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Abstract1

We build on our previous work to derive more accurate analytical approximations for the phase-plane2

trajectories of the standard susceptible-infectious-removed (SIR) epidemic model, including host births3

and deaths. From our refined analysis, we obtain closed-form analytical expressions for the maximum4

and minimum prevalence following an initial outbreak. As in our previous work, our analysis involves5

matching asymptotic expansions across branch cuts of the Lambert W function, but we carry the ap-6

proximations to higher asymptotic orders.7

1 Introduction8

In 1927, Kermack and McKendrick [5] (hereafter KM) published the system of ordinary differential equations9

(ODEs) that are now known as the standard susceptible-infectious-removed (SIR) model,10

dX

dt
= µ(1 −X) − βXY , (1a)11

dY

dt
= (βX − γ − µ)Y , (1b)12

dZ

dt
= γY − µZ . (1c)13

Here, the state variables are the proportions of the population that are susceptible (X), infective (Y ), and14

removed (Z), and the parameters are the per capita rate of birth and death (µ), the transmission rate (β),15

and the recovery (or removal) rate (γ). Since X + Y + Z = 1, the dynamical system (1) is two-dimensional.16

KM found the exact solution in the phase plane in the absence of vital dynamics (µ = 0), but no exact17

solution is known for µ > 0.18

In a previous paper [10], we used multiple scale and singular perturbation methods [8, 6] to obtain19

closed-form analytical approximations to the phase-plane trajectories of Equation (1) in the presence of host20

births and deaths (µ > 0). Here, we extend our analyses to higher order and obtain more accurate trajectory21

approximations.22

As in our lower order analysis [10], the small parameter1 we use for perturbation expansions is23

ϵ =
ε

R0
, (2)24

Key words and phrases. epidemics, SIR model, matched asymptotics, Poincaré map.
1991 Mathematics subject classification. 34E05, 34E13, 37N25, 92D30

1See [10, Table 1] for parameter estimates for common infectious diseases. Typically ϵ < 0.001.
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where ε is the expected infectious period [1/(γ + µ)] in units of the expected host lifetime (1/µ), and R0 is25

the basic reproduction number [β/(γ + µ)]. The endemic equilibrium (EE) of the SIR ODEs (1) is26

x⋆ =
1

R0
, y⋆ = ε(1 − x⋆). (3)27

If we express time in units of the expected infectious period [τ = t(γ + µ)], then Equation (1) can be28

conveniently written29

x⋆
dX

dτ
= ϵ(1 −X) −XY , (4a)30

x⋆
dY

dτ
= (X − x⋆)Y , (4b)31

so the phase plane equation can be written32

dY

dx
=
(x − x⋆)Y

ϵ(1 − x) − xY
or

dX

dy
=
ϵ(1 −X) −Xy

(X − x⋆)y
. (5)

As in [10], we use the probabilist’s convention that lower case letters indicate independent variables and33

capitals indicate dependent variables.34

Our previous approximation [10] is “zeroth order” in the sense that it is based on matching asymptotic35

expansions to KM’s phase plane solution to Equation (5) for ϵ = 0 (which is a good approximation away36

from the coordinate axes if 0 < ϵ≪ 1). The approximation we present here is “first order” in the sense that37

it is based on matching to an O(ϵ) correction to KM’s exact solution for ϵ = 0. We put these labels in quotes38

because they do not reflect the ultimate asymptotic orders of the approximations we have derived.39

Our “zeroth order” approximation yields an analytical formula for the proportion susceptible near the40

end of a major outbreak, which is an important component of an analysis of epidemic burnout that we have41

conducted based on the stochastic SIR model [9]. Our “first order” approximation allows us to obtain an42

estimate of the burnout probability that does not require an a priori choice of boundary layer, which in turn43

allows us to show that the prior estimate of the burnout probability presented by van Herwaarden [11] can44

be derived as an approximation to our result in [9].45

Like the approximations of van Herwaarden [11], our “first order” results depend on the numerical46

evaluation of integrals. However, we do obtain “integral free” inner solutions—i.e., we obtain closed-form47

analytical results for the dynamics inside all boundary and corner layers—and are consequently able to derive48

convenient, closed-form “first order” expressions for the peak prevalence and the minimum prevalence after49

the first major epidemic following disease invasion.50

As in our “zeroth order” analysis, we succeed in obtaining a “first order” approximation that is valid to51

the same order in ϵ throughout the phase plane. Critical ingredients in our approach are the use of Lambert’s52

W function [3] to invert implicit relations, and matching across branch cuts of the W function.53

A much more detailed introduction to the SIR model and the method of asymptotic matching is given54

in our previous paper [10]. Our new results are summarized in Table 3.55

2 Prior Work56

In Table 1, we summarize the approximate solutions to Equation (4) that we constructed in [10]; each of57

these local solutions is valid only in a subset of the phase-plane. The outer solution, obtained in [10] by58

assuming an asymptotic series in powers of ϵ,59

out

Y (x; ϵ) =
∞
∑
j=0

out

Yj(x)ϵ
j , (6)

and neglecting terms of O(ϵ), captured the behaviour of the exact solution in the majority of phase space.60

The x-axis boundary layer solution, obtained in [10] via a WKB ansatz [1, Chapter 10], is valid where y61
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is transcendentally small, i.e., where y vanishes more rapidly than any power ϵj as ϵ→ 0 [6, p. 4]. Finally,62

we derived two corner layer solutions by assuming that y = O(ϵ), which enabled us to smoothly match the63

outer and boundary layer solutions. We combined these local solutions into a single matched asymptotic64

solution approximating the trajectory of a novel pathogen invading at the disease-free equilibrium65

(DFE, (x
i
, y

i
) = (1,0)). This single solution was expressed as a multi-function in y, valid everywhere in66

the phase-plane, with different branches giving the trajectories in the left and right half-planes (x ≤ x⋆ and67

x ≥ x⋆).68

Solution Notation Expression Scaling

Outer
out

Y0(x)
out

C0 − x + x⋆ lnx x = O(1),
y = O(1)

Corner
cor

X (y; ϵ)
cor

C 0 + (

cor
C 0

x⋆−
cor
C 0

)y + ϵ ln ϵ−1(
cor

C ln +
1−

cor
C 0

x⋆−
cor
C 0

) − ϵ [(
1−

cor
C 0

x⋆−
cor
C 0

) ln y −
cor

C 1] x = O(1),
y = O(ϵ)

x-axis
bdry

xb

Y (x; ϵ) (1 − x)−
1
ϵ (1−x⋆) e

1
ϵ (C

ϕ
0 −x)+C

ϕ
1 x = O(1),

y = TS

Table 1: Local solutions constructed in [10]. TS indicates a quantity that is transcendentally small. Through-
out, we adopt the convention that C, with any combination of sub- and/or superscripts, indicates a constant
of integration.

