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On the use of gradient-based solver and deep learning approach in 

hierarchical control: Application to grand refrigerators 

This paper extends the work that has been recently studied on hierarchical control 

proposed by (Alamir Mazen 2017). This framework is designed to control 

interconnecting subsystems such as cryogenic processes or power plants. Based on 

the previous study, (Pham Xuan-Huy 2022) have shown that handling constraints 

and non-linearities could dispute the real-time feasibility of the approach. In order 

to reduce the computation time of the nonlinear model predictive controllers 

(NMPCs) of the local subsystems, two successful directions are investigated and 

combined, namely truncated fast gradient based NMPC approach and deep-neural-

network-based approach. It is also shown that by doing so, the control updating 

period can be significantly reduced and the closed-loop performance is greatly 

improved. This paper can therefore be considered as a concrete implementation 

and validation of some key ideas in the design of real-time distributed NMPCs. All 

concepts are validated using the realistic and challenging example of a real 

cryogenic refrigerator. 

Keywords: Hierarchical MPC, Fixed-point iteration,  Real-time,  Deep learning, 

Gradient-based solver, Cryogenic refrigerators. 

1. Introduction 

In nuclear fusion reactors or particle  accelerators, cryogenic refrigerators play an 

essential role because of their ability to cool thermal loads on superconducting magnet-

based components to maintain the functionality of the overall process. These installations 

are composed of several highly interacting subsystems that require truly effective control 

designs. In practice, there are many reasons why some changes  (e.g., readjusting the local 

controllers, changing actuators, or even activating/inactivating a subsystem) need to be 

made at the subsystem level. These modifications usually come with disadvantages since 

any changes at the subsystem level are usually made without any proper assessment. 

Moreover, if the modification is not carefully done, The entire process might be 

unexpectedly destabilized. Thus, the need for a framework that provides the ability to 



switch between different modes and facilitate modular modification is an emerging topic 

for large-scale system control.  

With the purpose of having a framework suitable for cryogenic process 

specifications, (Alamir Mazen 2017) proposed a two-layer hierarchical structure, in 

which a network of coupled subsystems resides at the local layer (lower layer), and a 

coordinator resides at the coordination layer (upper layer). At the upper layer, the 

coordinator attempts to solve a central optimization problem with respect to the setpoint 

vector and sends its components to the corresponding subsystems. Essentially, the 

coordinator is assumed not to know any mathematical information about the subsystems 

(modular privacy preservation requirement), so the central cost evaluation process 

must be performed by fixed-point iteration that guarantees the consistency constraint on 

coupling signals. The results of (Pham Xuan-Huy 2022) shown that incorporating 

nonlinearities into local control problems can improve the performance of the overall 

framework. However, it can lead to losses of control performance if the computation 

becomes too complex and infeasible within the allowed computation time due to limited 

computational resources. This fact has been demonstrated by numerical simulations with 

the use of NMPC for the Brayton cycle. In fact, the method consisting in distributing the 

optimization over the real-life time is only valid if the computation time resulted from the 

distribution is compatible with  the predefined updating periods [𝑘, 𝑘 + 1]𝜏𝑢, which must 

be long enough to cover the computation time. 

The authors underlined that the computational burden in this framework is due to 

the resolution of local nonlinear MPC problems being repeated over the fixed-point 

iterations and for several set-points. This computational bottleneck is induced by using 

powerful but computationally expensive solvers such as Casadi (Diehl 2019) or Acado 

(Houska 2011). Based on this observation, this paper proposes two directions that could 



be used if the computational time problem arises when implementing the proposed 

framework. 

In order to replace such powerful but real-time incompatible optimization solvers, 

the simplest way is to use a sub-optimal solver. Indeed, according to (Richter 2011), a 

well-known gradient-based iterative solver is proposed to solve linear optimization 

control problem, by providing a technique to define lower iteration bound. This has 

prompted much works regarding the implementation aspect of MPC in embedded 

applications (Van Parys 2019, Kogel 2011, Van Parys 2019). 

Another way to reduce the computation time is to approximate the control laws by 

piecewise affine functions (PWA) defined on a polyhedral partition of the feasible states 

(Mayne 2014, Seron 2000, Quevedo 2004). This method is also called explicit MPC. 

