
HAL Id: hal-04180132
https://cnrs.hal.science/hal-04180132v1

Submitted on 11 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Use of Gradient-Based Solver and Deep Learning
Approach in Hierarchical Control: Application to Grand

Refrigerators
Xuan-Huy H Pham, François Bonne, Mazen Alamir

To cite this version:
Xuan-Huy H Pham, François Bonne, Mazen Alamir. On the Use of Gradient-Based Solver and Deep
Learning Approach in Hierarchical Control: Application to Grand Refrigerators. Cybernetics and
Systems, In press, pp.1-19. �10.1080/01969722.2023.2247264 �. �hal-04180132�

https://cnrs.hal.science/hal-04180132v1
https://hal.archives-ouvertes.fr

Taylor & Francis Word Template for journal articles

Xuan-Huy PHAMa,b*, François Bonneb and Mazen Alamira*

aCNRS, Univ. Grenoble Alpes, Gipsa-lab, F-38000 Grenoble, France;

 bUniv. Grenoble Alpes, IRIG-DSBT, F-38000 Grenoble, France;

*Mazen Alamir: mazen.almir@grenoble-inp.com

*Xuan-Huy PHAM: pxh661995@gmail.com

mailto:mazen.almir@grenoble-inp.com

On the use of gradient-based solver and deep learning approach in

hierarchical control: Application to grand refrigerators

This paper extends the work that has been recently studied on hierarchical control

proposed by (Alamir Mazen 2017). This framework is designed to control

interconnecting subsystems such as cryogenic processes or power plants. Based on

the previous study, (Pham Xuan-Huy 2022) have shown that handling constraints

and non-linearities could dispute the real-time feasibility of the approach. In order

to reduce the computation time of the nonlinear model predictive controllers

(NMPCs) of the local subsystems, two successful directions are investigated and

combined, namely truncated fast gradient based NMPC approach and deep-neural-

network-based approach. It is also shown that by doing so, the control updating

period can be significantly reduced and the closed-loop performance is greatly

improved. This paper can therefore be considered as a concrete implementation

and validation of some key ideas in the design of real-time distributed NMPCs. All

concepts are validated using the realistic and challenging example of a real

cryogenic refrigerator.

Keywords: Hierarchical MPC, Fixed-point iteration, Real-time, Deep learning,

Gradient-based solver, Cryogenic refrigerators.

1. Introduction

In nuclear fusion reactors or particle accelerators, cryogenic refrigerators play an

essential role because of their ability to cool thermal loads on superconducting magnet-

based components to maintain the functionality of the overall process. These installations

are composed of several highly interacting subsystems that require truly effective control

designs. In practice, there are many reasons why some changes (e.g., readjusting the local

controllers, changing actuators, or even activating/inactivating a subsystem) need to be

made at the subsystem level. These modifications usually come with disadvantages since

any changes at the subsystem level are usually made without any proper assessment.

Moreover, if the modification is not carefully done, The entire process might be

unexpectedly destabilized. Thus, the need for a framework that provides the ability to

switch between different modes and facilitate modular modification is an emerging topic

for large-scale system control.

With the purpose of having a framework suitable for cryogenic process

specifications, (Alamir Mazen 2017) proposed a two-layer hierarchical structure, in

which a network of coupled subsystems resides at the local layer (lower layer), and a

coordinator resides at the coordination layer (upper layer). At the upper layer, the

coordinator attempts to solve a central optimization problem with respect to the setpoint

vector and sends its components to the corresponding subsystems. Essentially, the

coordinator is assumed not to know any mathematical information about the subsystems

(modular privacy preservation requirement), so the central cost evaluation process

must be performed by fixed-point iteration that guarantees the consistency constraint on

coupling signals. The results of (Pham Xuan-Huy 2022) shown that incorporating

nonlinearities into local control problems can improve the performance of the overall

framework. However, it can lead to losses of control performance if the computation

becomes too complex and infeasible within the allowed computation time due to limited

computational resources. This fact has been demonstrated by numerical simulations with

the use of NMPC for the Brayton cycle. In fact, the method consisting in distributing the

optimization over the real-life time is only valid if the computation time resulted from the

distribution is compatible with the predefined updating periods [𝑘, 𝑘 + 1]𝜏𝑢, which must

be long enough to cover the computation time.

The authors underlined that the computational burden in this framework is due to

the resolution of local nonlinear MPC problems being repeated over the fixed-point

iterations and for several set-points. This computational bottleneck is induced by using

powerful but computationally expensive solvers such as Casadi (Diehl 2019) or Acado

(Houska 2011). Based on this observation, this paper proposes two directions that could

be used if the computational time problem arises when implementing the proposed

framework.

In order to replace such powerful but real-time incompatible optimization solvers,

the simplest way is to use a sub-optimal solver. Indeed, according to (Richter 2011), a

well-known gradient-based iterative solver is proposed to solve linear optimization

control problem, by providing a technique to define lower iteration bound. This has

prompted much works regarding the implementation aspect of MPC in embedded

applications (Van Parys 2019, Kogel 2011, Van Parys 2019).

Another way to reduce the computation time is to approximate the control laws by

piecewise affine functions (PWA) defined on a polyhedral partition of the feasible states

(Mayne 2014, Seron 2000, Quevedo 2004). This method is also called explicit MPC.

However, this property is only true if there is no nonlinearity present in the objective

function or constraints. Besides, the complexity of the state space regions over which the

control law is defined grows exponentially as the number of states increases, which makes

this approach impractical for large-scale systems. Moreover, in the conventional explicit

MPC methods, only the first action of the control sequence is approximated, whereas, in

our proposed framework, the entire control sequence 𝒖𝑠 is required for the fixed-point

iteration.