3 Refined Asymptotic Solutions69

As the small parameter ϵ is increased, the outer solution
out

Y0(x) [Table 1] becomes a progressively poorer70

approximation to the first epidemic. As a consequence our subsequent corner and boundary layer approx-71

imations – and thus the matched solution – also perform less well. To resolve this, here we seek a second72

matching that includes the correction term
out

Y1(x) (6), again focusing on the solution along the unstable73

manifold, x
i
= 1. Unlike our previous matching, where we expressed all local solutions as functions of y,74

we have not found a way to invert the relation y =
out

Y1(x) that we obtain, so in this section we will match75

functions of x.76

These higher order corrections come at the cost of (considerably) complicating our analytical expressions.77

In particular, we are obliged to introduce integrals that do not appear to have closed form solutions, and78

which are numerically sensitive due to singular terms in the integrand. In Appendix A we obtain some79

analytical approximations to these integrals by other means (the integrals are independent of ϵ, so we cannot80

use our matched asymptotic approach). Furthermore, for any given value of R0, fully matched solutions are81

available only for sufficiently small ϵ (see Appendix B for the R0-dependent condition on ϵ; we remark that82

even when this condition is violated, the outer and boundary layer solutions continue to provide excellent83

local approximations).84

3.1 The KM Solution85

Given an initial condition (x
i
, y

i
), the constant of integration in

out

Y0(x) is readily found to be86

out

C0 = yi
+ x

i
− x⋆ lnxi

, (7)
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so that87
out

Y0(x,xi
, y

i
) = y

i
+ x

i
− x + x⋆ ln (

x

x
i

) , (8)

which is the phase plane solution first discovered by KM for the SIR ODEs without vital dynamics, i.e., for88

ϵ = 0.89

Provided x
i
≥ x⋆ and y

i
≥ 0, the solution (8) is non-negative and concave, with two positive roots,90

x
f
(x

i
, y

i
) = −x⋆W0 (E (−xi

/x⋆)e
−

y
i

x⋆ ) . (9)

in (0, x⋆), and another in (x⋆ ,1), and a unique maximum y
0
at x⋆ ,91

y
0
(x

i
, y

i
) =

out

Y0(x⋆ , xi
, y

i
) = y

i
+ x

i
− x⋆(1 + ln (xi

/x⋆)) . (10)

Here, W0 denotes the principal branch of the Lambert W -function292

y
0
(x

i
, y

i
) and x

f
(x

i
, y

i
) are the true peak prevalence and final size for the SIR model without vital dynam-93

ics (ϵ = 0) started from (x
i
, y

i
). y

0
only approximates the peak prevalence for the model with demography,94

and there is no “final” size if there is a continuous inflow of new susceptible individuals. Nevertheless, we95

informally refer to x
f
as the “final size” for convenience. Moreover, when there is no risk of confusion, for96

ease of notation we will write x
f
(x

i
,0) = x

f
(x

i
) and x

f
(1,0) = x

f
and similarly for y

0
.97

As in [10], our ultimate goal is to approximate the solution corresponding to invasion at the DFE,98

(x
i
, y

i
) = (1,0), but in order to obtain matched asymptotic approximations that continue into the second99

and subsequent epidemic waves, we need to consider solutions for more general initial conditions. In [10] we100

derived effective initial conditions (x
i,2
,0) that allow us to approximate these waves. Given an initial101

condition (x
i
, y

i
), we set102

x
i,2
(x

i
, y

i
) = 1 + (1 − x⋆)W0(E ( −

1 − x
f
(x

i
, y

i
)

1 − x⋆
)). (12)

As we explained in [10], although (x
i,2
,0) is not a point on the actual trajectory, it is an “effective” initial103

condition for the second wave in the following sense: if (x
i,2
,0) were used as the initial state in the KM104

(ϵ = 0) solution, the resulting trajectory would meet the second rise of the actual solution as it curves up105

from the left in the phase plane.106

3.2 The First Order Outer Solution107

If we now include the second term in the asymptotic expansion (6),108

out

Y (x; ϵ) =
out

Y0(x) + ϵ
out

Y1(x) +O(ϵ
2
) , (13)

we must now solve for
out

Y1(x), which, substituting (6) into Equation (4) and collecting O(ϵ) terms, satisfies109

d
out

Y1

dx
= (

1

x
− 1)(

x⋆
x
− 1)

1
out

Y0(x)
. (14)

2If E (z) = zez , Lambert’s W -function W (z) [3] solves the “left-sided” inverse relation E (W (z)) = z. This equation has
countably many solutions, each corresponding to branches Wi of the W -function; we will need the two real branches, W0, which
maps [− 1

e
,∞) to [−1,∞), and W−1, which maps [− 1

e
,0) to (−∞,−1]. For these two branches, Wi is a partial “right-sided”

inverse function for E (z):
W−1(E (z)) = z if z ≤ −1

W0(E (z)) = z if z ≥ −1.
(11)
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This equation can be formally solved by (indefinite) integration. If we impose the initial condition (x
i
, y

i
),110

the first order term,
out

Y1(x), in the asymptotic series for the outer solution (6), takes the form111

out

Y1(x,xi
, y

i
) = ∫ (

1

x
− 1)(

x⋆
x
− 1)

1
out

Y0(x,xi
, y

i
)

dx. (15)

This integral has no closed analytical form so we will need to evaluate it numerically. To do so, we must fix112

an endpoint to make it a definite integral, which requires some care:
out

Y0(x,xi
, y

i
) (8), which appears in the113

denominator of the integrand in Equation (15), vanishes at x
f
(x

i
, y

i
), and if y

i
= 0 then

out

Y0(x,xi
, y

i
) vanishes114

at x
i
as well. Consequently, there is a pair of possible singularities in the integrand. If y

i
= 0 and x

i
= 1115

then the integrand approaches x⋆ in the limit as x → 1 and the singularity is removable. However, if y
i
= 0116

then the integrand is singular for all x
i
≠ 1. Moreover, the integrand is always singular at x

f
(x

i
, y

i
). Since117

we need to be able to compute
out

Y1(x,xi
, y

i
) at values of x ∈ (x

f
(x

i
, y

i
), x

i
), we must choose an endpoint that118

lies in that interval as well. The natural choice is x⋆ , which always satisfies x
f
(x

i
, y

i
) < x⋆ < x

i
. For any119

x ∈ (x
f
, x

i
), the integrand is then non-singular on [x,x⋆] ([x⋆ , x]) if x < x⋆ (resp. x > x⋆).120

Since the specificiation of an arbitrary endpoint is just a device to be able to compute the integral (15)121

numerically, we must still include an arbitrary constant of integration, which will provide a degree of freedom122

that we will need when imposing initial conditions. Thus, we write123

out

Y1(x,xi
, y

i
) = ∫

x

x⋆
(
1

u
− 1)(

x⋆
u
− 1)

1
out

Y0(u,xi
, y

i
)

du +
out

C1 . (16)

Henceforth, we will limit our attention to solutions with y
i
= 0, which we denote by

out

Y1(x,xi
). When124

focussing more specifically on the solution with (x
i
, y

i
) = (1,0), we will write simply

out

Y1(x), but we do need125

the extra freedom of an arbitrary x
i
to consider subsequent epidemic waves. For all such solutions

out

Y1(x,xi
),126

the integrand in (16) has a simple pole at x = x
f
(x

i
) (9) with residue127

lim
x→x

f
(x

i
)
(x − x

f
(x

i
))(

1

x
− 1)(

x⋆
x
− 1)

1
out

Y0(x,xi
)

=
1

x
f
(x

i
)
− 1 . (17)

If x
i
≠ 1, it also has a second simple pole at x = x

i
with residue 1

x
i

− 1. To be able to evaluate the integral128

(16), we shall need to remove these poles, separating the integral into singular and non-singular parts; doing129

so will also prove to be an essential step in matching the solutions.130

Presentation of calculations will be greatly simplified by introducing the notation131

Y
b
a(xi
) = ∫

b

a
[(

1

u
− 1)(

x⋆
u
− 1)

1
out

Y0(u,xi
)

− (
1

x
i

− 1)
1

u − x
i

− (
1

x
f
(x

i
)
− 1)

1

u − x
f
(x

i
)
]du . (18)

Here, the sub- and superscripts a and b are used to emphasize their role as endpoints of an integral, and in132

particular that133

Y
b
a(xi
) = Y

c
a(xi
) +Y

b
c(xi
) , for any c ∈ R . (19)

We can then re-write (16) as134

out

Y1(x,xi
) = Y

x
x⋆
(x

i
) + ∫

x

x⋆
(
1

x
i

− 1)
1

u − x
i

du + ∫
x

x⋆
(

1

x
f
(x

i
)
− 1)

1

u − x
f
(x

i
)
du +

out

C1

= Y
x
x⋆
(x

i
) + (

1

x
i

− 1) ln(
x

i
− x

x
i
− x⋆
) + (

1

x
f
(x

i
)
− 1) ln(

x − x
f
(x

i
)

x⋆ − xf
(x

i
)
) +

out

C1 .

