the i = −1 branch of the inner378

solution
xb

Xi
0(y). (Once we have determined the constants Cϕ

0 and Cϕ
1 in Equation (61) by matching with379

i = −1, the i = 0 branch will give the solution for x ≥ x⋆ without further work). We will use Equation (56) to380

derive an asymptotic expansion, which motivates us—after some algebraic exploration—to set381

Cϕ
0 = c

ϕ
0 − (1 − x⋆) ln (1 − c

ϕ
0) . (79)

This choice for Cϕ
0 in Equation (61) leads to382

xb

Xi
0(ηyη) = 1 + (1 − x⋆)Wi

⎛

⎝
−
1 − cϕ0
1 − x⋆

e
−

1−cϕ
0

1−x⋆ (
eC

ϕ
1

ηyη
)

ϵ
1−x⋆ ⎞

⎠
= 1 + (1 − x⋆)Wi (E ( −

1 − cϕ0
1 − x⋆

) ez) , (80a)383

where z =
ϵ

1 − x⋆
ln(

eC
ϕ
1

ηyη
) =

ϵ

1 − x⋆
(Cϕ

1 − lnη − ln yη) . (80b)384

Because z contains a factor ϵ, it is guaranteed to be small, so we can apply Equations (55) and (57) to385

Equation (80) to obtain386

xb

X−10 (ηyη) = c
ϕ
0 + ϵ(

1 − cϕ0

x⋆ − c
ϕ
0

)(Cϕ
1 − ln yη) + ϵ lnη

−1
(
1 − cϕ0

x⋆ − c
ϕ
0

) +O(ϵ2). (81)

Our assumption that η ≪ ϵ≪ 1 [Equation (78)] implies that387

η ≪ ϵ≪ ϵ ln ϵ−1 ≪ ϵ lnη−1 ≪ 1 . (82)

6The assumptions ϵ ≪ η and η ≪ (ϵ ln ϵ−1)1/2 [Equation (76)] together imply that ϵ2 ≪ η2 ≪ ϵ ln ϵ−1, which is necessary to
ensure that the O(η2) terms in Equation (72) are negligible in comparison to ϵ ln ϵ−1.
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Consequently, comparing Equations (74) and (81) to order O(ϵ), we see that the overlap is maximized by388

taking389

cϕ0 =
cor

C 0 = xf
(see Equation (77)), and

cor

C 1 =
1 − x

f

x⋆ − xf

Cϕ
1 , (83)390

whereas Cϕ
1 is yet to be determined.391

With the values of the constants determined above, the outer (72) and corner (74) solutions have a392

common overlap of393

x
f
+ η

x
f

x⋆ − xf

yη , (84)

whereas for the corner and inner (81) solutions, the overlap is394

x
f
− ϵ

1 − x
f

x⋆ − xf

(Cϕ
1 − ln yη) + ϵ lnη

−1 1 − x
f

x⋆ − xf

. (85)

Summing the outer (72), inner (81) and corner (74) solutions and subtracting these two overlaps yields a395

matched solution to the left of x⋆ ,396

←Ð
X(y; ϵ) =

out

X0
0(y; ϵ) +

xb

X−10 (y; ϵ) − xf
. (86)

(Subtracting the overlaps (84,85) removes the corner solution (74) from the matched solution; the corner was397

nonetheless necessary to determine the matching constant cϕ0 .) For the matched solution to be continuous,398

←Ð
X must agree at (x⋆ , y0

) with the outer solution (67) in the right half plane, i.e., we need399

←Ð
X(y

0
; ϵ) = x⋆ =

out

X−10 (y0
) . (87)

This requirement is satisfied provided400

Cϕ
1 = ln y0

. (88)

Substituting the values of the matching constants Cϕ
0 and Cϕ

1 into Equation (61), we find that the401

boundary layer inner solution expressed as a function of y is402

xb

Xi
0(y; ϵ) = 1 + (1 − x⋆)Wi(E ( −

1 − x
f

1 − x⋆
)(

y
0

y
)

ϵ
1−x⋆
). (89)

Substituting the values of Cϕ
0 and Cϕ

1 into Equation (30) gives us an alternative description of the boundary403

layer dynamics as a function of x,404

xb

Y (x; ϵ) = y
0
(
1 − x

f

1 − x
)