Instead of approximating the nonlinear MPC by PWA functions, deep learning

has become a popular choice due to its universal approximation property. Moreover,

many works have demonstrated the effectiveness of these methods in many embedded

applications (Bonzanini 2020, Chan 2021). Hence, the contribution of this paper is to

address the computation time occurred when using NMPC in fixed-point iteration based

hierarchical control. More precisely:

(1) First, a fast gradient-based algorithm is proposed. The performance of this solver

is compared to available generic toolkits (such as Casadi/IPOPT) in terms of

optimization performance and computation time. This solver will be shown to be

real-time compatible when used in the fixed-point-based hierarchical control

framework.

(2) Then, deep learning approach is used to approximate the resulted control laws to

further reduce the computation time of the most CPU-critical local controller.

(3) Finally, we will show that the reduction in computation time allows the control

inputs to be updated more frequently, thus improving the closed-loop

performance.

The paper is organized as follows: Section 2 describes the system and recalls the

model predictive control as well as the proposed hierarchical control framework. Section

3 presents the truncated gradient-based optimization solver for solving MPC problem.

Section 4 describes the deep learning approach, which is used to approximate the MPC

laws. The simulation results and analysis are given in section 5 while section 6 concludes

the paper and gives hints for future investigations.

2. Problem description

This section described the cryogenic system investigated in this paper. Fig. 1 shows the

diagram of the station in the 400W configuration which can be decomposed into four

components: Joule-Thomson cycle, Brayton cycle, pre-cooling Brayton cycle and warm

compression station (WCS).

Figure 1: Diagram of the cold box of a cryogenic refrigerator.

Briefly speaking, the cryogenic refrigerator implements a closed thermodynamic cycle.

The combination of the Brayton cycle and the J-T cycle is also called the cold box (Fig.

1). The gaseous helium flows clock-wise in two main pipelines which are hot pipe line

(red line) and cold pipeline (blue line). The cooling power of the cryogenic refrigerator

is generated by exchanging heat power in the fluid through a series of heat exchangers

denoted by NEFx, and also by extracting thermal energy by using two turbines denoted

by T1 (in Brayton cycle). The gaseous helium is partially liquefied after passing through

the valve CV155 and rests in the helium bath, while the low temperature gaseous helium

returns to the circuit. The main objective is to reject the disturbing heat power induced by

the heat source denoted by NCR22. Concerning the simulation tools, the cryogenic toolbox

Simcryogenics (F. Bonne 2020) developed for Matlab/Simulink environment is used to

obtain the simulation result presented in this paper.

This system can be decomposed into an interconnecting network of four

subsystems which is shown in Fig. 2. In this topology, there exists a set of subsystems

indices denoted by 𝒩 = {1, … , 𝑛𝑠 = 4} which is divided into two subsets 𝒩𝑐𝑡𝑟 and

𝒩𝑢𝑛𝑐. The indices belonging to the subset 𝒩𝑐𝑡𝑟refers to the controlled subsystems,

whereas the indices belonging to the subset 𝒩𝑢𝑛𝑐refer to the uncontrolled subsystems. In

this decomposition, the controlled subsystems are: Joule-Thomson cycle, turbine T1,

while the remaining subsystems are uncontrolled. These subsystems are coupled through

the coupling signals denoted by 𝑣𝑠′→𝑠 with 𝑠′ ∈ 𝒩𝓈 representing the set of subsystems'

indices that affect the subsystem 𝑆𝑠.

Figure 2: The interconnection between the subsystems of the cryogenic plant. The

introduced set corresponding to this decomposition topology are 𝒩 ≔ {1, … ,4}; 𝒩𝑐𝑡𝑟 ≔

{1,4}; 𝒩𝑢𝑛𝑐 ≔ {2,3} ; 𝒩1 ≔ {2}; 𝒩2 ≔ {1,3,4}; 𝒩3 ≔ {2,4}; 𝒩4 ≔ {2,3}.

Before going any further, let us introduce the following notation which is

extensively used in the sequel. Given a vector sequence 𝑞𝑖1
, 𝑞𝑖2

, … , 𝑞𝑖𝑛∈𝑍
, the vector 𝑞

concatenating all these elementary vectors, provided by the corresponding concatenation

operator col, is defined as follows:

𝑞 = col 𝑖∈ℐ𝑞𝑖 ≔ [𝑞𝑖1

𝑇 , 𝑞𝑖2

𝑇 , … , 𝑞𝑖𝑛

𝑇]
𝑇

,   with 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑛 ∈ ℐ (1)

Besides, the bold-faced notation represents the profile of a vector p over a prediction

horizon of length N, namely:

𝐩 = [𝑝𝑇(𝑘), … , 𝑝𝑇(𝑘 + 𝑁 − 1)]𝑇 ∈ ℝN⋅𝑛𝑝 (2)

with 𝑛𝑝 being the length of vector 𝑝.

The next subsections will described the controlled systems as well as the

uncontrolled ones.

2.1. The controlled subsystems

The first controlled subsystem in the studied system is the Joule-Thomson cycle. This

subsystem is used to liquefy a portion of helium gas by passing the fluid through the valve

CV155. The dynamic model can be expressed by the nonlinear equation given below:

𝑥1
+ = 𝑓1(𝑥1, 𝑢1, 𝑤1, 𝑣1

in) (3)

𝑦1 = ℎ1(𝑥1, 𝑢1, 𝑣1
in) (4)

𝑣1→𝑠′ = 𝑔1→𝑠′(𝑥1, 𝑢1, 𝑣1
in) (5)

where 𝑥𝑠, 𝑢1, 𝑤1 and 𝑣1
in are the deviations of state, control input, disturbance and the

incoming coupling signal from the operation points 𝑥1
op

, 𝑢1
op

, 𝑤1
op

 and 𝑣1
in,opt

,

respectively. The deviation of the incoming coupling signal 𝑣1
in is defined by 𝑣𝑠

in =

cols∈𝒩1
𝑣𝑠′→1.