However, this property is only true if there is no nonlinearity present in the objective 

function or constraints. Besides, the complexity of the state space regions over which the 

control law is defined grows exponentially as the number of states increases, which makes 

this approach impractical for large-scale systems. Moreover, in the conventional explicit 

MPC methods, only the first action of the control sequence is approximated, whereas, in 

our proposed framework, the entire control sequence 𝒖𝑠 is required for the fixed-point 

iteration. 

Instead of approximating the nonlinear MPC by PWA functions, deep learning 

has become a popular choice due to its universal approximation property. Moreover, 

many works have demonstrated the effectiveness of these methods in many embedded 

applications (Bonzanini 2020, Chan 2021). Hence, the contribution of this paper is to 

address the computation time occurred when using NMPC in fixed-point iteration based 

hierarchical control. More precisely: 



(1) First, a fast gradient-based algorithm is proposed. The performance of this solver 

is compared to available generic toolkits (such as Casadi/IPOPT ) in terms of 

optimization performance and computation time. This solver will be shown to be 

real-time compatible when used in the fixed-point-based hierarchical control 

framework. 

(2) Then, deep learning approach is used to approximate the resulted control laws to 

further reduce the computation time of the most CPU-critical local controller. 

(3) Finally, we will show that the reduction in computation time allows the control 

inputs to be updated more frequently, thus improving the closed-loop 

performance. 

The paper is organized as follows: Section 2 describes the system and recalls the 

model predictive control as well as the proposed hierarchical control framework. Section 

3 presents the truncated gradient-based optimization solver for solving MPC problem. 

Section 4 describes the deep learning approach, which is used to approximate the MPC 

laws. The simulation results and analysis are given in section 5 while section 6  concludes 

the paper and gives hints for future investigations. 

2. Problem description 

This section described the cryogenic system investigated in this paper. Fig. 1 shows the 

diagram of the station in the 400W configuration which can be decomposed into four 

components: Joule-Thomson cycle, Brayton cycle, pre-cooling Brayton cycle and warm 

compression station (WCS). 



 

Figure 1: Diagram of the cold box of a cryogenic refrigerator. 

Briefly speaking, the cryogenic refrigerator implements a closed thermodynamic cycle. 

The combination of the Brayton cycle and the J-T cycle is also called the cold box (Fig. 

1). The gaseous helium flows clock-wise in two main pipelines which are hot pipe line 

(red line) and cold pipeline (blue line). The cooling power of the cryogenic refrigerator 

is generated by exchanging heat power in the fluid through a series of heat exchangers 

denoted by NEFx, and also by extracting thermal energy by using two turbines denoted 

by T1 (in Brayton cycle). The gaseous helium is partially liquefied after passing through 

the valve CV155 and rests in the helium bath, while the low temperature gaseous helium 

returns to the circuit. The main objective is to reject the disturbing heat power induced by 

the heat source denoted by NCR22. Concerning the simulation tools, the cryogenic toolbox 

Simcryogenics (F. Bonne 2020) developed for Matlab/Simulink environment is used to 

obtain the simulation result presented in this paper. 

This system can be decomposed into an interconnecting network of four 

subsystems which is shown in Fig. 2. In this topology, there exists a set of subsystems 

indices denoted by 𝒩 = {1, … , 𝑛𝑠 = 4} which is divided into two subsets 𝒩𝑐𝑡𝑟 and 



𝒩𝑢𝑛𝑐. The indices belonging to the subset 𝒩𝑐𝑡𝑟refers to the controlled subsystems, 

whereas the indices belonging to the subset 𝒩𝑢𝑛𝑐refer to the uncontrolled subsystems. In 

this decomposition, the controlled subsystems are: Joule-Thomson cycle, turbine T1, 

while the remaining subsystems are uncontrolled. These subsystems are coupled through 

the coupling signals denoted by 𝑣𝑠′→𝑠 with 𝑠′ ∈ 𝒩𝓈 representing the set of subsystems' 

indices that affect the subsystem 𝑆𝑠. 