1−x⋆
ϵ

e−
x−x

f
ϵ . (90)

Inserting the values of
cor

C 0,
cor

C ln, and
cor

C 1, into Equation (40), we see that the corner solution near x
f
is405

lc

X(y; ϵ) = x
f
+

x
f

x⋆ − xf

y + ϵ
x

f

x⋆ − xf

ln(
y

0

y
) , (91)

where, as noted in ?? 1, we use “lc” to emphasize that this is a “left corner” solution lying in the left406

half-plane. We will consider a right corner solution below.407
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Minimum susceptible proportion The left corner solution (91) approximately characterizes the trajec-408

tory near x , the point where the fraction susceptible is minimized. Solving d
cor

X /dυ = 0 [Equation (31)], we409

find that its minimum occurs at υ = ( 1
x
f

− 1), whence the minimum fraction susceptible is approximately410

x
0
= x

0
(x

f
) =

lc

X(ϵ(
1

x
f

− 1); ϵ) = x
f
+ ϵ(

1 − x
f

x⋆ − xf

)[1 + ln (
ϵ( 1

x
f

− 1)

y
0

)] (92)411

= x
f
− ϵ ln ϵ−1(

1 − x
f

x⋆ − xf

) + ϵ(
1 − x

f

x⋆ − xf

)[1 + ln (

1
x
f

− 1

y
0

)] .412

Prevalence trough Substituting x = x⋆ into Equation (90) gives us an approximation to y , the minimum413

fraction infected after the initial epidemic,414

y
0
= y

0
(
1 − x

f

1 − x⋆
)

1−x⋆
ϵ

e−
x⋆−xf

ϵ . (93)

Point of entry into the boundary layer With the known values of the matching constants cϕ0 and Cϕ
0 ,415

we can write the leading term (27) in the asymptotic series (25) by which we obtained the inner solution as416

ϕ0(x) = (x − xf
) − (1 − x⋆) ln(

1 − x
f

1 − x
) . (94)

The inner solution (22,30) is proportional to e−
ϕ0(x)

ϵ [see Equation (25)]. Consequently, as we observed in417

§2.2, the inner solution is trancendentally small in ϵ−1 on the set of x where ϕ0(x) > 0, whereas we see418

from Equation (94) that ϕ0(xf
) = 0. Thus, x

f
is effectively the point of entry into the boundary layer:419

e−ϕ0(xf
)/ϵ = 1 = O(1), whereas for x > x

f
(near x

f
), e−ϕ0(x)/ϵ is transcendentally small.420

Point of exit from the boundary layer In addition to x
f
, ϕ0(x) has a second root that we denote421

x
i,2

(for reasons that will become clear when we complete the matching). The point x
i,2

is where the422

trajectory exits the boundary layer: ϕ0(x) > 0 for x ∈ (x
f
, x

i,2
), and ϕ0(x) < 0 for x > x

i,2
. Just as we used423

a corner solution at x
f
to characterize the transition from the outer solution to the inner solution entering424

the boundary layer,7 a right corner solution at x
i,2

allows us to match the inner solution to a new outer425

solution corresponding to the second epidemic wave. To find an expression for x
i,2

we substitute x = x
i,2

into426

Equation (94) and obtain427

(1 − x⋆) ln(
1 − x

f

1 − x
i,2

) − (x
i,2
− x

f
) = 0. (95)

As in §(2.6), we solve this for x
i,2

using the Lambert W -function and find428

x
i,2
= 1 + (1 − x⋆)W0(E ( −

1 − x
f

1 − x⋆
)) . (96)

3.1.3 Matching in the right half-plane (x ≥ x⋆)429

Our matched inner layer solution (89) can be continued to the right of x⋆ by switching from the i = −1 to430

the i = 0 branch of Lambert’s W . As we observed above, this boundary layer solution is transcendentally431

7The pedantic reader (or author) might observe that the corner solution was obtained by assuming that y = O(ϵ), whereas
the outer and inner solutions correspond to y = O(1) and transcendentally small y, respectively. This apparent incongruity is

reconciled by considering the solutions in a very small neighbourhood of xf : for C > 0, exp (−
ϕ0(xf