The detail of the control input, the regulated output and the disturbance are:

𝑢1 = [
CV156

NCR22
(𝑎)] y1 =   [

Ltb131

Ttb108
] 𝑤1 = NCR22

(𝑤)

where Ltb131(%) is the liquid helium level in the bath, Ttb108 (K) is the temperature at the

inlet of the J-T valve, CV156 ∈ [−55,45] (%) is the opening position (expressed in terms

of deviations) of the J-T valve, NCR22
(𝑎)

∈ [0,100] (W) is the power of the heating actuator

and NCR22
(𝑤) ∈ [-100,100] (W)is the power of heating disturbance. Note that the heating

power is divided in two variables, which are NCR22
(a)

 and NCR22
(𝑤)

. The first one is used as

the control input, while the latter represents the disturbance power. Thus, the deviation of

the heating power counted from its operation value NCR22
op

 can be expressed as:

NCR22 = NCR22
(𝑎)

+ NCR22
(𝑤) (6)

The second controlled system is the turbine T1. This component is a key element

of the refrigerator since it allows the gas to expand by extracting its energy. The model

of the turbine is given by the following static equation:

𝑦4 = ℎ4(∅, 𝑢4, 𝑣4
in) (7)

𝑣4→𝑠′ = 𝑔4→𝑠′(∅, 𝑢4, 𝑣4
in) (8)

The turbine’s model does not employ involve any state vector, thus, the state vector is

denoted by 𝑥4 = ∅ in all the equations that are concerned. Also, 𝑢4 = ΔP156 and 𝑦4 =

Ttb130 are manipulated input and regulated output counted from its operation value 𝑢4
op

and 𝑦4
op

, respectively. More precisely, Ttb130 (K) is the temperature at the outlet of the

turbine T1, while ΔP156 ∈ [-1.5,12] (bar) is the pressure drop at the of the flow rate

passing through the valve CV156.

2.2.The uncontrolled subsystems

The uncontrolled systems concerned in this plant are the heat exchangers

NEF2(𝑆2) and NEF34(𝑆3), whose dynamics are given by:

𝑥𝑠
+ = 𝑓𝑠(𝑥𝑠, ∅, ∅, 𝑣𝑠

in) (9)

𝑦𝑠 = ℎ𝑠(𝑥𝑠, ∅, 𝑣𝑠
in) for 𝑠 = 3 (10)

𝑣𝑠→𝑠′ = 𝑔𝑠(𝑥𝑠, ∅, 𝑣𝑠
in) (11)

where 𝑥𝑠 and 𝑣𝑠
𝑖𝑛 are the deviation of the states and incoming coupling signal from the

operation points 𝑥𝑠
op

 and 𝑣𝑠
in,op

, respectively. Furthermore, the united incoming coupling

vector 𝑣𝑠
in that gathers all the coupling vectors coming from the neighbors that affect the

dynamic of 𝑆𝑠 is defined by 𝑣𝑠
𝑖𝑛 = col𝑖∈𝒩𝓈 𝑣𝑠′→𝑠. Also, these subsystems do not have any

control input or any disturbance input, their control input vectors and disturbance input

are thus denoted by 𝑢𝑠 = ∅, 𝑤𝑠 = ∅ (for s ∈ {2,3}) in all the underlying equations. In

addition, the subsystem 𝑆3 has one output which is the outgoing flow rate 𝑦3 + 𝑦3
op

=

𝑀𝑜𝑢𝑡 (see Fig. 1), to be constrained to remain below 0.07 kg/s.

Next, the model predictive control, which is used to control the J-T cycle and the

turbine is introduced.

2.3. Model predictive control

This subsection recalls the MPC formulation that is used to control the controlled

subsystem (𝑆1 and 𝑆4).

Given an initial state vector 𝑥𝑠(𝑘), an incoming coupling profile 𝒗𝑠
in, a disturbance profile

𝒘𝑠 and any control profile 𝒖𝑠 defined over the prediction horizon [𝑘, 𝑘 + 𝑁], the

corresponding nominal state trajectory is given by:

𝑥𝑠(𝑘 + 𝑖 + 1) = 𝑓𝑠(𝑥𝑠(𝑘 + 𝑖), 𝑢𝑠(𝑘 + 𝑖), 𝑣𝑠
in(𝑘 + 𝑖), 𝑤𝑠(𝑘 + 𝑖)) for 𝑖 = 0, … , 𝑁 − 1

The state profile 𝒙𝑠 over a horizon of length 𝑁, can be defined by a straight-forward

notation:

𝒙𝑠 = f𝑠(𝑥𝑠(𝑘), 𝒖𝒔, 𝒗𝑠
in, 𝒘𝑠); (12)

Similarly, the output profile and the outgoing coupling profile can be computed by using

their corresponding equations associated to each subsystem (4), (5), (7) and (8) , namely:

𝒚𝑠 = h𝑠(𝒙𝑠, 𝒖𝒔, 𝒗𝑠
in); (13)

𝒗𝑠
out = g𝑠(𝒙𝑠, 𝒖𝒔, 𝒗𝑠

in); (14)

At every instant 𝑘, the standard formulation of the optimal control problem are given by:

𝒫𝑠: min𝒖𝒔
 𝐽𝑠

NMPC(𝑥𝑠(𝑘), 𝒖𝒔, 𝒗𝑠
in, 𝒘𝑠, 𝑟𝑠)

= min𝒖𝒔
∑ |𝑦𝑠

𝑠𝑝

𝑁−1

𝑖=0

− 𝑦𝑠(𝑘 + 𝑖)|𝑄𝑠

2 + |𝑢𝑠(𝑘 + 𝑖)|𝑅𝑠

2 (15)

Subject:

𝒙𝑠 = f𝑠(𝒙𝑠(𝑘), 𝒖𝒔, 𝒗𝑠
in, 𝒘𝑠) (16)

𝒚𝑠 = h𝑠(𝒙𝑠, 𝒖𝒔, 𝒗𝑠
in); (17)

𝒖𝒔 ∈ 𝕌𝑠 (18)

where 𝑄𝑠 ∈ ℝ𝑛𝑦
(𝑠)

×𝑛𝑦
(𝑠)

 and 𝑅𝑠 ∈ ℝ𝑛𝑢
(𝑠)

×𝑛𝑢
(𝑠)

 are weighting matrices on the output and

control input.. The disturbance profile 𝒘𝑠 (if any) has a constant value over the prediction

horizon, which is equal to the current estimated disturbance value 𝑤𝑠.