 

Figure 2: The interconnection between the subsystems of the cryogenic plant. The 

introduced set corresponding to this decomposition topology are 𝒩 ≔ {1, … ,4}; 𝒩𝑐𝑡𝑟 ≔

{1,4}; 𝒩𝑢𝑛𝑐 ≔ {2,3} ; 𝒩1 ≔ {2}; 𝒩2 ≔ {1,3,4}; 𝒩3 ≔ {2,4}; 𝒩4 ≔ {2,3}. 

Before going any further, let us introduce the following notation which is 

extensively used in the sequel. Given a vector sequence 𝑞𝑖1
, 𝑞𝑖2

, … , 𝑞𝑖𝑛∈𝑍
, the vector 𝑞  

concatenating all these elementary vectors, provided by the corresponding concatenation 

operator col, is defined as follows: 

𝑞 = col 𝑖∈ℐ𝑞𝑖 ≔ [𝑞𝑖1

𝑇 , 𝑞𝑖2

𝑇 , … , 𝑞𝑖𝑛

𝑇 ]
𝑇

,   with 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑛 ∈ ℐ (1) 

Besides, the bold-faced notation represents the profile of a vector p over a prediction 

horizon of length N, namely: 

𝐩 = [𝑝𝑇(𝑘), … , 𝑝𝑇(𝑘 + 𝑁 − 1)]𝑇 ∈  ℝN⋅𝑛𝑝 (2) 

with 𝑛𝑝 being the length of vector 𝑝. 

The next subsections will described the controlled systems as well as the 

uncontrolled ones. 



2.1. The controlled subsystems 

The first controlled subsystem in the studied system is the Joule-Thomson cycle. This 

subsystem is used to liquefy a portion of helium gas by passing the fluid through the valve 

CV155. The dynamic model can be expressed by the nonlinear equation given below: 

𝑥1
+ = 𝑓1(𝑥1, 𝑢1, 𝑤1, 𝑣1

in) (3) 

𝑦1 = ℎ1(𝑥1, 𝑢1, 𝑣1
in) (4) 

𝑣1→𝑠′ = 𝑔1→𝑠′(𝑥1, 𝑢1, 𝑣1
in) (5) 

where 𝑥𝑠, 𝑢1, 𝑤1 and 𝑣1
in  are the deviations of state, control input, disturbance and the 

incoming coupling signal  from the operation points 𝑥1
op

, 𝑢1
op

, 𝑤1
op

 and 𝑣1
in,opt

, 

respectively. The deviation of the incoming coupling signal 𝑣1
in is defined by 𝑣𝑠

in =

cols∈𝒩1
𝑣𝑠′→1. 

The detail of the control input, the regulated output and the disturbance are: 

𝑢1 = [
CV156

NCR22
(𝑎)]  y1 =   [

Ltb131

Ttb108
]  𝑤1 =  NCR22

(𝑤)
 

where Ltb131(%) is the liquid helium level in the bath, Ttb108 (K) is the temperature at the 

inlet of the J-T valve, CV156 ∈ [−55,45] (%) is the opening position (expressed in terms 

of deviations) of the J-T valve, NCR22
(𝑎)

∈  [0,100] (W) is the power of the heating actuator 

and NCR22
(𝑤)  ∈  [-100,100] (W)is the power of heating disturbance. Note that the heating 

power is divided in two variables, which are NCR22
(a)

 and NCR22
(𝑤)

. The first one is used as 

the control input, while the latter represents the disturbance power. Thus, the deviation of 

the heating power counted from its operation value NCR22
op

 can be expressed as: 

NCR22 = NCR22
(𝑎)

+ NCR22
(𝑤) (6) 



The second controlled system is the turbine T1. This component is a key element 

of the refrigerator since it allows the gas to expand by extracting its energy. The model 

of the turbine is given by the following static equation: 

𝑦4 = ℎ4(∅, 𝑢4, 𝑣4
in) (7) 

𝑣4→𝑠′ = 𝑔4→𝑠′(∅, 𝑢4, 𝑣4
in) (8) 

The turbine’s model does not employ involve any state vector, thus, the state vector is 

denoted by 𝑥4 = ∅ in all the equations that are concerned. Also, 𝑢4 = ΔP156 and  𝑦4 =

Ttb130 are manipulated input and regulated output counted from its operation value 𝑢4
op

 

and 𝑦4
op

, respectively. More precisely, Ttb130 (K) is the temperature at the outlet of the 

turbine T1, while ΔP156  ∈ [-1.5,12] (bar) is the pressure drop at the of the flow rate 

passing through the valve CV156. 