+Cϵ ln ϵ−1)
ϵ

) = O(ϵ), and it is

in this O(ϵ ln ϵ−1) neighbourhood of xf that the solutions match, which is reflected in the scaling (75) required when matching
the solutions in §3.1.2.
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small for x < x
i,2
, i.e., for all y such that

xb

X0
0(y; ϵ) < xi,2

. As the trajectory leaves the boundary layer, the432

fraction infected goes from transcendentally small to O(1), until eventually the rate of infection exceeds the433

rate of replenishment of susceptible hosts by host demography, causing a second turn-around, where now434

the fraction susceptible starts to decrease. Our inner solution fails to capture this turn-around, which we435

now address, as in §3.1.2, with a (right) corner solution near x
i,2
.436

We begin by considering our solutions on a scale η that is intermediate between O(ϵ) and transcendentally437

small [Equation (78)]. Expanding the inner solution
xb

X0
0(ηyη) as in Equation (81), we find that438

xb

X0
0(ηyη) = xi,2

+ ϵ
1 − x

i,2

x⋆ − xi,2

(ln y
0
− ln yη) + ϵ lnη

−1 1 − x
i,2

x⋆ − xi,2

+O(ϵ2). (97)

Comparing this expansion to the corner series (74), we see that a maximal matching is obtained by taking439

cor

C 0 = xi,2
,

cor

C ln = −
1 − x

i,2

x⋆ − xi,2

, and
cor

C 1 =
1 − x

i,2

x⋆ − xi,2

ln y
0
. (98)440

Substituting these values in Equation (74) gives us the right corner solution,441

rc

X(y; ϵ) = x
i,2
+

x
i,2

x⋆ − xi,2

y + ϵ
1 − x

i,2

x⋆ − xi,2

ln(
y

0

y
) +O(ϵ2) . (99)

Beyond the turn-around at the corner, we are again in the domain of validity of the outer solution
out

X i
0(y)442

[Equation (60)], where we now use the i = −1 branch as we are matching in the right half-plane. To match443

corner and outer solutions, we choose444

ϵ≪ η ≪ 1 (100)

and set y = ηyη. As we did for Cϕ
0 in the inner solution in §3.1.2 [Equation (79)], we make a change of445

constants,446

out

C0 =
out

c0 − x⋆ ln
out

c0 , (101)

in Equation (60) to get447

out

X−10 (ηyη) = −x⋆W−1( − (
out

c0/x⋆)e
−

out
c0 −ηyη

x⋆ ) = −x⋆W−1(E ( − (
out

c0/x⋆))e
ηyη
x⋆ ) . (102)

Expanding this expression using Equations (55) and (57) then gives us448

out

X−10 (ηyη) =
out

c0 + η

out

c0

x⋆ −
out

c0
yη +O(η

2
) . (103)

Substituting y = ηyη in Equation (99) and expanding exactly as in Equation (74), we find that Equations (99)449

and (103) agree to order O(η) provided450

out

c0 = xi,2
. (104)

Thus, the matched solution is451

out

X−10 (y, xi,2
) = −x⋆W−1 (E (−xi,2

/x⋆) e
y
x⋆ ) . (105)

As in our derivation of the left solution
←Ð
X(y; ϵ) [Equation (86)], we now sum the outer (105), inner (89),452

and corner (99) solutions, and subtract their overlaps to obtain a uniform asymptotic solution to the right453

of x⋆ ,454

Ð→
X(y; ϵ) =

out

X−10 (y, xi,2
) +

xb

X0
0(y; ϵ) − xi,2

. (106)
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Consistent approximations We now have consistent approximations to the trajectory that starts from455

the DFE, (x
i
, y

i
) = (1,0). From the initial time until the peak prevalence is reached, the trajectory is in the456

right half-plane and we use the KM solution (66) for the model without vital dynamics (ϵ = 0). We then457

continue into the left half-plane using
←Ð
X(y; ϵ) [Equation (86)] until the first prevalence trough is reached at458

x = x⋆ , where we switch to
Ð→
X(y; ϵ) [Equation (106)] to approximate the rising segment of the second epidemic.459

The switches from one approximation to another are differentiable and always occur when x = x⋆ , and the460

combined approximation is uniformly valid (i.e., valid to the same order throughout the phase plane).461