This section has presented the nonlinear model predictive control, the next sub-

section will recall the fixed-point-iteration based hierarchical control.

2.4. Recall on fixed-point-iteration based hierarchical control

To begin, Fig. 3 describes the case of interest where a set of interacting subsystems

indexed by 𝒩 ≔ {1, … , 𝑛𝑠} is represented. Remember that this set is subdivided into two

different subsets:

• A subset of controlled subsystems indexed by 𝒩𝑐𝑡𝑟 ⊂ 𝒩 having each its control

input vector and regulated output vector, denoted for any 𝑠 ∈ 𝒩𝑐𝑡𝑟 by 𝑢𝑠 and 𝑦𝑠

respectively.

• A potential complementary subset of subsystems that includes no control input

denoted by 𝑁𝑢𝑛𝑐 ≔ 𝒩 − 𝒩𝑐𝑡𝑟 .

The dynamic of each subsystem 𝑆𝑠 is impacted through the so-called coupling signals

𝑣𝑠′→𝑠 coming from all exogenous subsystems belonging to the set {𝑆𝑠′}𝑠′∈𝒩𝓈
, with indices

s' belonging to the set of indices 𝒩𝓈 (set of indices of subsystems impacting 𝑆𝑠).

Figure 3: Synoptic view the hierarchical control architecture applied to the

interconnecting network of the subsystems. Here, the 4-subsystem topology presented in

Sect. 2 is used for the illustration of the general hierarchical framework.

Let 𝒗𝑠
in and 𝒗𝒔

out be the incoming/outgoing coupling profiles into and from the

subsystem 𝑆𝑠 respectively. More precisely:

𝑣𝑠
in ≔ col𝑠 ∈𝒩𝓈 𝑣𝑠′→𝑠; (19)

𝒗𝒔
out ≔ col𝑠′|𝑠∈𝒩

𝓈′ 𝑣𝑠→𝑠′ (20)

Note that the process described below is operated during each control updating period

[𝑘, 𝑘 + 1]τ𝑢 (with τ𝑢 being the sampling time constant), the state vectors 𝑥𝑠 and the

disturbance vectors 𝑤𝑠 are thus dropped for a sake of brevity.

The generic formulation of the proposed framework has been well precisely

defined in (Alamir Mazen 2017). However, it is essential to recall the overall hierarchical

control framework. Let us begin with the following assumption:

ASSUMPTION 1: Each subsystem 𝑆𝑠, when given:

• a presumed incoming profile 𝒗𝒔
in and

• a given individual set-point 𝑟𝑠 (required if 𝑠 ∈ 𝒩𝒸𝓉𝓇),

can compute what would be:

• Its control profile 𝑢𝑠 (if it has) by solving a nonlinear optimization problem,

• Its resulting outgoing profile 𝒗𝒔
out and

• Its contribution 𝐽𝑠 to the central cost.

The central cost is assumed to be of the form:

𝐽𝑐(𝑟, 𝑣in) ≔ ∑ 𝐽𝑠(𝑟𝑠, 𝑣𝑠
in)

𝑠∈𝒩𝑐𝑡𝑟

+ ∑ 𝐽𝑠(𝑣𝑠
in)

𝑠∈𝒩𝑢𝑛𝑐

(21)

where 𝑟 ≔ col𝑠∈𝒩𝑐𝑡𝑟 𝑟𝑠 and 𝒗in ≔ col𝑠∈𝒩𝒗𝒔
in. Note that typical regulation-based cost

𝐽𝑠 is defined for 𝑠 ∈ 𝑁𝑐𝑡𝑟while 𝐽𝑠 might represent a constraints violation indicator

when 𝑠 ∉ 𝒩𝑐𝑡𝑟 .

More precisely, each time the coordinator sends (𝑟, 𝒗in) to the subsystems, this allows

the subsystems to compute (in parallel) their corresponding control profiles 𝒖𝒔 (if 𝑠 ∈

𝒩ctr) and the outgoing coupling signal profiles 𝒗𝒔
out which is represented by the

following form:

𝒗𝒔
out = g𝑠

out(𝑟, 𝒗𝒔
in) (22)

Recall that both bm 𝒗in and 𝒗out are composed of all the elementary profiles 𝒗𝑠→𝑠′.

Hence, there is a matrix 𝐺𝑖𝑛 such that:

𝒗in = 𝐺𝑖𝑛 ⋅ 𝒗out (23)

By injecting (22) into (23), we obtain:

𝒗in = 𝐺𝑖𝑛 ⋅ gout(𝑟, 𝒗in(𝑟)) (24)

Consequently, the problem that needs to be solved exclusively by the coordinator can be

stated as follows:

ropt=argmin
 𝑟

 𝐽𝑐(𝑟,𝒗in(𝑟)) (25)

subject to: 𝒗in = 𝐺𝑖𝑛 ⋅ gout(𝑟, 𝒗in(𝑟))

Since the coordinator does not have any mathematical knowledge of the subsystems the

fixed-point map represented by (24) cannot be analytically known to the coordinator

neither is the expression of the cost function J. That is the reason why the enforcement of

(24) for a given set-point 𝑟 is done through a round of iterations between the coordinator

and the subsystems as initially suggested by (Alamir Mazen 2017). More precisely, a

fixed-point-iteration-based algorithm is proposed to evaluate a central cost associated to

a given set-point 𝑟. Briefly, the algorithm could be summarized as below:

(1) The coordinator starts by sending an initial guess 𝑣𝑠
in,(σ=0)

 regarding the incoming

profiles,

(2) The subsystems compute their control profiles (if any) and the corresponding

outgoing coupling profiles 𝑣𝑠
out,(σ)

 as well as their local cost 𝐽𝑠,

(3) The subsystems send the outgoing coupling profiles 𝑣𝑠
out,(σ)

 to the coordinator

from which the coordinator can use to reconstruct the corresponding incoming

coupling profiles 𝑣𝑠
in,(σ)

 based on (23).