2.2.The uncontrolled subsystems 

The uncontrolled systems concerned in this plant are the heat exchangers 

NEF2(𝑆2) and NEF34(𝑆3), whose dynamics are given by: 

𝑥𝑠
+ = 𝑓𝑠(𝑥𝑠, ∅, ∅, 𝑣𝑠

in) (9) 

𝑦𝑠 = ℎ𝑠(𝑥𝑠, ∅, 𝑣𝑠
in) for 𝑠 = 3 (10) 

𝑣𝑠→𝑠′ = 𝑔𝑠(𝑥𝑠, ∅, 𝑣𝑠
in) (11) 

where 𝑥𝑠 and 𝑣𝑠
𝑖𝑛  are the deviation of the states and incoming coupling signal from the 

operation points 𝑥𝑠
op

 and 𝑣𝑠
in,op

, respectively. Furthermore, the united incoming coupling 

vector 𝑣𝑠
in that gathers all the coupling vectors coming from the neighbors that affect the 

dynamic of 𝑆𝑠 is defined by 𝑣𝑠
𝑖𝑛 = col𝑖∈𝒩𝓈  𝑣𝑠′→𝑠. Also, these subsystems do not have any 

control input or any disturbance input, their control input vectors and disturbance input 

are thus denoted by 𝑢𝑠 = ∅, 𝑤𝑠 = ∅ (for s ∈ {2,3}) in all the underlying equations. In 



addition, the subsystem 𝑆3 has one output which is the outgoing flow rate 𝑦3 + 𝑦3
op

=

𝑀𝑜𝑢𝑡 (see Fig. 1), to be constrained to remain below 0.07 kg/s. 

Next, the model predictive control, which is used to control the J-T cycle and the 

turbine is introduced. 

2.3. Model predictive control 

This subsection recalls the MPC formulation that is used to control the controlled 

subsystem (𝑆1 and 𝑆4). 

Given an initial state vector 𝑥𝑠(𝑘), an incoming coupling profile 𝒗𝑠
in, a disturbance profile 

𝒘𝑠 and any control profile 𝒖𝑠 defined over the prediction horizon [𝑘, 𝑘 + 𝑁], the 

corresponding nominal state trajectory is given by: 

𝑥𝑠(𝑘 + 𝑖 + 1) = 𝑓𝑠(𝑥𝑠(𝑘 + 𝑖), 𝑢𝑠(𝑘 + 𝑖), 𝑣𝑠
in(𝑘 + 𝑖), 𝑤𝑠(𝑘 + 𝑖)) for 𝑖 = 0, … , 𝑁 − 1 

The state profile 𝒙𝑠 over a horizon of length 𝑁, can be defined by a straight-forward 

notation: 

𝒙𝑠 = f𝑠(𝑥𝑠(𝑘), 𝒖𝒔, 𝒗𝑠
in, 𝒘𝑠); (12) 

Similarly, the output profile  and the outgoing coupling profile can be computed by using 

their corresponding equations associated to each subsystem (4), (5), (7) and (8) , namely: 

𝒚𝑠 = h𝑠(𝒙𝑠, 𝒖𝒔, 𝒗𝑠
in); (13) 

𝒗𝑠
out = g𝑠(𝒙𝑠, 𝒖𝒔, 𝒗𝑠

in); (14) 

At every instant 𝑘, the standard formulation of the optimal control problem are given by: 

𝒫𝑠:  min𝒖𝒔
 𝐽𝑠

NMPC(𝑥𝑠(𝑘), 𝒖𝒔, 𝒗𝑠
in, 𝒘𝑠, 𝑟𝑠) 