(20)

The first order approximation to the outer solution is thus135

out

Y (x,x
i
; ϵ) =

out

Y0(x,xi
) + ϵ

out

Y1(x,xi
) . (21)
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Note that when x
i
= 1, which is our focal solution, all terms in Equations (18) and (20) involving the residue136

1
x
i

− 1 vanish; in what follows we will write
out

Y (x,1; ϵ) as
out

Y (x; ϵ).137

Analytical matching In general, Yx
x⋆
(x

i
) can only be computed numerically, so our first order solution is138

only semi-analytical. In the limit where R0 is near 1, however, we show in Appendix A that a satisfactory139

analytical approximation to Yx
x⋆
(x

i
) can be found, which enables us to give a fully-analytical first order140

matched solution.141

3.2.1 Outer solution from the DFE142

Specializing now to the case (x
i
, y

i
) = (1,0), we must have Y (1) = 0. Since

out

Y0(1) = 0 [Equation (8)], to retain143

the correct initial condition we must have
out

Y1(1) = 0 also; hence from Equation (20) we infer that144

out

C1 = −Y
1
x⋆
(1) − (

1

x
f

− 1) ln(
1 − x

f

x⋆ − xf

) , (22)

whence145

out

Y (x; ϵ) =
out

Y0(x) + ϵ((
1

x
f

− 1) ln(
x − x

f

1 − x
f

) −Y
1
x(1)) . (23)

Peak prevalence We obtain an approximation to y by evaluating Equation (23) at x = x⋆ , which yields146

y
1
= y

0
− ϵ(Y1

x⋆
(1) + (

1

x
f

− 1) ln(
x⋆ − xf

1 − x
f

)) = y
0
− ϵ∫

1

x⋆
(
x⋆
u
− 1)(

1

u
− 1)

1
out

Y0(u)
du . (24)147

In Appendix A.2, we derive a closed-form analytical approximation to the integral in Equation (24), which148

then yields149

y
1
≈ 1 − x⋆(1 − lnx⋆) − ϵ

(1 − x⋆)(1 − x⋆ + lnx⋆)

1 − x⋆(1 − lnx⋆)
. (25)

3.3 Outer to corner solution matching150

We start by introducing an intermediate scale η = η(ϵ) that we will use to capture the overlap between the151

outer and corner solutions:152

ϵ ln ϵ−1 ≪ η ≪ ϵ1/2 , (26)

which implies153

η2 ≪ ϵ≪ ϵ lnη−1 ≪ ϵ ln ϵ−1 ≪ η . (27)

In addition, ϵ ln ϵ−1 ≪ η implies that 1
ϵ
e−

ηxη
ϵ C ≪ 1 for any C > 0. Expanding the outer solution

out

Y (x; ϵ) (21)154

about x = x
f
+ ηxη in an asymptotic series with these orders gives us155

156

out

Y (x
f
+ ηxη ; ϵ) = η (

x⋆
x

f

− 1)xη − ϵ lnη
−1
(
1

x
f

− 1)157

+ ϵ((
1

x
f

− 1) lnxη − (
1

x
f

− 1) ln (1 − x
f
) −Y

1
x
f
(1)) +O(η2). (28)158

To match
out

Y with the corner layer solution
cor

X (y; ϵ) [Table 1], we must first re-express it as a function159

cor

Y i(x; ϵ) of x. Rearranging x =
cor

X (y; ϵ), we get160

−
1

ϵ
(

1
cor

C 0

− 1)

−1

e
− 1

ϵ

x⋆−
cor
C 0

1−
cor
C

0

⎛
⎝
x−

cor
C 0−ϵ ln ϵ−1(

cor
C ln+

1−
cor
C 0

x⋆−
cor
C

0

)−ϵ
cor
C 1

⎞
⎠
= −

1

ϵ
(

1
cor

C 0

− 1)

−1

ye
− 1

ϵ(
1

cor
C

0

−1)

−1

y

(29)161
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= E
⎛

⎝
−
1

ϵ
(

1
cor

C 0

− 1)

−1

y
⎞

⎠
, (30)162

which we can invert using the Lambert W function to get y =
cor

Y i(x; ϵ):163

cor

Y i
(x; ϵ) = −ϵ(

1
cor

C 0

− 1) Wi

⎛
⎜
⎜
⎝

−
1

ϵ
(

1
cor

C 0

− 1)

−1

e
− 1

ϵ

x⋆−
cor
C 0

1−
cor
C

0

⎛
⎝
x−

cor
C 0−ϵ ln ϵ−1(

cor
C ln+

1−
cor
C 0

x⋆−
cor
C

0

)−ϵ
cor
C 1

⎞
⎠
⎞
⎟
⎟
⎠

, (31)

where i = −1,0 correspond to values of y ≥ ϵ((1/
cor

C 0) − 1) and y ≤ ϵ((1/
cor

C 0) − 1), respectively. Note that the164

point (
cor

C 0, ϵ((1/
cor

C 0) − 1)) is on the x nullcline, dX
dτ
= 0, i.e., y = ϵ ( 1

x
− 1), which separates the upper and165

lower branches of the phase-plane trajectories. The two branches i = −1,0 give the solutions above and below166

the nullcline, which we match to the outer solution
out

Y (x; ϵ) (21) and the x-axis boundary layer solution,167

xb

Y (x; ϵ) [Table 1], respectively.168

If we set x =
cor

C 0 + ηxη in Equation (31), and note that by Equation (26),169

1≪ ln ϵ−1 ≪
η

ϵ
, (32)

we can infer that the argument of the Lambert W function in Equation (31) is proportional to170

e
− η

ϵ

x⋆−
cor
C 0

1−
cor
C

0

xη−ln ϵ−1

∼ e
− η

ϵ

x⋆−
cor
C 0

1−
cor
C

0

xη
. (33)

If
cor

C 0 < x⋆ and xη > 0, the argument vanishes as η → 0 and we can use the expansion of W−1 for small171

arguments [3],172

W−1(z) = ln (−z) − ln (− ln (−z)) + o(1), (34)

to expand
cor

Y −1(x; ϵ) about xη = 0 and obtain173

174

cor

Y −1(
cor

C 0 + ηxη ; ϵ) = η
⎛

⎝

x⋆
cor

C 0

− 1
⎞

⎠
xη − ϵ lnη

−1 ⎛

⎝

1
cor

C 0

− 1
⎞

⎠
− ϵ ln ϵ−1

⎛

⎝

x⋆
cor

C 0

− 1
⎞

⎠
(
cor

C ln +
1 −

cor

C 0

x⋆ −
cor

C 0

)175

+ ϵ

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝

1
cor

C 0

− 1
⎞

⎠
lnxη +

⎛

⎝

1
cor

C 0

− 1
⎞

⎠
ln
⎛

⎝

x⋆
cor

C 0

− 1
⎞

⎠
−
⎛

⎝

x⋆
cor

C 0

− 1
⎞

⎠

cor

C 1

⎤
⎥
⎥
⎥
⎥
⎦

+O (
ϵ2 ln ϵ−1

η
) . (35)176

Note that ϵ ln ϵ−1 ≪ η implies ϵ2 ln ϵ−1
η
≪ ϵ and the two solutions,

out

Y (x
f
+ ηxη ; ϵ) and

cor

Y −1(x
f
+ ηxη ; ϵ), agree177

up to O(ϵ) provided we set178

cor

C 0 = xf
, (36)179

cor

C ln = −
1 −

cor

C 0

x⋆ −
cor

C 0

= −
1 − x

f

x⋆ − xf

, (37)180

and181

cor

C 1 =
1 − x

f

x⋆ − xf

⎡
⎢
⎢
⎢
⎢
⎣

ln((
1

x
f

− 1)(x⋆ − xf
)) + (

1

x
f

− 1)