(4) To ensure the convergence of the iteration, a stabilizing filter or a residual-based

iterative method is used to update the profile denoted by 𝑣𝒔
in,(σ+1)

. Reader is

referred to the work of (Alamir Mazen 2017) for the synthesis of this filter.

(5) The iterations continue until one of the termination criteria ϵ ≔

𝑚𝑎𝑥(|𝑣in,(σ+1) − 𝑣in,(σ)|) ≤ ϵ𝑚𝑎𝑥 or σ ≥ σ𝑚𝑎𝑥 satisfied.

Upon convergence of the above fixed-point iteration, the coordinator disposes of the

value of the cost function for the current candidate of the set-point vector. Having the

possibility to compute the cost associated to a given set-point, any derivative-free

optimization algorithm can be used to solve the central problem (25) with respect to the

decision variable 𝑟 (e.g. Genetic algorithm, BOBYQA, etc.).

3. Fast gradient method for solving NMPC problem

It has been shown that when a limited (computation time)/(hardware

performance) is present, a truncated fast gradient might be beneficial to closed-loop

performances. That is why this algorithm is briefly recalled here as it is in the heart of the

forthcoming development.

Recall that each subsystem 𝑆𝑠, 𝑠 ∈ 𝒩𝒸𝓉𝓇 solves an optimization problem upon receiving

a pair of (𝑟𝑠, 𝑣𝑠
𝑖𝑛) from the coordinator, combining with the estimated state 𝑥𝑠̂ and the

disturbance profile 𝑤𝑠:

𝒫𝓈: 𝑢𝑠
∗ = argmin

{𝒖𝒔∈𝒰𝓈}
 𝐽𝑠

NMPC(𝒖𝑠, ξ𝑠) (26)

where 𝐽𝑠
NMPC is the NMPC cost and 𝒰𝓈 is the admissible set of control profiles 𝒖𝑠. The

vector ξ𝑠 encapsulates all parameters such as the estimated state 𝑥𝑠̂, the set-point 𝑟𝑠, the

incoming coupling profile 𝑣𝑠
𝑖𝑛 and the disturbance profile 𝑤𝑠 (if any). These variables are

considered frozen during the resolution of (15) – (17) and will be dropped in this section

for a sake of compactness.

The implementation of the fast gradient method requires the gradient of the cost function

at 𝐽𝑠
NMPC with respect to 𝒖𝑠, which can be easily obtained by modeling the cost with

CasADi and then computing its gradient ∇𝐽𝑠
NMPC. The algorithm that is used to solve (15)

– (17) is given by the following updating rule:

𝑧𝑠
𝑖+1 = 𝑢𝑠

𝑖 − γ ⋅ ∇𝐽𝑠
NMPC(𝑢𝑠

𝑖) (27)

𝑢𝑠
𝑖+1 = 𝐏𝐫(𝑧𝑠

𝑖+1 + 𝑐 ⋅ (𝑧𝑠
𝑖+1 − 𝑧𝑠

𝑖), 𝒰𝓈) (28)

where 𝑐 ∈ (0,1) is the design variable and 𝐏𝐫(𝑝, 𝒰𝓈) is the projection of vector 𝑝 on the

admissible set 𝒰𝓈. The variable 𝛾 is the step size that is calculated by using Barzilai-

Borwein formula proposed below:

γ𝑖+1 =
|(𝒖𝑠

𝑖+1 − 𝒖𝑠
𝑖) ⋅ (∇𝐽𝑠

NMPC(𝒖𝑠
𝑖+1) − ∇𝐽𝑠

NMPC(𝒖𝑠
𝑖)) |

|∇𝐽𝑠
NMPC(𝒖𝑠

𝑖+1) − ∇𝐽𝑠
NMPC(𝒖𝑠

𝑖)|2
(29)

Also, the convergence of the algorithm could be improved when a restart mechanism is

included. More precisely, the variable 𝑢𝑠 is restarted every 𝑛𝑟𝑠𝑡 iteration, but it is noted

that the frequency of restarts should depend on the cost function.

Finally, this method is summarized by Algorithm 1.

Algorithm 1 : Fast conjugate gradient method

 Input : 𝑖 ← 0; 𝑐 ∈ (0,1); γ𝑖 ∈ (0,1); 𝑛𝑟𝑠𝑡𝑟 ∈ 𝑁; 𝑢𝑠
𝑖 ← 𝟎; 𝑧𝑠

𝑖 ← 𝟎;

 For 𝑖 ← 1, … , Nmax do

 𝑧𝑠
𝑖+1 = 𝑢𝑠

𝑖 − γ𝑖 ⋅ ∇𝐽𝑠
𝑙𝑜𝑐(𝑢𝑠

𝑖);

 If mod(𝑖, 𝑛𝑐𝑠𝑡𝑟) == 0 then

 𝑢𝑠
𝑖+1 = 𝐏𝐫(𝑧𝑠

𝑖+1, 𝒰𝓈)

 else

 𝑢𝑠
𝑖+1 = 𝐏𝐫(𝑧𝑠

𝑖+1 + 𝑐 ⋅ (𝑧𝑠
𝑖+1 − 𝑧𝑠

𝑖), 𝒰𝓈)

 end

 Compute γ𝑖+1 by (29)

 end

The next section will present the Deep-learning approach, which can be used to

approximate the model predive control laws to reduce the commutation time.