= min𝒖𝒔
∑ |𝑦𝑠

𝑠𝑝

𝑁−1

𝑖=0

− 𝑦𝑠(𝑘 + 𝑖)|𝑄𝑠

2 + |𝑢𝑠(𝑘 + 𝑖)|𝑅𝑠

2 (15) 

Subject: 



𝒙𝑠 = f𝑠(𝒙𝑠(𝑘), 𝒖𝒔, 𝒗𝑠
in, 𝒘𝑠) (16) 

𝒚𝑠 = h𝑠(𝒙𝑠, 𝒖𝒔, 𝒗𝑠
in); (17) 

𝒖𝒔 ∈ 𝕌𝑠 (18) 

where 𝑄𝑠 ∈ ℝ𝑛𝑦
(𝑠)

×𝑛𝑦
(𝑠)

 and  𝑅𝑠 ∈ ℝ𝑛𝑢
(𝑠)

×𝑛𝑢
(𝑠)

 are weighting matrices on the output and 

control input.. The disturbance profile 𝒘𝑠 (if any) has a constant value over the prediction 

horizon, which is equal to the current estimated disturbance value 𝑤𝑠. 

This section has presented the nonlinear model predictive control, the next sub-

section will recall the fixed-point-iteration based hierarchical control. 

2.4. Recall on fixed-point-iteration based hierarchical control 

To begin, Fig. 3 describes the case of interest where a set of interacting subsystems 

indexed by 𝒩 ≔ {1, … , 𝑛𝑠} is represented. Remember that this set is subdivided into two 

different subsets: 

• A subset of controlled subsystems indexed by 𝒩𝑐𝑡𝑟 ⊂ 𝒩 having each its control 

input vector and regulated output vector, denoted for any 𝑠 ∈ 𝒩𝑐𝑡𝑟 by 𝑢𝑠 and 𝑦𝑠 

respectively. 

• A potential complementary subset of subsystems that includes no control input 

denoted by 𝑁𝑢𝑛𝑐 ≔ 𝒩 − 𝒩𝑐𝑡𝑟 . 

The dynamic of each subsystem 𝑆𝑠 is impacted through the so-called coupling signals 

𝑣𝑠′→𝑠 coming from all exogenous subsystems belonging to the set  {𝑆𝑠′}𝑠′∈𝒩𝓈
, with indices 

s' belonging to the set of indices 𝒩𝓈 (set of indices of subsystems impacting 𝑆𝑠). 



 

Figure 3: Synoptic view the hierarchical control architecture applied to the 

interconnecting network of the subsystems. Here, the 4-subsystem topology presented in 

Sect. 2 is used for the illustration of the general hierarchical framework. 

Let 𝒗𝑠
in and 𝒗𝒔

out be the incoming/outgoing coupling profiles into and from the 

subsystem 𝑆𝑠 respectively. More precisely: 

𝑣𝑠
in ≔ col𝑠 ∈𝒩𝓈  𝑣𝑠′→𝑠; (19) 

𝒗𝒔
out ≔ col𝑠′|𝑠∈𝒩

𝓈′  𝑣𝑠→𝑠′ (20) 

Note that the process described below is operated during each control updating period 

[𝑘, 𝑘 + 1]τ𝑢 (with τ𝑢 being the sampling time constant), the state vectors 𝑥𝑠 and the 

disturbance vectors 𝑤𝑠 are thus dropped for a sake of brevity. 

The  generic formulation of the proposed framework has been well precisely 

defined in (Alamir Mazen 2017).  However, it is essential to recall the overall hierarchical 

control framework. Let us begin with the following assumption: 

ASSUMPTION 1: Each subsystem 𝑆𝑠, when given: 

• a presumed incoming profile 𝒗𝒔
in and 

• a given individual set-point 𝑟𝑠 (required if 𝑠 ∈ 𝒩𝒸𝓉𝓇), 



can compute what would be: 

• Its control profile 𝑢𝑠 (if it has) by solving a nonlinear optimization problem, 

• Its resulting outgoing profile 𝒗𝒔
out and  

• Its contribution 𝐽𝑠 to the central cost. 