−1

Y
1
x
f
(1)

⎤
⎥
⎥
⎥
⎥
⎦

. (38)182
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Substituting these choices into Equation (31) yields a matched left corner solution at x
f
,183

lc

Y i
(x; ϵ) = −ϵ(

1

x
f

− 1)Wi (−
x⋆ − xf

ϵ
e
−

x−x
f

ϵ

x⋆−xf
1−x

f
+( 1

x
f
−1)

−1
Y1

x
f
(1)
) . (39)184

Summing the i = −1 branch,
lc

Y −1(x; ϵ), and the outer solution,
out

Y (x; ϵ), and then subtracting the overlap,185

yields a matched solution for the region above the x nullcline,186

Y ↑(x; ϵ) =
out

Y0(x) +
lc

Y −1(x; ϵ) − (
x⋆
x

f

− 1)(x − x
f
) + ϵYx

x
f
(1). (40)187

Applicability of the first order solution Some care is required in applying the results above; ∣Yx
x
f
(1)∣188

grows very rapidly with increasing R0, so ϵ∣Yx
x
f
(1)∣ need not be small (e.g., ϵ∣Yx

x
f
(1)∣ ≈ 4.4 for R0 = 6 and189

ε = 0.01), so there are realistic parameter regimes where higher order terms would be necessary to obtain a190

good approximation. In Appendix B we derive upper bounds on the admissible values of ϵ as a function of191

R0.192

3.4 Corner to Inner Solution Matching193

We can similarly match the i = 0 branch,
lc

Y 0(x; ϵ), to the x-axis boundary layer solution
xb

Y (x; ϵ) [Table 1],194

As we observed in the previous subsection, if we set x = x
f
+ ηxη , the argument of the W function in195

lc

Y 0(x
f
+ ηxη ; ϵ) is small [see Equation (39)]. Because we are now using the i = 0 branch instead of i = −1, we196

use the expansion W0(z) = z +O(z
2) [3] to get197

lc

Y 0
(x

f
+ ηxη ; ϵ) = (

1

x
f

− 1)(x⋆ − xf
) e
−

ηxη
ϵ

x⋆−xf
1−x

f
+( 1

x
f
−1)

−1
Y1

x
f
(1)
+O (e

−2
ηxη
ϵ

x⋆−xf
1−x

f ) . (41)198

On the other hand, substituting Cϕ
0 = cϕ0 − (1 − x⋆) ln (1 − c

ϕ
0) into the x-axis boundary layer solution199

[Table 1] gives200

xb

Y (x; ϵ) = (
1 − x

1 − cϕ0
)

− 1
ϵ (1−x⋆)

e
1
ϵ (c

ϕ
0−x)+C

ϕ
1 . (42)

Evaluating at x = cϕ0 + ηxη , we have201

xb

Y (cϕ0 + ηxη ; ϵ) = (1 −
ηxη

1 − cϕ0
)

− 1−x⋆
ϵ

e−
ηxη
ϵ +C

ϕ
1202

= e
−

ηxη
ϵ −

1−x⋆
ϵ ln(1−

ηxη

1−cϕ
0

)+Cϕ
1

203

= e
−

ηxη
ϵ

x⋆−c
ϕ
0

1−cϕ
0

+Cϕ
1 +O (

η2

ϵ
)

204

= e
−

ηxη
ϵ

x⋆−c
ϕ
0

1−cϕ
0

+Cϕ
1

(1 +O (η
2

ϵ
)) , (43)205

and the solutions (41, 43) coincide if we take206

cϕ0 = xf
(44)207

Cϕ
0 = c

ϕ
0 − (1 − x⋆) ln (1 − c

ϕ
0) = xf

− (1 − x⋆) ln (1 − xf
) (45)208
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and209

Cϕ
1 = ln [(

1

x
f

− 1)(x⋆ − xf
)] + (

1

x
f

− 1)

−1

Y
1
x
f
(1). (46)210

Substituting these choices into
xb

Y (x; ϵ) [Table 1] gives211

xb

Y (x; ϵ) = (
1

x
f

− 1)(x⋆ − xf
) (

1 − x
f

1 − x
)

1−x⋆
ϵ

e
−

x−x
f

ϵ +( 1
x
f
−1)

−1
Y1

x
f
(1)

. (47)212

As we observed in [10], we can write
xb

Y (x; ϵ) = (1/x
f
− 1)(x⋆ − xf

)e
( 1

x
f
−1)

−1
Y1

x
f
(1)

e−
ϕ0(x)

ϵ , for213

ϕ0(x) = x − xf
+ (1 − x⋆) ln(

1 − x

1 − x
f

) . (48)

ϕ0(x) has two zeros, at x
f
and x

i,2
[Equations (9) and (12)]. Between these two zeros, ϕ0(x) > 0 and—214

excluding small neighbourhoods [of radius O(ϵ ln ϵ−1)] of the two zeroes—
xb

Y (x; ϵ) will be transcendentally215

small in the interval (x
f
, x

i,2
). The small neighbourhoods of the zeros of ϕ0(x), where

xb

Y (x; ϵ) = O(ϵ), provide216

a “transition-zone” where we can match the boundary layer solution with the corner solutions (also O(ε))217

and via them, with the outer solution (which is O(1)).218

Expanding in series exactly as we did above with the left corner solution
lc

Y 0(x; ϵ) (39), we match
xb

Y (x; ϵ)219

(47) to
cor

Y i(x; ϵ) (31) to get a right corner solution at x
i,2
:220

rc

Y i
(x; ϵ) = −ϵ(

1

x
i,2

− 1)Wi

⎛
⎜
⎝
−
( 1
x
f

− 1) (x⋆ − xf
)

ϵ( 1
x
i,2

− 1)
e
−

x
i,2
−x

ϵ

x
i,2
−x⋆

1−x
i,2
+( 1

x
f
−1)

−1
Y1

x
f
(1)⎞
⎟
⎠

(49)

(for the sake of completeness, we list the matching constants in Table 4).221

Summing the two corner solutions [Equations (39) and (49), taking the i = 0 branches for the solutions222

below the x nullcline] and the x-axis boundary layer solution (47), and subtracting the resulting overlaps,223

yields a matched solution below the x nullcline,224

Y↓(x; ϵ) =
xb

Y (x; ϵ) +
lc

Y 0
(x; ϵ) +

rc

Y 0
(x; ϵ)

− (
1

x
f

− 1)(x⋆ − xf
) e
( 1

x
f
−1)

−1
Y1

x
f
(1)
(e
−

x−x
f

ϵ

x⋆−xf
1−x

f + e
−

x
i,2
−x

ϵ

x
i,2
−x⋆

1−x
i,2 ) . (50)