4. Neural-network-based NMPC

In this section, the objective is to derive a regression model that predicts the values

of 𝑢𝑠
∗ by basing on a learning data set in which the algorithm 1 is involved. The central

idea here is to replace the implicitly defined control profile (15) – (17) by an explicit

representation of the form 𝑢𝑠
∗ = 𝐾𝑁𝑁(ξ𝑠, θ𝑠

∗), where θ𝑠
∗ is the parameters that minimize

the objective function given below:

θ𝑠
∗ = argmin

𝜃𝑠

1

𝑁𝑠
𝑑𝑎𝑡𝑎 ∑ |𝑢𝑠

∗,(𝑖)

𝑁𝑠
𝑑𝑎𝑡𝑎

𝑖=1

− 𝐾𝑁𝑁(ξ𝑠
(𝑖)

, θ𝑠)|2 (30)

where {(𝜉𝑠
(1)

, 𝑢𝑠
∗,(1)

), … , (𝜉𝑠
(𝑁𝑠)

, 𝑢𝑠
∗,(𝑁𝑠)

)} is the set of 𝑁𝑠
𝑑𝑎𝑡𝑎 training data. In this section,

only one subsystem (the Joule-Thomson cycle) is considered, the subscript 𝑠 is thus

omitted for the sake of simplicity. Once the network architecture is trained, the

approximate DNN-based NMPC law 𝐾𝑁𝑁(ξ, 𝜃∗) can be used online to cheaply evaluate

the optimal control input.

There are two common data-generation strategies, namely open-loop and closed-

loop. In open-loop data generation, the set ℰ ⊂ {𝒳 × 𝒱in × ℛ × 𝒲} of possible states,

incoming coupling profiles, disturbances and set-points could be created and the

corresponding control profile 𝑢 computed that will be added together to establish a set of

data 𝒟 = {(𝑥(𝑖), 𝒗in,(𝑖), 𝑟(𝑖), 𝒘(𝑖), 𝒖(𝑖))}𝑖=1
𝑁 . Although very simple, this strategy can result

in non physically realistic instances being included in the training data. Closed-loop

strategy, on the contrary, gathers data while running a closed-loop simulation under

randomly drawn physically meaningful initial states. Indeed, the majority of large-scale

cryogenic systems operate under a relatively small number of regimes or operating

scenarios. Each operational scenario is characterized by a few regulated and/or

constrained outputs and a few large magnitude disturbances that may frequently change,

while the set-points are kept unchanged for a long period of time. Hence, we propose the

following data generation procedure that performs off-line simulation using the system

model under the control law to collect the operationally relevant training set 𝒟:

(1) Randomly samples relevant values of 𝑟 and 𝑤 in their operational ranges.

(2) Run the closed-loop simulations with the above discussed hierarchical design at

some chosen initial states with the created PRBS signals. The data is collected

during the fixed-point iterations to capture the relationship between the control

profile 𝑢 and the triplet (𝑟, 𝑥, 𝑣in).

The network is trained to minimize the mean squared error criteria below:

𝐽𝑁𝑁(θ) =
1

2
∑ |𝑢(𝑖)

𝑁𝑡𝑟

𝑖=1

− 𝐾𝑁𝑁(ξ(𝑖), θ)|2 (31)

where 𝑁𝑡𝑟 < 𝑁 is the number of training observations. Indeed, Before the training

process, the data set is passed through a series of data preparation techniques and finally

separated into two subsets that contain 𝑁𝑡𝑟 samples and 𝑁𝑣𝑎𝑙 = 𝑁 − 𝑁𝑡𝑟 samples, which

serve to train and validate the regression model. Recall that the vector ξ(𝑗) ∈ ℇ

encapsulates all the parameters 𝒙(𝑖), 𝒗in,(𝑖), 𝒓(𝑖) and 𝒘(𝑖).

5. Numerical results

5.1.Comparison between truncated fast MPC and Casadi/IPOPT

First, we compare the control performance given by the truncated fast gradient

solver presented in Sect. 3 and IPOPT solver of Casadi. The 4-subsystem-decomposition

described in Sect. 2 is reused to conduct the simulation presented in this section. In

addition, the local controllers for the Joule-Thomson cycle (𝑆1) and the turbine 𝑇1 (𝑆4)

are nonlinear MPCs.

The performance of the Ipopt (CasADi) solver and the truncated gradient solver used to

solve the local optimal control problems of 𝑆1 and 𝑆4 are compared together. This can be

done by evaluating the open-loop performance indicated by 𝐽𝑠
NMPC(𝑢𝑠

∗), where 𝑢𝑠
∗ is the

solution of (15) – (17). More precisely, the process below is realized:

(1) Create realistic set of state 𝑥𝑠, set-point 𝑟𝑠 and 𝑣𝑠
in denoted by 𝒟sle ≔

{(𝑥𝑠
(𝑖)

, 𝑟𝑠
(𝑖)

, 𝒗𝑠
(𝑖)

)}𝑖=1
𝑁𝑑𝑡𝑎 .

(2) Solve the problem (15) - (17) by using solver Ipopt and truncated gradient at

triplets (𝑥𝑠
(𝑖)

, 𝑟𝑠
(𝑖)

, 𝑣𝑠
(𝑖)

) (for 𝑖 = 1, … , 𝑁𝑑𝑡𝑎).

(3) The open-loop performances 𝐽𝑠
NMPC,(𝑖)

(𝑢𝑠
∗,Ipopt

) and 𝐽𝑠
NMPC,(𝑖)

(𝑢𝑠
∗,grd

) of the solver

Ipopt and truncated gradient are computed. Then, the average of performance ratio

𝐽 between the two solvers is deduced, namely:

𝐽 =
1

𝑁𝑑𝑡𝑎
∑

𝐽𝑠
NMPC,(𝑖)

(𝑢𝑠
∗,solver)

𝐽𝑠
NMPC,(𝑖)

(𝑢𝑠
∗,base)

𝑁𝑑𝑡𝑎

𝑖=1

× 100% with solver ≔ {grd,Ipopt} (32)

The performance in terms of optimization and computation time is analyzed.