The central cost is assumed to be of the form: 

𝐽𝑐(𝑟, 𝑣in) ≔ ∑ 𝐽𝑠(𝑟𝑠, 𝑣𝑠
in)

𝑠∈𝒩𝑐𝑡𝑟

+ ∑ 𝐽𝑠(𝑣𝑠
in)

𝑠∈𝒩𝑢𝑛𝑐

(21) 

where 𝑟 ≔ col𝑠∈𝒩𝑐𝑡𝑟  𝑟𝑠 and  𝒗in ≔ col𝑠∈𝒩𝒗𝒔
in. Note that typical regulation-based cost 

𝐽𝑠 is defined for 𝑠 ∈ 𝑁𝑐𝑡𝑟while 𝐽𝑠 might represent a constraints violation indicator 

when 𝑠 ∉ 𝒩𝑐𝑡𝑟 . 

 

More precisely, each time the coordinator sends (𝑟, 𝒗in) to  the subsystems, this allows 

the subsystems to compute (in parallel) their corresponding control profiles 𝒖𝒔 (if 𝑠 ∈

𝒩ctr) and the outgoing coupling signal profiles 𝒗𝒔
out which is represented by the 

following form: 

𝒗𝒔
out = g𝑠

out(𝑟, 𝒗𝒔
in) (22) 

Recall that both bm 𝒗in and 𝒗out are composed of all the elementary profiles 𝒗𝑠→𝑠′. 

Hence, there is a matrix 𝐺𝑖𝑛 such that: 

𝒗in = 𝐺𝑖𝑛 ⋅ 𝒗out (23) 

By injecting (22) into (23), we obtain: 

𝒗in = 𝐺𝑖𝑛 ⋅ gout(𝑟, 𝒗in(𝑟)) (24) 

Consequently, the problem that needs to be solved exclusively by the coordinator can be 

stated as follows: 

ropt=argmin
               𝑟

 𝐽𝑐(𝑟,𝒗in(𝑟)) (25) 

subject to: 𝒗in = 𝐺𝑖𝑛 ⋅ gout(𝑟, 𝒗in(𝑟))  

Since the coordinator does not have any mathematical knowledge of the subsystems the 



fixed-point map represented by (24) cannot be analytically known to the coordinator 

neither is the expression of the cost function J. That is the reason why the enforcement of 

(24) for a given set-point 𝑟 is done through a round of iterations between the coordinator 

and the subsystems as initially suggested by (Alamir Mazen 2017). More precisely, a 

fixed-point-iteration-based algorithm is proposed to evaluate a central cost associated to 

a given set-point 𝑟. Briefly, the algorithm could be summarized as below: 

(1) The coordinator starts by sending an initial guess 𝑣𝑠
in,(σ=0)

 regarding the incoming 

profiles, 

(2) The subsystems compute their control profiles (if any) and the corresponding  

outgoing coupling profiles  𝑣𝑠
out,(σ)

 as well as their local cost 𝐽𝑠, 

(3) The subsystems send the outgoing coupling profiles 𝑣𝑠
out,(σ)

 to the coordinator 

from which the coordinator can use to reconstruct the corresponding incoming 

coupling profiles 𝑣𝑠
in,(σ)

 based on (23). 

(4) To ensure the convergence of the iteration, a stabilizing filter or a residual-based 

iterative method is used to update the profile denoted by 𝑣𝒔
in,(σ+1)

. Reader is 

referred to the work of (Alamir Mazen 2017) for the synthesis of this filter. 

(5) The iterations continue until  one  of the termination criteria ϵ ≔

𝑚𝑎𝑥(|𝑣in,(σ+1) − 𝑣in,(σ)|) ≤ ϵ𝑚𝑎𝑥  or σ ≥ σ𝑚𝑎𝑥 satisfied.  

Upon convergence of the above fixed-point iteration, the coordinator disposes of the 

value of the cost function for the current candidate of the set-point vector. Having the 

possibility to compute the cost associated to a given set-point, any derivative-free 

optimization algorithm can be used to solve the central problem (25) with respect to the 

decision variable 𝑟 (e.g. Genetic algorithm,  BOBYQA, etc.). 