3.4.1 Prevalence trough225

Evaluating
xb

Y (x; ϵ) (47) at x = x⋆ gives us an estimate of the minimum fraction infected (y ),226

y
1
= (

1

x
f

− 1) (x⋆ − xf
) (

1 − x
f

1 − x⋆
)

1−x⋆
ϵ

e
−

x⋆−xf
ϵ +( 1

x
f
−1)

−1
Y1

x
f
(1)

. (51)227

Figure 3 shows the accuracy of this approximation to y .228

3.4.2 Closed-form approximations229

Using our approximation to Y1
x
f
(1) [Equation (A.1.1) in Appendix A], we obtain230

(
1

x
f

− 1)
−1
Y

1
x
f
(1) ≈

x⋆ − xf
+ x⋆xf

(1 − x
f
)(1 − x⋆)

lnx
f
−

x⋆
x⋆ − xf

. (52)
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Substituting Equation (52) into Equations (39), (47) and (49) to (51) gives us closed-form analytical expres-231

sions for all but the outer solution,
out

Y (x; ϵ), which depends on Y1
x(1) (we do not have a good approximation232

for the integral Y1
x(1) for arbitrary x). We present these closed-form solutions in Tables 2 and 3.233

3.5 Beyond the first epidemic wave234

In principle, we could continue our phase plane trajectory approximation through any number of epidemic235

waves, but unlike the simple iterative expression we obtained in [10], the higher order expressions rapidly236

increase in complexity, and we have not identified a pattern that allows us to simplify them.237

To illustrate the growth in analytical complexity as the trajectory proceeds, we will briefly sketch the238

derivation of the solution Y ↑(x; ϵ) for the second epidemic wave. The i = −1 branch of the right corner239

solution (49) extends the solution above the x nullcline.240

To match into the outer solution
out

Y (x,x
i,2
; ϵ) [Equations (20) and (21)], we expand

rc

Y −1(x; ϵ) as usual241

in an asymptotic series. Since the trajectory always lies in the set x < x
i,2
, we make the change of variables242

x = x
i,2
− ηxη in

rc

Y −1(x; ϵ) and expand using Equation (34) to get243

rc

Y −1(x
i,2
− ηxη ; ϵ) = −ϵ(

1

x
i,2

− 1)W−1

⎛
⎜
⎜
⎜
⎝

−
1

ϵ

( 1
x
f

− 1) (x⋆ − xf
)

( 1
x
i,2

− 1)
e
−

ηxη
ϵ

x
i,2
−x⋆

1−x
i,2
−( 1

x
f
−1)

−1
Y1

x
f
(1)
⎞
⎟
⎟
⎟
⎠

244

= η (1 −
x⋆
x

i,2

)xη + ϵ lnη
−1
(

1

x
i,2

− 1)245

− ϵ(
1

x
i,2

− 1)

⎡
⎢
⎢
⎢
⎢
⎣

lnxη + ln

⎛
⎜
⎜
⎜
⎝

( 1
x
f

− 1) (x⋆ − xf
) (1 − x

i,2
)

( 1
x
i,2

− 1)(x
i,2
− x⋆)

⎞
⎟
⎟
⎟
⎠

− (
1

x
f

− 1)

−1

Y
1
x
f
(1)

⎤
⎥
⎥
⎥
⎥
⎦

246

+O (
ϵ2 ln ϵ−1

η
) , (53)247

which has a logarithmic singularity at x
i,2
. While this singularity may initially appear to be a defect in248

the approximation, it is necessary to match to the outer solution for the second epidemic wave (21): once249

we impose the effective initial condition x
i,2
< 1 (12), the second wave outer solution also has a logarithmic250

singularity at x
i,2
.251

Expanding
out

Y (x,x
i,2
; ϵ) [Equations (20) and (21)] about x = x

i,2
, we have252

out

Y (x
i,2
− ηx

η
, x

i,2
; ϵ) = η (1 −

x⋆
x

i,2

)xη − ϵ lnη
−1
(

1

x
i,2

− 1)253

+ ϵ
⎛

⎝
(

1

x
i,2

− 1) lnxη +Y
x
i,2

x⋆ (xi,2
) − (

1

x
i,2

− 1) ln (x
i,2
− x⋆) + (

1

x
f,2

− 1) ln(
x

i,2
− x

f,2

x⋆ − xf,2

) +
out

C1

⎞

⎠
254

+O(η2), (54)255

where256

x
f,2
= x

f
(x

i,2
) (55)

is the “final size” of the second epidemic wave.257

Note that the offending logarithmic term from Equation (53) appears with opposite sign in Equation (54):258

when we sum the two solutions, the singularities will cancel. Choosing259

out

C1 = −(
1

x
f,2

− 1) ln(
x

i,2
− x

f,2

x⋆ − xf,2

)−(
1

x
i,2

− 1) ln

⎛
⎜
⎜
⎜
⎝

( 1
x
f

− 1) (x⋆ − xf
)(1 − x

i,2
)

( 1
x
i,2

− 1)

⎞
⎟
⎟
⎟
⎠

+

1
x
i,2

− 1

1
x
f

− 1
Y

1
x
f
(1)−Y

x
i,2

x⋆ (xi,2
) (56)

10



so that the expansions (53) and (54) agree to O(ϵ) one obtains260

out

Y0(x,xi,2
) + ϵ [−Y

x
i,2

x (x
i,2
) + (

1

x
i,2

− 1) ln(
x

i,2
− x

1 − x
i,2

) + (
1

x
f,2

− 1) ln(
x − x

f,2

x
i,2
− x

f,2

)

+

1
x
i,2

− 1

1
x
f

− 1
Y

1
x
f
(1) − (

1

x
i,2

− 1) ln

⎛
⎜
⎜
⎜
⎝

( 1
x
f

− 1) (x⋆ − xf
)

( 1
x
i,2

− 1) (x
i,2
− x⋆)

⎞
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(57)

Finally, replacing x
f
by x

f,2
in the left corner solution (39) and its expansion (35) gives us the second261

left-corner solution and its expansion (up to the unknown matching constant
cor

C 1). Comparing (35) (suitably262

modified with x
f,2

replacing x
f
) with (54) (for the appropriate choice of

out

C1), we again determine
cor

C 1 by263

requiring the series agree to O(ϵ). This yields264

lc

Y i
(x; ϵ) = −ϵ(

1

x
f,2

− 1)Wi

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−
x

i,2
− x

f,2

ϵ
(
x⋆ − xf,2

1 − x
f,2

)

⎛
⎜
⎜
⎜
⎝

( 1
x
f

− 1) (x⋆ − xf
)(1 − x

i,2
)

( 1
x
i,2

− 1) (x
i,2
− x⋆)(xi,2

− x
f,2
)

⎞
⎟
⎟
⎟
⎠

1
x
i,2
−1

1
x
f,2

−1

× exp

⎛
⎜
⎜
⎜
⎝

−
x − x

f,2

ϵ

x⋆ − xf,2

1 − x
f,2

+ (
1

x
f,2

− 1)

−1

Y
x
i,2

x
f,2
(x

i,2
) +

( 1
x
i,2

− 1)

( 1
x
f

− 1)( 1
x
f,2

− 1)
Y

1
x
f
(1)

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

(58)265

whereas the matched solution above the x nullcline is266

out

Y0(x,xi,2
) +

rc

Y −1(x; ϵ) +
lc

Y −1(x; ϵ) − (1 −
x⋆
x

i,2

)(x
i,2
− x) − (

x⋆
x

f,2

− 1)(x − x
f,2
)

+ ϵ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y
x
x
f,2
(x

i,2
) +

( 1
x
i,2

− 1)