Table 2 shows the maximum computation time 𝑡cpt
max and the open-loop performance 𝐽

associated to several solver’s configuration on tolerance error ϵtol and maximum iteration

𝑁𝑚𝑎𝑥. The local costs 𝐽𝑠
NMPC,(𝑖)

(𝑢𝑠
∗,base) appearing at the denominator in (32) is chosen

to be the ones associated to the IPOPT solver with the configuration of ϵtol =

10−4 and 𝑁max = 10. The computation time for subsystem S1 when using the truncated

gradient-based solver is significantly reduced, while the optimization performance are

almost identical. This can be realized by the fact that the computation time given by the

choice of ϵ = 10−4 and 𝑁max = 10 reduced from 4.76s to 0.0499s by using gradient-

based solver with 𝑁𝑚𝑎𝑥 = 100, whereas the performance index 𝐽 is not too much

changed.

Table 1: Comparison of the truncated gradient solver and the IPOPT solver.

 NMPC of 𝑆1 NMPC of 𝑆4

Solver 𝑁max 𝜖tol 𝐽 𝑡cpt
max[s] 𝑁max 𝜖tol 𝐽 𝑡cpt

max[s]

Truncated

gradient descend

100 _ 100.2379 0.0499 100 _ 101.3418 0.011

50 _ 100.2395 0.0398 50 _ 101.3419 0.008

30 _ 100.2357 0.0322 30 _ 101.3418 0.0043

10 _ 101.29 0.0246 10 _ 101.3418 0.0014

Ipopt/Casadi 5 10-1 99.999 2.746 5 10-1 100 0.0589

10 10-1 100.002 3.756 10 10-1 100 0.0873

10 10-4 100 4.76 10 10-4 100 0.1720

Figure 4: Evolution of computation time of 𝑆1 needed for computing the optimal set-

point 𝑟opt using the fast-gradient algorithm and the associated control profile 𝑢1.

Furthermore, the real computation time with respect to the allowable maximum iteration

𝑁max when using fast-gradient based NMPC solver should be analysed. Fig. 4 shows the

optimum computation time of 𝑡1
final for 𝑆1 to compute the optimal setpoint 𝑟opt and the

associated control profile 𝒖𝟏 can be obtained by setting 𝑁max = 20. The increase in

computation time as 𝑁max decreases from 20 can be explained by the fact that the

performance of the solver is significantly deteriorated, which prevents the convergence

of the fixed-point iterations. For the simulation, 𝑁max = 30 chosen for both NMPCs of

𝑆1 and 𝑆4.

5.2. Approximate NMPC by neural network

In this subsection, the most time-consuming NMPC, which is the one of the J-T cycle

(𝑆1), will be approximated by a deep neural network. The approach described in Sect. 4

is proceeded by beginning with the data preparation step. The data is collected during the

closed-loop control simulation for the created profiles of 𝑟1 and 𝑤1, separately, and under

the hierarchical control algorithm described in Sect. 2.4. Then, many deep neural network

structures are used to approximate the control law based on the collected data.

After the data are gathered, the data pre-processing techniques are proceeded, such that:

data balancing, data normalization, data Shuffling and data splitting. Once the data is

ready, three feed-forward neural networks are trained. These configurations are set up so

that each DNN has a different number of hidden layers, ranging from 1 to 3 hidden layers,

with each layer having the same number of nodes, i.e., 25 nodes, denoted by NN-1-25,

NN-2-25, and NN-3-25, respectively. The activation function at each node is the sigmoid

function (other activation functions have been used but do not give any better

performance). Concretely, each structure is trained for 10000 epochs with the prepared

data set and is validated with the validation data set. The resilient back-propagation

(RPROP) algorithm is used to train the neural network. Table 3 presents the learning

performance for three DNN structures. The structure NN-2-25, which has the lowest

mean squared error (MSE) is chosen to conduct the next simulation.

Table 2. The learning performance of several configuration of DNNs.

Structure NN architecture MSE Training time

NN-1-25 [25 25 12] 0.3192 2h47

NN-2-25 [25 25 25 12] 0.2726 3h15

NN-3-25 [25 25 25 25 12] 0.2996 3h50

5.3. Simulation result

In order to facilitate the result interpretation, some performance indicators will be

needed. First, the closed-loop performance indicator 𝐽𝑐
𝐶𝐿 is recalled, namely:

𝐽𝑐
𝐶𝐿 =

1

𝑁𝑠𝑖𝑚
∑ ∑ [|𝑦𝑠

𝑠𝑖𝑚(𝑖) − 𝑟𝑠
𝑑(𝑖)|

𝑄𝑐
(𝑠) + |𝑢𝑠

𝑠𝑖𝑚(𝑖)|
𝑅𝑐

(𝑠) + | max(𝑦𝑠
𝑠𝑖𝑚(𝑖) − 𝑦

𝑠
, 0) |

𝑄𝑐𝑠𝑡𝑟
(𝑠)]

𝑁𝑠𝑖𝑚

𝑖=1𝑠∈𝒩

(33)

where the weighting matrices 𝑄𝑐
(𝑠)

, 𝑅𝑐
(𝑠)

 are chosen as followed:

• Mode 1: For disturbance rejecting scenario:

𝑄𝑐
(1)

= diag(103, 103), 𝑅𝑐
(1)

= diag(0,0), 𝑄𝑐𝑠𝑡𝑟
(1)

= 5 ⋅ 109, 𝑄𝑐
(4)

= 103, 𝑅𝑐
(1)

= 0

• Mode 2: For set-point tracking scenario:

𝑄𝑐
(1)

= diag(106, 0.1), 𝑅𝑐
(1)

= diag(0,0), 𝑄𝑐𝑠𝑡𝑟
(1)

= 5 ⋅ 109, 𝑄𝑐
(4)

= 104, 𝑅𝑐
(1)

= 0

The main advantages of the machine learning controller are in the implementation

burden and computational efforts. Instead of solving the optimization problem several

times in the fixed-point iterations, for several set-points to be evaluated and at each

sampling instants, the NN-based controller only needs to evaluate the function 𝑢𝑠
∗ =

𝐾(ξ(r(𝑖)), θ∗) at each iteration. Consequently, the computation time resulted by the

implementation of NN-based controller is reduced. More precisely, the computation time

imposed by the truncated gradient-based solver is reduced by factor 12 (the maximum

computation times, needed to get the optimal set point, when using the gradient-based

solver and the trained NN are 3.27 s and 0.27 s, respectively). In order to take advantage

of this benefit, the control input can be updated more frequently, which will improve the

control performance.