3. Fast gradient method for solving NMPC problem 

It has been shown that when a limited (computation time)/(hardware 

performance) is present, a truncated fast gradient might be beneficial to closed-loop 

performances. That is why this algorithm is briefly recalled here as it is in the heart of the 

forthcoming development. 

Recall that each subsystem 𝑆𝑠, 𝑠 ∈ 𝒩𝒸𝓉𝓇 solves an optimization problem upon receiving 

a pair of (𝑟𝑠, 𝑣𝑠
𝑖𝑛) from the coordinator, combining with the estimated state 𝑥�̂� and the 

disturbance profile 𝑤𝑠: 

𝒫𝓈: 𝑢𝑠
∗ = argmin

{𝒖𝒔∈𝒰𝓈}
 𝐽𝑠

NMPC(𝒖𝑠, ξ𝑠) (26) 

where 𝐽𝑠
NMPC is the NMPC cost and 𝒰𝓈 is the admissible set of control profiles 𝒖𝑠. The 

vector ξ𝑠 encapsulates all parameters such as the estimated state 𝑥�̂�, the set-point 𝑟𝑠, the 

incoming coupling profile 𝑣𝑠
𝑖𝑛 and the disturbance profile 𝑤𝑠 (if any). These variables are 

considered frozen during the resolution of (15) – (17) and will be dropped in this section 

for a sake of compactness. 

The implementation of the fast gradient method requires the gradient of the cost function 

at 𝐽𝑠
NMPC with respect to 𝒖𝑠, which can be easily obtained by modeling the cost with 

CasADi and then computing its gradient ∇𝐽𝑠
NMPC. The algorithm that is used to solve (15) 

– (17) is given by the following updating rule: 

𝑧𝑠
𝑖+1 = 𝑢𝑠

𝑖 − γ ⋅ ∇𝐽𝑠
NMPC(𝑢𝑠

𝑖 ) (27) 

𝑢𝑠
𝑖+1 = 𝐏𝐫(𝑧𝑠

𝑖+1 + 𝑐 ⋅ (𝑧𝑠
𝑖+1 − 𝑧𝑠

𝑖), 𝒰𝓈) (28) 

where 𝑐 ∈ (0,1) is the design variable and 𝐏𝐫(𝑝, 𝒰𝓈) is the projection of vector 𝑝 on the 

admissible set 𝒰𝓈. The variable 𝛾 is the step size that is calculated by using Barzilai-

Borwein formula proposed below: 



γ𝑖+1 =
|(𝒖𝑠

𝑖+1 − 𝒖𝑠
𝑖 ) ⋅ (∇𝐽𝑠

NMPC(𝒖𝑠
𝑖+1) − ∇𝐽𝑠

NMPC(𝒖𝑠
𝑖 )) |

|∇𝐽𝑠
NMPC(𝒖𝑠

𝑖+1) − ∇𝐽𝑠
NMPC(𝒖𝑠

𝑖 )|2
(29) 

Also, the convergence of the algorithm could be improved when a restart mechanism is 

included. More precisely, the variable 𝑢𝑠 is restarted every 𝑛𝑟𝑠𝑡 iteration, but it is noted 

that the frequency of restarts should depend on the cost function. 

Finally, this method is summarized by Algorithm 1. 

Algorithm 1 : Fast conjugate gradient method 

 Input : 𝑖 ← 0; 𝑐 ∈ (0,1); γ𝑖 ∈ (0,1); 𝑛𝑟𝑠𝑡𝑟 ∈ 𝑁; 𝑢𝑠
𝑖 ← 𝟎; 𝑧𝑠

𝑖 ← 𝟎;  

 For 𝑖 ← 1, … , Nmax do 

  𝑧𝑠
𝑖+1 = 𝑢𝑠

𝑖 − γ𝑖 ⋅ ∇𝐽𝑠
𝑙𝑜𝑐(𝑢𝑠

𝑖 ); 

  If mod(𝑖, 𝑛𝑐𝑠𝑡𝑟) == 0 then 

   𝑢𝑠
𝑖+1 = 𝐏𝐫(𝑧𝑠

𝑖+1, 𝒰𝓈) 

  else 

   𝑢𝑠
𝑖+1 = 𝐏𝐫(𝑧𝑠

𝑖+1 + 𝑐 ⋅ (𝑧𝑠
𝑖+1 − 𝑧𝑠

𝑖), 𝒰𝓈) 

  end 

  Compute γ𝑖+1 by (29) 

 end 

The next section will present the Deep-learning approach, which can be used to 

approximate the model predive control laws to reduce the commutation time. 