Effective initial conditions Comparing
out

X−10 (y, xi,2
) [(105)] to

out

X i
0(y, xi

, y
i
) [(67)], we see that (x

i,2
,0)462

is an effective initial condition for the second epidemic: if (x
i,2
,0) were used as the initial state in the KM463

(ϵ = 0) solution, the resulting trajectory would meet the second rise of the actual solution as it curves up464

from the left in the phase plane at (approximately) x0 (see below). Thus, while (x
i,2
,0) is not a point on465

the actual trajectory, it represents an “effective” initial condition that would give rise to the true dynamics466

after the end (i.e., trough) of the first epidemic. This observation motivates our choice of notation x
i,2
.467

Maximum fraction susceptible Just as the minimum value of the left corner solution near x
f
(91) gives468

an estimate of x [Equation (92)], the maximum value for the right corner solution near x
i,2

(99) gives us an469

estimate of x , the maximum fraction susceptible before a second epidemic wave,470

x0 = x0(xi,2
) = x

i,2
− ϵ

1 − x
i,2

x
i,2
− x⋆
(1 + ln (ϵ(

1

x
i,2

− 1)/y
0
)) , (107)

which occurs at y = ϵ( 1
x
i,2

− 1).471

Peak prevalence for the second wave Writing Equation (105) as a function of x via KM’s formula472

(66),473

out

Y0(x) = xi,2
− x + x⋆ ln (x/xi,2

), (108)

we can also obtain an approximation of the second epidemic’s prevalence peak,474

y
0,2
≈ x

i,2
− x⋆(1 + ln (xi,2

/x⋆)) . (109)

3.1.4 Matching beyond the first epidemic wave475

Our uniform matched asymptotic solutions,
←Ð
X and

Ð→
X (86,106), were derived starting from the DFE at476

(x
i
, y

i
) = (1,0). However, a straightforward observation allows us to use the formulae for

←Ð
X and

Ð→
X for the477

entire trajectory (i.e., all epidemic waves). Other than x⋆ and ϵ (or the more fundamental parametersR0 and478

ε), the only parameters on which our approximations depend are the initial condition (x
i
), the approximate479

maximum size of the epidemic (y
0
) [(68)], the final size of the epidemic without vital dynamics (x

f
) [(69)],480

and the effective initial condition for the next epidemic (x
i,2
) [(96)].481

Epidemic iteration Setting x
i,1
= x

i
, we iteratively obtain x

i,j+1 from x
i,j

by computing482

x
f,j
= x

f
(x

i,j
,0) = −x⋆W0(E (−xi,j

/x⋆)), (110a)483

y
0,j
= y

0
(x

i,j
,0) = x

i,j
− x⋆ (1 + ln (xi,j

/x⋆)) , (110b)484

x
i,j+1 = 1 + (1 − x⋆)W0(E ( −

1 − x
f,j

1 − x⋆
)). (110c)485

The intermediate quantities in this recurrence relation, x
f,j

and y
0,j
, are the final fraction susceptible and486

maximal fraction infected, respectively, for the SIR model without vital dynamics (ε = 0) with initial condition487

(x
i,j
,0).488
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Substituting these expressions (110) into our uniform matched asymptotic solutions (86,106) provides489

approximations to the full jth epidemic wave for all j ≥ 1,
←Ð
X (
Ð→
X) valid on [x

0,j
, x⋆] (resp., [x⋆ , x0,j ]), where490

x
0,j
= x

0
(x

f,j
, y

0,j
) = x

f,j
+ ϵ

1 − x
f,j

x⋆ − xf,j

(1 + ln (ϵ(
1

x
f,j

− 1)/ y
0,j
)) , (111a)491

x0,j = x0(xi,j+1 , y0,j
) = x

i,j+1 − ϵ
1 − x

i,j+1

x
i,j+1 − x⋆

(1 + ln (ϵ(
1

x
i,j+1
− 1)/y

0,j
)). (111b)492

Poincaré map If we think of the y nullcline (x = x⋆) as a surface of section, we can use Equation (110) to493

explicitly write down the associated Poincaré map. Using Equation (93), we define494

y
0,j
= y

0
(x

f,j
, y

0,j
) = y

0,j
(
1 − x

f
j

1 − x⋆
)