Figure 5: Output behaviors of the system in the case of disturbance rejecting under the

coordination , in which NMPC and NN-based controller are implemented by 𝑆1. The

updating period is chosen to be τ𝑠 = 5 s and τ𝑠 = 2 s in order to compare the control

performance.

Fig. 5 shows the output behaviors and the closed-loop control performance

associated to the previous set-up of the local controllers, under the control updating period

τ𝑢 = 5 s, and the one given by using the NN-based controller at 𝑆1 under 𝜏𝑢 = 2 s. In the

comparison between the NN-based controller and the NMPC controller with the same

updating period 𝜏𝑢 = 5 s, the cumulative performance is dropped by 18 % (at time instant

t= 1600 s of subfigure (5,1)). However, this performance is recovered and even improved

approximately 50 % (at t = 1600 s) when the updating period is feasibly set to be at 𝜏𝑢 =

2 s thanks to the use of NN-based controller. Finally, the use of NN-based controller is

validated in the set-point tracking scenario illustrated in Fig. 6. It can be seen that the

system behavior under the hierarchical control method with NN-based controller and with

NMPC are similar. The NN-based controller can also mimic the behavior of the NMPC

of 𝑆1 in the set-point tracking case, which results the same system behaviors with less

computation efforts (maximum computation time 𝑡𝑐𝑚𝑝
𝑚𝑎𝑥 = 0.25 s).

Figure 6: Output behaviors of the system in the case of set-point tracking under the

coordination, in which NMPC and NN-based controller are implemented by 𝑆1. The

updating period is chosen to be τ𝑠 = 5 s and τ𝑠 = 2 s in order to compare the control

performance.

6. Conclusion

In this paper, two methods have been proposed to reduce the computation time

for solving the constrained nonlinear optimization problem at the local layer of the

hierarchical control framework. The numerical results have demonstrated the

effectiveness of the two approaches. More precisely, the computation time is reduced

drastically by using the Truncated gradient method. Then, the control law is approximated

by a deep neural network. Finally, the two approaches are then compared in terms of

computation time and control performance, showing that the deep learning approach

successfully approximates local control laws and allows for more frequent control

updates. On-going work aims to validate the control structure with a full cryogenic

facility.

References

Alamir Mazen, Bonnay Patrick, Bonne François and Trinh Van-Vuong. "Fixed-point

based hierarchical MPC control design for a cryogenic refrigerator." Journal of

Process Control 58 (2017): 117-130.

Bonzanini, Angelo D and Paulson, Joel A and Graves, David B and Mesbah, Ali.

"Toward safe dose delivery in plasma medicine using projected neural network-

based fast approximate NMPC." IFAC-PapersOnLine 53, no. 2 (2020): 5279--

5285.

Chan, Kimberly J and Paulson, Joel A and Mesbah, Ali. "Deep learning-based

approximate nonlinear model predictive control with offset-free tracking for

embedded applications." 2021. 3475--3481.

Diehl, J. Andersson and Joris Gillis and Greg Horn and J. Rawlings and M. "CasADi: a

software framework for nonlinear optimization and optimal control."

Mathematical Programming Computation 11 (2019): 1-36.

F. Bonne, S. Varin, A. Vassal, P. Bonnay, C. Hoa, F. Millet and J.-M , Poncet.

"Simcryogenics: a Library to Simulate and Optimize Cryoplant and

Cryodistribution Dynamics." IOP Conference Series: Materials Science and

Engineering. 2020. 12-76.

Houska, Boris and Ferreau, Hans Joachim and Diehl, Moritz. "ACADO toolkit—An

open-source framework for automatic control and dynamic optimization."

Optimal Control Applications and Methods 32, no. 3 (2011): 298-312.

Kogel, Markus and Findeisen, Rolf. "A fast gradient method for embedded linear

predictive control." IFAC Proceedings Volumes 44, no. 1 (2011): 1362-1367.

Mayne, David Q. "Model predictive control: Recent developments and future promise."

Automatica 50, no. 12 (2014): 2967-2986.

Pham Xuan-Huy, Alamir Mazen, Bonne François and Bonnay Patrick. "Revisiting a

fixed-point hierarchical control design for cryogenic refrigerators under

constraints, nonlinearities and real-time considerations." European Journal of

Control 63 (2022): 82-96.

Quevedo, Daniel E and Goodwin, Graham C and De Doná, José A. "Finite constraint

set receding horizon quadratic control." International Journal of Robust and

Nonlinear Control: IFAC-Affiliated Journal 14, no. 4 (2004): 355-377.

Richter, Stefan and Jones, Colin Neil and Morari, Manfred. "Computational complexity

certification for real-time MPC with input constraints based on the fast gradient

method." IEEE Transactions on Automatic Control 57, no. 6 (2011): 1391-1403.

Seron, Maria M and De Dona, Jose A and Goodwin, Graham C. "Global analytical

model predictive control with input constraints." Proceedings of the 39th IEEE

Conference on Decision and Control . 2000. 154-159.

Van Parys, Ruben and Verbandt, Maarten and Swevers, Jan and Pipeleers, Goele.

"Real-time proximal gradient method for embedded linear MPC." Mechatronics

59 (2019): 1-9.