( 1
x
f

− 1)
Y

1
x
f
(1) + (

1

x
i,2

− 1) ln

⎛
⎜
⎜
⎜
⎝

( 1
x
f

− 1) (x⋆ − xf
)(1 − x

i,2
)

( 1
x
i,2

− 1) (x
i,2
− x⋆)(xi,2

− x
f,2
)

⎞
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(59)267

While one might hope to recognize a pattern that facilitates continuing the approximation through subsequent268

waves, we have not succeeded and do not pursue the question further. We leave it as an exercise for the269

motivated reader.270

4 Discussion271

Building on our previous work [10], we have developed a higher order approximation for the phase plane272

trajectories of the standard SIR model with vital dynamics Equation (4). Throughout the phase plane, the273

“first order” solution we have presented here is more accurate than the “zeroth order” solution we derived274

previously [10], but the higher order results are much more cumbersome and, in practice, useful only until275

the peak of the second epidemic wave (whereas our “zeroth order” approximation is useful for an arbitrary276

number of epidemic waves). Much of the “first order” gain in accuracy is in the part of the phase plane277

where the frequency of infected hosts is implausibly low (reminiscent of Mollison’s “atto-fox” [7]).278

Our higher order trajectory approximation (Y ↑ and Y↓ in Table 3) depends on an integral that must be279

evaluated numerically [Yb
a(xi
), Equation (18)]. However, as noted in §3.4.2, our closed-form approximation280

(52) to Y1
x
f
(1) allows us to obtain closed-form analytical expressions for all components of our matched281

asymptotic expansion except the outer solution. Our most useful closed-form results are our expressions for282

11



the maximum and minimum prevalence following disease invasion (y in Equation (25) and y in Equation (51)283

using Equation (52)). We emphasize that our peak prevalence formula (25) includes the first order effect of284

demography, whereas in [10] our peak prevalence formula was the same as KM’s.285
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A Analytical Approximations for Yb
a(xi
)311

A.1 Approximating Yx
i

x
f
(x

i
)
(x

i
)312

While simple to formulate, in addition to having no analytical closed form, the integral (18) proves in-313

convenient to compute numerically. Here we consider analytical approximations obtained via polynomial314

approximations to
out

Y0(x,xi
). In order to be consistent with our matchings, we require that the approxima-315

tion preserve the poles and residues of the integrand, or equivalently that we approximate
out

Y0(x,xi
) by a316

polynomial with the same zeros x
i
and x

f
, and the same derivatives at these points,

x⋆
x
i

− 1 and
x⋆
x
f

− 1.317

When x
i
= 1, the singularity at x

i
is removable, and we can approximate

out

Y0(x) =
out

Y0(x,1) by its linear318

approximation at x
f
, L(x,1) = (

x⋆
x
f

− 1) (x − x
f
). This gives us a particularly simple analytical expression,319

Y
1
x(1) = ∫

1

x

⎡
⎢
⎢
⎢
⎢
⎣

(
x⋆
u
− 1)(

1

u
− 1)

1
out

Y0(u)
− (

1

x
f

− 1)
1

u − x
f

⎤
⎥
⎥
⎥
⎥
⎦

du

≈ ∫

1

x
[(

x⋆
u
− 1)(

1

u
− 1)

1

L(u,1)
− (

1

x
f

− 1)
1

u − x
f

] du

= (
1

x
f

− 1 −
x

f

x⋆ − xf

) lnx −
x⋆

x⋆ − xf

(
1

x
− 1) . (A.1.1)

For x = x
f
, the value of the integral is largely determined in a neighbourhood of x

f
and Equation (A.1.1)320

agrees very well with the numerically computed value of Y1
x
f
(1) (Figure 1). Unfortunately, Equation (A.1.1)321

fails to provide a good uniform approximation for generic x.322

For a general initial condition x
i
, we can approximate

out

Y0(x,xi
) by the cubic Hermite spline [2] determined323

by its zeroes and the derivatives at the zeroes:324

H(x,x
i
) = (

x⋆
x

i

− 1)(x − x
i
) +

x⋆
x
i

− 1

x
i
− x

f
(x

i
)
(x − x

i
)
2
+
(
x⋆
x
i

− 1) + (
x⋆

x
f
(x

i
) − 1)

(x
i
− x

f
(x

i
))2

(x − x
i
)
2
(x − x

f
(x

i
))

=
(
x⋆
x
i

− 1) + (
x⋆

x
f
(x

i
) − 1)

(x
i
− x

f
(x

i
))2

(x − x
i
)(x − x

f
(x

i
))(x − xH(xi

)) (A.1.2)

where325

xH(xi
) =
(
x⋆
x
i

− 1)x
f
(x

i
) + (

x⋆
x
f
(x

i
) − 1)xi

(
x⋆
x
i

− 1) + (
x⋆

x
f
(x

i
) − 1)

(A.1.3)

is the third root of the Hermite spline H(x,x
i
).326

We then have327

Y
x
i

x (xi
) = ∫

x
i

x
[(

1

u
− 1)(

x⋆
u
− 1)

1
out

Y0(u,xi
)

− (
1

x
i

− 1)
1

u − x
i

− (
1

x
f
(x

i
)
− 1)

1

u − x
f
(x

i
)
]du

≈ ∫

x
i

x
[(

1

u
− 1)(

x⋆
u
− 1)

1

H(u,x
i
)
− (

1

x
i

− 1)
1

u − x
i

− (
1

x
f
(x

i
)
− 1)

1

u − x
f
(x

i
)
] du

= −
(x

i
− x

f
(x

i
))2

(
x⋆
x
i

− 1) + (
x⋆

x
f
(x

i
) − 1)

⎡
⎢
⎢
⎢
⎢
⎣

x⋆
x

i
x

f
(x

i
)xH(xi

)
(
1

x
−

1

x
i

+ (1 +
1

x⋆
−

1

x
i

−
1

x
f
(x

i
)
−

1

xH(xi
)
) ln(

x

x
i

))

+
(

x⋆
xH(xi

) − 1) (
1

xH(xi
) − 1)

(xH(xi
) − x

i
)(xH(xi

) − x
f
(x

i
))

ln(
x − xH(xi

)

x
i
− xH(xi

)
)

⎤
⎥
⎥
⎥
⎥
⎦

. (A.1.4)
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Equation (A.1.4) provides a good approximation that is uniform in x, provided R0 is close to 1. Away328

from this limit, Equation (A.1.4) performs similarly to Equation (A.1.1), i.e., it does not provide a good329

uniform approximation in x, but for x = x
f
(x

i
) (for a general x

i
) it does approximate Y

x
i

x
f
(x

i
)(xi
) very well330

(cf. Equations (58) and (59) and Figure 1). The failure for general R0 is due to the Hermite cubic spline331

substantially overestimating y for larger values of R0, which results in a poor approximation to Y
x
i

x (xi
)332

for x near to x⋆ . We attempted to obtain an improved estimate to
out

Y0(x,xi
) by imposing a maximum at333

(x⋆ , y0
(x

i
)), either by using a pair of cubic Hermite splines on the intervals [x

f
(x

i
), x⋆] and [x⋆ , xi

] or by334

using a quintic Hermite spline; unfortunately, the resulting approximations are overwhelemed by Runge335

oscillations [4].336
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Figure 1: Relative error in our numerical approximations of Y
x
i,j

x
f,j
(x

i,j
) for j = 1 (solid) and j = 2 (dotted).

The exact expression as an integral is given in Equation (18). The closed-form approximations are given in
Equations (A.1.1) and (A.1.4).