1−x⋆
ϵ

e−
x⋆−xf

j

ϵ . (112)

We can then iteratively define the time-forward Poincaré map on the y nullcline via495

y
0,1
→ y

0,1
→ y

0,2
→ y

0,2
→ y

0,3
→ y

0,3
→ ⋯ (113)

3.2 Matching with the y-axis boundary layer solution496

We conclude our analysis with a matching between the outer solution on the unstable manifold,
out

Y0(x) (66),497

and the boundary layer solution along the y-axis,
yb

X0(y) (45). For biologically relevant parameters, this new498

matching improves significantly upon our formulae for
←Ð
X (86) and

Ð→
X (106).499

Having a boundary layer along the y-axis is sensible only for trajectories that approach the y-axis.500

Consequently, when studying this layer, we are assuming implicitly that x
f
= O(ϵ) (since x

f
< x and no501

trajectory gets closer than x to the y-axis). In particular, since502

x
f
= −x⋆W0(E ( −

1

x⋆
)) = −

1

R0
W0(E (−R0)) = e

−R0 +O(R0e
−2R0), (114)

we are implicitly assuming that e−R0 = O(ϵ) or, equivalently, R0 = O(ln ϵ
−1). For the diseases listed in503

Table 1, R0/ ln ϵ
−1 ranges from ∼ 0.17 (for pneumonic plague and influenza) to ∼ 1.7 (for measles and504

pertussis), suggesting it is not unreasonable to assume R0/ ln ϵ
−1. For the example in the top panels of505

Figures 4 and 5, R0/ ln ϵ
−1 ≃ 0.38.506

As with our original matching (§3.1), we use the outer solution expressed as a function of y,
out

X i
0(y, xi

)507

(67), and since we are matching in the left half-plane (x ≤ x⋆), we set i = 0. Matching
out

X0
0(y, xi

) with the508

y-axis boundary layer solution
yb

X0(y) (45) is uncharacteristically simple: the two are of different asymptotic509

orders (O(1) and O(ϵ)), and the solutions have no overlap. The matched solution is thus their sum, with510

the constant
yb

C0 as yet undetermined.511

We set512

yb

C0 = −E1 (
y

0
(x

i
)

x⋆
) (115)

so that
yb

X0(y) vanishes when evaluated at (x⋆ , y0
) and consequently the sum

out

X0
0(y, xi

) +
yb

X0(y) agrees at513

(x⋆ , y0
) with

out

X−10 (y) (67), the corresponding focal approximation in the right half-plane (x ≥ x⋆). Thus,514

yb

X0(y) becomes515

yb

X0(y) =
ϵ

x⋆
e
− y

x⋆ (E1(
y

x⋆
) −E1(

y
0
(x

i
)

x⋆
)) . (116)
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With the choice (115) for
yb

C0, the sum516

Xin(y; ϵ) ∶=
out

X0
0(y, xi

) +
yb

X0(y) = −x⋆W0 (E (−
x

i

x⋆
)e

y
x⋆ ) + ϵ

e
y
x⋆

x⋆
(E1(

y

x⋆
) −E1(

y
0
(x

i
)

x⋆
)) (117)517

is a very good approximation to the trajectory, except in the x-axis boundary layer. Elsewhere [23], we use518

Equation (117) to approximate the fraction susceptible at the point of entry into the set {y ≤ y⋆} (hence519

“in”).520

We next match with the inner solution expressed as a function of y,
xb

X−10 (y) (61) (now the i = −1 branch521

gives the solution with x ≤ x⋆), for which we obtained the asymptotic expansion for y = ηyη previously522

[Equation (81)].523

To expand the matched outer and y-axis boundary layer solutions (117), we introduce the complemen-524

tary exponential integral ([21, 6.2.4]),525

Ein(z) = ∫
z

0

1 − e−u

u
du, (118)

an entire function that satisfies Ein(z) = z +O(z2) and526

E1(z) = Ein(z) − ln z − γ, (119)

where γ ≃ 0.57721 is the Euler-Mascheroni constant [21, 5.9.18] (not the recovery rate in the SIR model (1)).527