A.2 Approximating y337

We can obtain an excellent explicit approximation to338

Ymax = ∫

1

x⋆
(
x⋆
u
− 1)(

1

u
− 1)

1
out

Y0(u)
du (A.2.1)

(see Equation (24)) by approximating
out

Y0(u) with a rational function on the interval [x,1]. The simplest339

rational approximation is the line joining (x,
out

Y0(x)) to (1,
out

Y0(1)), i.e.,340

out

Y0(u) = 1 − u + x⋆ lnu (A.2.2a)341

≃
out

Y0(x) +

out

Y0(1) −
out

Y0(x)

1 − x
(u − x) (A.2.2b)342
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=
out

Y0(x) −

out

Y0(x)

1 − x
(u − x) (A.2.2c)343

We need to evaluate
out

Y0(x) at its maximum point, namely x = x⋆ , hence the relevant approximation is [cf.344

Equation (10)]345

out

Y0(u) ≃ y0
−

y
0

1 − x⋆
(u − x⋆) = y0

1 − u

1 − x⋆
=
1 − x⋆(1 − lnx⋆)

1 − x⋆
(1 − u) . (A.2.3)346

Inserting Equation (A.2.3) in Equation (A.2.1), where factors of (1 − u) in the numerator and denominator347

of the integrand now cancel out, we obtain348

Ymax ≃ (
1 − x⋆

1 − x⋆(1 − lnx⋆)
)∫

1

x⋆
(
x⋆
u2
−
1

u
)du = (

1 − x⋆
1 − x⋆(1 − lnx⋆)

)(1 − x⋆ + lnx⋆) , (A.2.4)349

which yields Equation (25).350

B Domain of Applicability of the First Order Approximation351

We observed in [10] that for sufficiently large values of R0, x
f
is O(ϵ). In this limit, the higher-order352

corrections in the first order left corner layer approximation (39) cause it to extend into an O(ϵ)-strip in353

the biologically meaningless half-plane x < 0; consequently, for sufficiently large R0, Y
↑(x; ϵ) (40) fails to354

approximate the true trajectory Y (x). Here, we compute an upper bound ϵ̄ = ϵ̄(R0) such that the corner355

solution remains in the biological right half plane for ϵ < ϵ̄, and thus (0, ϵ̄) provides the domain of applicability356

of Y ↑(x; ϵ).357

Substituting
cor

C 0 (36),
cor

C ln (37), and
cor

C 1 (38) into
cor

X (y; ϵ) [Table 1] gives us the matched first order left358

corner layer solution as a function of y:359

lc

X(y; ϵ) = x
f
+ (

x
f

x⋆ − xf

)y − ϵ(
1 − x

f

x⋆ − xf

)

⎡
⎢
⎢
⎢
⎢
⎣

ln y − ln((
1

x
f

− 1)(x⋆ − xf
)) − (

1

x
f

− 1)

−1

Y
1
x
f
(1)

⎤
⎥
⎥
⎥
⎥
⎦

. (B.0.1)

Solving d
dy

lc

X(y; ϵ) = 0, we find that the minimum value of
lc

X(y; ϵ), x
1
, occurs at y = ϵ ( 1

x
f

− 1):360

x
1
=

lc

X(ϵ ( 1
x
f

− 1) ; ϵ) = x
f
+ ϵ ln ϵ−1(

1 − x
f

x⋆ − xf

) + ϵ(
1 − x

f

x⋆ − xf

)

⎡
⎢
⎢
⎢
⎢
⎣

1 + ln (x⋆ − xf
) + (

1

x
f

− 1)

−1

Y
1
x
f
(1)

⎤
⎥
⎥
⎥
⎥
⎦

. (B.0.2)361

(Similarly, we can obtain the right corner solution as a function of y,
lc

X(y; ϵ); evaluating the latter at362

y = ϵ( 1
x
i,2

− 1) gives an approximation to the maximum fraction susceptible, x1 . See Table 2). Proceeding363

as in §3.3, we may use the Lambert W function to convert the inequality x
1
> 0 into an inequality for ϵ. We364

find x
1
> 0 if and only if365

ϵ < ϵ̄ =
x⋆ − xf

( 1
x
f

− 1)W0 ((
1
x
f

− 1)
−1

e
−( 1

x
f
−1)

−1
Y1

x
f
(1)−1
)

. (B.0.3)
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Quantity Expression Equation

Equilibrium susceptible density x⋆
1
R0

(3)

Final size (KM) x
f

−x⋆W0 (E (−1/x⋆)) (9)

Peak prevalence (KM) y
0

1 − x⋆(1 − ln (x⋆)) (10)

Effective initial condition x
i,2

1 + (1 − x⋆)W0 (E (−
1−x

f

1−x⋆
)) (12)

Peak prevalence (ϵ > 0) y
1

y
0
− ϵ
(1−x⋆)(1−x⋆+lnx⋆)

1−x⋆(1−lnx⋆)
(25)

Minimum prevalence y
1

( 1
x
f

− 1) (x⋆ − xf
)x

x⋆−xf
+x⋆x

f
(1−x

f
)(1−x⋆ )

f (
1−x

f

1−x⋆
)

1−x⋆
ϵ

e
−

x⋆−xf
ϵ − x⋆

x⋆−xf (51)

Minimum susceptible density x
1

x
f
+ ϵ(

1−x
f

x⋆−xf

) [ln ϵ−1 + 1 + ln(x⋆ − xf
) +

x⋆−xf
+x⋆xf

(1−x
f
)(1−x⋆)

lnx
f
−

x⋆
x⋆−xf

] (B.0.2)

Maximum susceptible density x1 x
i,2
+ ϵ

1−x
i,2

x
i,2
−x⋆

⎡
⎢
⎢
⎢
⎢
⎣

ln
⎛

⎝

ϵ( 1
x
i,2
−1)

( 1
x
f
−1)(x⋆−xf

)

⎞

⎠
−

x⋆−xf
+x⋆xf

(1−x
f
)(1−x⋆)

lnx
f
−

x⋆
x⋆−xf

⎤
⎥
⎥
⎥
⎥
⎦

–

Table 2: Approximations of quantities of epidemiological interest for disease invasions, i.e., on the trajectory that emanates from the disease-
free equilibrium (DFE), (x

i
, y

i
) = (1,0). Each entry may depend upon entries above it in the table (but never on entries below). These

quantities are used in our approximations to the full trajectories in Table 3. We use “(KM)” to indicate quantities that are exact for the
Kermack-McKendrick SIR model without vital dynamics (ϵ = 0). With vital dynamics (ϵ > 0), the peak prevalence y

0
is an approximation, and

there is no “final” size, but the quantity x
f
appears in the approximation to the minimum fraction susceptible (x

1
). The expression for x

1
is

valid provided ϵ < ϵ̄ Equation (B.0.3). We write the formulae for x
1
and x

1
as compactly as possible here; see Equation (B.0.2) for x

1
written

out with separate terms for each asymptotic order.