Using Equation (119), Equation (117) becomes528

Xin(y; ϵ) = xf
+ η(

x
f

x⋆ − xf

)yη + ϵ lnη
−1 1

x⋆
+ ϵ

1

x⋆
( ln y

0
− ln yη +Ein (

y
0

x⋆
)) +O(ϵη). (120)

Comparing this expression with the asymptotic series expansion for the x-axis boundary layer solution (81),529

we see that the coefficient of ln yη appears to be different in the two expansions ( ϵ
x⋆

in (120) versus ϵ
1−x

f

x⋆−xf

530

in (81)). This apparent difference is a consequence of the assumption implicit throughout this section that531

x
f
= O(ϵ), which implies that532

ϵ
1 − x

f

x⋆ − xf

=
ϵ

x⋆
+O(ϵ2), (121)

so the two coefficients are in fact asymptotically equal. With this in mind, we see that, as in the original533

matching,534

cϕ0 = xf
, (122)

from which we obtain Cϕ
0 via Equation (79), whereas now535

Cϕ
1 = ln y0

−Ein(
y

0

x⋆
) . (123)

Substituting cϕ0 and cϕ1 into Equation (61) yields536

yb

X0
i (y) = 1 + (1 − x⋆)Wi (E (−

1 − x
f

1 − x⋆
)(

y
0

y
)

ϵ
1−x⋆

e
− ϵ

1−x⋆
Ein(

y
0

x⋆
)
) . (124)

This expression differs from the matched boundary layer solution
yb

X−10 (y) (89) by an additional factor537

e
− ϵ

1−x⋆
Ein(

y
0

x⋆
)
= 1 −

ϵ

1 − x⋆
Ein(

y
0

x⋆
) +O(ϵ2), (125)
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which multiplies the argument of the W -function, giving an O(ϵ) refinement to
yb

X−10 (y).538

Summing the outer and two inner solutions and subtracting the common overlap yields a solution uni-539

formly valid to the left of x = x⋆ ,540

←Ð
X(y; ϵ) =

out

X0
0(y) +

yb

X0(y) +
yb

X−10 (y) − xf
+

ϵ

x⋆
(ln(

y

y
0

) +Ein(
y

0

x⋆
)) . (126)

This solution can be extended the right half-plane (x ≥ x⋆) using the i = 0 branch of Equation (61), with cϕ0 ,541

Cϕ
0 , and Cϕ

1 as determined above. The matching to the second epidemic wave then proceeds identically to542

§3.1.3 (except that the argument of the inner solution now has the additional factor e
− ϵ

1−x⋆
Ein(

y
0

x⋆
)
), resulting543

in544

Ð→
X(y; ϵ) =

out

X−10 (y) +
yb

X0
0(y) − xi,2

. (127)

We summarize these results in Table 3 and compare them to the numerically evaluated trajectory in545

Figure 5.546

Subsequent epidemic waves Just as before (§3.1.4), these solutions can be extended to subsequent547

epidemic waves, replacing y
0
, x

f
and x

i,2
by y

0,j
, x

f,j
and x

i,j+1 defined using the iterative scheme in Equa-548

tions (110a) to (110c).549
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Quantity Expression Equation

Equilibrium susceptible density x⋆
1
R0

(8a)

Peak prevalence (KM) y
0

1 − x⋆(1 − ln (x⋆)) (68)

Final size (KM) x
f

−x⋆W0 (E (−1/x⋆)) (69)

Minimum prevalence y
0

y
0
(
1−x

f

1−x⋆
)

1−x⋆
ϵ

e−
x⋆−xf

ϵ e
−Ein(

y
0

x⋆
)

(93)

Minimum susceptible density x
0

x
f
+ ϵ

1−x
f

x⋆−xf

(1 + ln (ϵ( 1
x
f

− 1)/ y
0
)) (92)

Effective initial condition x
i,2

1 + (1 − x⋆)W0 (E (−
1−x

f

1−x⋆
)) (96)

Maximum susceptible density x0 x
i,2
− ϵ

1−x
i,2

x
i,2
−x⋆
(1 + ln (ϵ( 1

x
i,2

− 1)/y
0
)) (107)

Peak prevalence, second wave y
0,2

x
i,2
− x⋆(1 + ln (xi,2

/x⋆)) (109)

Table 2: Approximations of quantities of epidemiological interest for disease invasions, i.e., on the trajectory
that emanates from the disease-free equilibrium (DFE), (x

i
, y

i
) = (1,0). Each entry may depend upon

entries above it in the table (but never on entries below). These quantities are used in our approximations
to the full trajectories in Table 3. We use “(KM)” to indicate quantities that are exact for the Kermack-
McKendrick SIR model without vital dynamics (ϵ = 0). With vital dynamics (ϵ > 0), the peak prevalence
y

0
is an approximation, and there is no “final” size, but the quantity x

f
appears in the approximation to

the minimum fraction susceptible (x
0
). Replacing x

i
, by x

i,j
as defined in Equation (110) gives asymptotic

approximations for the jth epidemic wave, given that the first wave starts on the trajectory emanating from
the DFE. We discuss the effective initial condition (x1

i
) in §3.1.3. The expressions for the minimum and

maximum susceptible densities (x
0
, x0) are identical except that x

0
is evaluated at x

f
and x0 is evaluated

at x
i,2
. In these expressions, note that (x

f
, ϵ( 1

x
f

− 1)) and (x
i,2
, ϵ( 1

x
i,2

− 1)) are points on the x nullcline

dX/dτ = 0. We write the formulae for x
0
and x0 as compactly as possible here; see Equation (92) for the

same expression written out with separate terms for each asymptotic order.
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Solution Notation Expression Branch Domain Equation

Outer
out

X i
0(y, xi

) −x⋆Wi (E (−xi
/x⋆) e

y
x⋆ ) i =

⎧⎪⎪
⎨
⎪⎪⎩

0 x ≤ x⋆
−1 x ≥ x⋆

[0, y
0
] (60), (67)

y-axis
bdry

yb

X0(y)
ϵ
x⋆
e
− y

x⋆ (E1(
y
x⋆
) −E1(

y
0

x⋆
)) – [y

0
, y

0
] (116)

Left
corner

lc

X(y; ϵ) x
f
+

x
f

x⋆−xf

y + ϵ
1−x

f

x⋆−xf

ln (y
0
/y) – [y

0
, y

0
] (36), (91)

x-axis
bdry

xb

Xi
0(y) 1 + (1 − x⋆)Wi (E (−

1−x
f

1−x⋆
) (

y
0

y
)

ϵ
1−x⋆ e

− ϵ
1−x⋆

Ein(
y
0

x⋆
)
) i =

⎧⎪⎪
⎨
⎪⎪⎩

−1 x ≤ x⋆
0 x ≥ x⋆

[y
0
, y

0
] (124)

Right
corner

rc

X(y; ϵ) x
i,2
−

x
i,2

x
i,2
−x⋆

y − ϵ
1−x

i,2

x
i,2
−x⋆

ln (y
0
/y) – [y

0
, y

0,2
] (36),(99)

Matched,
left

←Ð
X(y; ϵ)

out

X0
0(y,1) +

xb

X−10 (y) − xf

+
yb

X0(y) +
ϵ

x⋆
(ln(

y

y
0

) +Ein(
y

0

x⋆
))

– [y
0
, y

0
] (126)

Matched,
right

Ð→
X(y; ϵ)

out

X−10 (y, xi,2
) +

xb

X0
0(y; ϵ) − xi,2

– [y
0
, y

0,2
] (106)

Table 3: Matched solutions for disease invasions [(x
i
, y

i
) = (1,0)]. The quantities x⋆ , x

f
, y

0
, x

i,2
, and y

0,2
are expressed in terms of the

parameters R0 and ϵ in Table 2. Left and right corner solutions are valid in a neighbourhood of the points (x
f
,0) and (x

i,2
,0), respectively

(and are identical up to swapping x
f
and x

i,2
). Left and right matched solutions are uniformly valid to the left and right of the y nullcline