‘366
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Solution Notation Expression Branch Domain Equation

KM
out

Y0(x,xi
) x

i
− x + x⋆ ln (

x
x
i

) – [x
f
, x

i
] (8)

Outer
out

Y (x; ϵ)
out

Y0(x,xi
) − ϵY1

x(1) + ϵ (
1
x
f

− 1) ln
x−x

f

1−x
f

– [x
f
, x

i
] (23)

x-axis
bdry

xb

Y (x; ϵ) ( 1
x
f

− 1) (x⋆ − xf
) (

1−x
f

1−x )

1−x⋆
ϵ

x

x⋆−xf
+x⋆x

f
(1−x

f
)(1−x⋆ )

f e
−

x−x
f

ϵ − x⋆
x⋆−xf – [x

f
, x⋆] (47)

Left
corner

lc

Y i(x; ϵ) −ϵ ( 1
x
f

− 1)Wi (−
x⋆−xf

ϵ
x

x⋆−xf
+x⋆x

f
(1−x

f
)(1−x⋆ )

f e
−

x−x
f

ϵ

x⋆−xf
1−x

f
− x⋆

x⋆−xf ) i =

⎧⎪⎪
⎨
⎪⎪⎩

−1 above

0 below
[x

f
, x⋆] (39)

Right
corner

rc

Y i(x; ϵ) −ϵ( 1
x
i,2

− 1)Wi

⎛

⎝
−
( 1

x
f
−1)(x⋆−xf

)

ϵ( 1
x
i,2
−1)

x

x⋆−xf
+x⋆x

f
(1−x

f
)(1−x⋆ )

f e
−

x
i,2
−x

ϵ

x
i,2
−x⋆

1−x
i,2
− x⋆

x⋆−xf
⎞

⎠
i =

⎧⎪⎪
⎨
⎪⎪⎩

−1 above

0 below
[x⋆ , xi,2

] (49)

Matched,
above

Y ↑(x; ϵ)
out

Y0(x,xi
) +

lc

Y −1(x; ϵ) − (
x⋆
x
f

− 1) (x − x
f
) + ϵYx

x
f
(1) – [x

f
, x

i
] (40)

Matched,
below

Y↓(x; ϵ)

xb

Y (x; ϵ) +
lc

Y 0
(x; ϵ) +

rc

Y 0
(x; ϵ)

− (
1

x
f

− 1)(x⋆ − xf
)x

x⋆−xf
+x⋆x

f
(1−x

f
)(1−x⋆ )

f e
− x⋆

x⋆−xf (e
−

x−x
f

ϵ

x⋆−xf
1−x

f + e
−

x
i,2
−x

ϵ

x
i,2
−x⋆

1−x
i,2 )

– [x
f
, x

i,2
] (50)

Table 3: First order matched approximations to the initial epidemic following disease invasion [(x
i
, y

i
) = (1,0)]. See Table 2 for x⋆ , xf

, and x
i,2

expressed in terms of R0 and ϵ. Equation (18) defines Yb
a(1) = ∫

b
a [(

1
u
− 1)(

x⋆
u
− 1)/

out

Y0(u,xi
) − ( 1

x
f

− 1) 1
u−x

f

]du. We use (52) to approximate

Y1
x
f
(1) analytically. Above and below indicate solutions that are valid above and below the x nullcline, y = ϵ ( 1

x
− 1). The expression for

rc

Y i(x; ϵ), and thus the matched solutions Y ↑(x; ϵ) and Y↓(x; ϵ) are valid provided ϵ < ϵ̄ Equation (B.0.3).
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Constant Expression Equation

out

C0 y
i
+ x

i
− x⋆ lnxi

(7)

out

C1 −Y1
x⋆
(1) − ( 1

x
f

− 1) ln (
1−x

f

x⋆−xf

) (22)

cor

C 0 (left) x
f

(36)

cor

C ln (left) −
1−x

f

x⋆−xf

(37)

cor

C 1 (left)
1−x

f

x⋆−xf

[ln (( 1
x
f

− 1) (x⋆ − xf
)) + ( 1

x
f

− 1)
−1
Y1
x
f
(1)] (38)

cϕ0 x
f

(44)

Cϕ
0 x

f
− (1 − x⋆) ln (1 − xf

) (45)

Cϕ
1 ln [( 1

x
f

− 1) (x⋆ − xf
)] + ( 1

x
f

− 1)
−1
Y1
x
f
(1) (46)

cor

C 0 (right) x
i,2

–

cor

C ln (right)
1−x

i,2

x
i,2
−x⋆

–

cor

C 1 (right) −
1−x

i,2

x
i,2
−x⋆
[ln [( 1

x
f

− 1) (x⋆ − xf
)] + ( 1

x
f

− 1)
−1
Y1
x
f
(1)] –

out

C0 (2nd) x
i,2
− x⋆ lnxi,2

–

out

C1 (2nd) −( 1
x
f,2

− 1) ln
⎛

⎝

( 1
x
f
−1)(x⋆−xf

)(1−x
i,2
)

( 1
x
i,2
−1)(x

i,2
−x⋆)(xi,2

−x
f,2
)

⎞

⎠
+

1
x
f,2
−1

1
x
f
−1 Y

1
x
f
(1) −Y

x
i,2

x⋆ (xi,2
) (56)

cor

C 0 (left, 2nd) x
f,2

–

cor

C ln (left, 2nd) −
1−x

f,2

x⋆−xf,2

–

cor

C 1 (left, 2nd)

1 − x
f,2

x⋆ − xf,2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
1

x
f,2

− 1)

−1

Y
x
i,2

x
f,2
(x

i,2
) −

1
x
i,2

− 1

( 1
x
f

− 1)( 1
x
f,2

− 1)
Y

1
x
f
(1)

+

1
x
i,2

− 1

1
x
f,2

− 1
ln

⎛
⎜
⎜
⎜
⎝

( 1
x
f

− 1) (x⋆ − xf
)(1 − x

i,2
)

( 1
x
i,2

− 1) (x
i,2
− x⋆)(xi,2

− x
f,2
)

⎞
⎟
⎟
⎟
⎠

+ ln

⎛
⎜
⎜
⎜
⎝

( 1
x
f,2

− 1) (x⋆ − xf,2
)(x

i,2
− x

f,2
)

1 − x
f,2

⎞
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

–

Table 4: First order matching constants for disease invasions [(x
i
, y

i
) = (1,0)]. Left and right indicate

constants appearing in the left and right corner solutions, while 2nd indicates constants for the second
epidemic wave. See Table 2 for x⋆ , xf

, and x
i,2

expressed in terms of R0 and ϵ. The final expressions with
these values for the matching constants are listed in Table 3.
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Figure 2: Solutions of the SIR ODEs Equation (4) and first order approximations (Table 3). This figure
should be compared with the zeroth order approximations shown in [10, Figures 4 and 5]. Top panel: R0 = 2,
ε = 0.01. Bottom panel: R0 = 17, ε = 0.001; similar to measles and whooping cough [10, Table 1]. Various
outer and inner approximations are shown in grey, and the matched approximation is black. Numerically
computed solutions to Equation (4) are red. In the bottom panel, the matched solution is not shown
because matching fails for this parameter combination (5.9 × 10−5 = ϵ > ϵ̄ ≈ 5.7 × 10−9; cf. Equation (B.0.3)).
Nevertheless, the local solutions that we show still provide accurate approximations, with the exception of
the corner layer solution that fails and prevents successful matching.19
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Figure 3: Minimum prevalence following an initial epidemic, as a function of R0 for ε = 0.01. Top panel:
minimum prevalence y from “exact” numerical solution of Equation (4); from our semi-analytical approxi-

mation y
1
(51, which depends on computing the integral Y1

x
f
(1) numerically); and from our fully analytical

closed-form approximation to y
1
(obtained using Equation (52)). Bottom panel: Relative errors when ap-

proximating y using the semi-analytical y
1
Equation (51), and the fully analytical approximate y

1
.
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Figure 4: Minimum prevalence after a first epidemic. Like Figure 3 but for ε = 0.001.
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Figure 5: Maximum prevalence. Like Figure 3 but for y with ε = 0.1, and using a logarithmic scale in the
bottom panel.
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Figure 6: Maximum prevalence. Like Figure 5 but for ε = 0.01.
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