(x = x⋆). Setting x
i
= 1 gives the first epidemic wave emanating from the DFE. Asymptotic approximations for the jth epidemic wave (for j ≥ 1)

are obtained by replacing x
i
with x

i,j
, x

f
by xj

f
, x

i,2
by x

i,j+1 , y0
by y

0,j
, and y

0,2
and y

0,j+1 in the expressions and domains [Equation (110)]. For
each of the outer, inner, and left and right corner solutions, the equation reference first is the “raw” expression with undetermined matching
constants (the matched values are listed in Table 4) and then the “matched” expression with the matched values of the constants inserted.
Grey text is used to emphasize a factor in the x-axis boundary layer approximation and a term in the left matched solution that appear when
we include the y-axis boundary layer approximation in the matching; Figure 4 shows results without the grey quantities, whereas Figure 5
shows the improvement obtained by including them.
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Figure 4: Solutions of the SIR ODEs Equation (1) and approximations (Table 3). Top panel: R0 = 2,
ε = 0.01. Bottom panel: R0 = 17, ε = 0.001; similar to measles and whooping cough (Table 1). Various outer
and inner approximations are shown in grey, and the matched approximation is in black. The numerically
computed solutions are red, as in Figures 1 and 2.
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Figure 5: Similar to Figure 4, but including the y-axis boundary layer approximation (
yb

Y ) in the matching.
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4 Discussion550

Nonlinear differential equations can rarely be solved exactly. Creative analyses leading to approximate551

analytical solutions were once the only way to study nonlinear systems (see [22, pp. 201–204] has a very552

concise history), but interest in such approximations has diminished as computers have become more powerful553

and software for efficient and accurate numerical solution of differential equations has become so easily554

accessible. However, closed-form analytical expressions can often lead to valuable insights, and can facilitate555

further analyses that would be impossible or exceedingly challenging to conduct numerically.556

We have derived new, fully analytical approximations for the phase plane dynamics of the SIR model557

with vital dynamics. In Table 2, we list our expressions for key epidemiological quantities, including peaks558

and troughs of the susceptible and infectious proportions of the host population. We present a closed-form559

analytical approximation to the Poincaré map for the SIR model in §3.1.4. A highly accurate approximation560

to the susceptible proportion as the trajectory enters the x-axis boundary layer is given in Equation (117),561

and is a critical ingredient in a stochastic disease persistence analysis that we present elsewhere [23].562

Our approach has involved matching asymptotic expansions across branch cuts of a special function (the563

Lambert W function, §2.5). To our knowledge, this is the first example of asymptotic matching across branch564

cuts.565

We have focused on the most relevant case of the invasion of a novel pathogen into an epidemiologically566

näıve population i.e., the trajectory escaping the DFE along its unstable manifold. Nonetheless, the solutions567

presented in §2 and the matching methodology remain valid for arbitrary initial conditions (x
i
, y

i
). Obtaining568

approximations for any other initial condition would be a matter of determining new matching constants and569

modifying the expressions accordingly. We have considered only the standard SIR model, but the techniques570

we have presented can be adapted to other compartmental ODE models, which will explore in further work.571
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A Summary Table of Matching Constants627

Constant Expression Equations

out

C0 y
i
+ x

i
− x⋆ lnxi

(16), (60), (65)

cor

C 0 (left) x
f

(33), (36), (77)

cor

C ln (left) −
1−x

f

x⋆−xf

(36), (77)

cor

C 1 (left)
1−x

f

x⋆−xf

ln y
0

(36), (83), (88),

cϕ0 x
f

(83)

Cϕ
0 x

f
− (1 − x⋆) ln (1 − xf

) (27), (30), (61), (79), (83)

Cϕ
1 ln y

0
(28), (30), (61), (88)

cor

C 0 (right) x
i,2

(33), (36), (98)

cor

C ln (right) −
1−x

i,2

x⋆−xi,2

(36), (98)

cor

C 1 (right)
1−x

i,2

x⋆−xi,2

ln y
0

(36), (98)

out

C0 (2nd) x
i,2

(16), (60), (104)

out

c0 (2nd) x
i,2
− x⋆ lnxi,2

(102), (101), (104)

yb

C0 −E1 (
y
0

x⋆
) (115), (45)

Cϕ
1 (y-axis matching) ln y

0
−Ein (

y
0

x⋆
) (28), (30), (61), (123)

Table 4: Matching constants for disease invasions [(x
i
, y

i
) = (1,0)]. Left and right indicate constants appear-

ing in the left and right corner solutions, while 2nd indicates constants for the second epidemic wave. See
Table 2 for x⋆ , xf

, y
0
, and x

i,2
expressed in terms of R0 and ϵ. The final expressions with these values for

the matching constants are listed in Table 3.
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