4. Neural-network-based  NMPC 

In this section, the objective is to derive a regression model that predicts the values 

of 𝑢𝑠
∗ by basing on a learning data set in which the algorithm 1 is involved. The central 

idea here is to replace the implicitly defined control profile (15) – (17) by an explicit 

representation of the form 𝑢𝑠
∗ = 𝐾𝑁𝑁(ξ𝑠, θ𝑠

∗), where θ𝑠
∗ is the parameters that minimize 

the objective function given below: 

θ𝑠
∗ = argmin

𝜃𝑠

1

𝑁𝑠
𝑑𝑎𝑡𝑎 ∑ |𝑢𝑠

∗,(𝑖)

𝑁𝑠
𝑑𝑎𝑡𝑎

𝑖=1

− 𝐾𝑁𝑁(ξ𝑠
(𝑖)

, θ𝑠)|2 (30) 

where {(𝜉𝑠
(1)

, 𝑢𝑠
∗,(1)

), … , (𝜉𝑠
(𝑁𝑠)

, 𝑢𝑠
∗,(𝑁𝑠)

)} is the set of 𝑁𝑠
𝑑𝑎𝑡𝑎 training data. In this section, 



only one subsystem (the Joule-Thomson cycle) is considered, the subscript 𝑠 is thus 

omitted for the sake of simplicity. Once the network architecture is trained, the 

approximate DNN-based NMPC law 𝐾𝑁𝑁(ξ, 𝜃∗) can be used online to cheaply evaluate 

the optimal control input. 

There are two common data-generation strategies, namely open-loop and closed-

loop. In open-loop data generation, the set ℰ ⊂ {𝒳 × 𝒱in × ℛ × 𝒲} of possible states, 

incoming coupling profiles, disturbances and set-points could be created and the 

corresponding control profile 𝑢 computed that will be added together to establish a set of 

data 𝒟 = {(𝑥(𝑖), 𝒗in,(𝑖), 𝑟(𝑖), 𝒘(𝑖), 𝒖(𝑖))}𝑖=1
𝑁 . Although very simple, this strategy can result 

in non physically realistic instances being included in the training data. Closed-loop 

strategy, on the contrary, gathers data while running a closed-loop simulation under 

randomly drawn physically meaningful initial states. Indeed, the majority of large-scale 

cryogenic systems operate under a relatively small number of regimes or operating 

scenarios. Each operational scenario is characterized by a few regulated and/or 

constrained outputs and a few large magnitude disturbances that may frequently change, 

while the set-points are kept unchanged for a long period of time. Hence, we propose the 

following data generation procedure that performs off-line simulation using the system 

model under the control law to collect the operationally relevant training set 𝒟: 

(1) Randomly samples relevant values of 𝑟 and 𝑤 in their operational ranges.  

(2) Run the closed-loop simulations with the above discussed hierarchical design at 

some chosen initial states with the created PRBS signals. The data is collected 

during the fixed-point iterations to capture the relationship between the control 

profile 𝑢 and the triplet (𝑟, 𝑥, 𝑣in). 

The network is trained to minimize the mean squared error criteria below: 



𝐽𝑁𝑁(θ) =
1

2
∑ |𝑢(𝑖)

𝑁𝑡𝑟

𝑖=1

− 𝐾𝑁𝑁(ξ(𝑖), θ)|2 (31) 

where 𝑁𝑡𝑟 < 𝑁 is the number of training observations. Indeed, Before the training 

process, the data set is passed through a series of data preparation techniques and finally 

separated into two subsets that contain 𝑁𝑡𝑟 samples and 𝑁𝑣𝑎𝑙 = 𝑁 − 𝑁𝑡𝑟 samples, which 

serve to train and validate the regression model. Recall that the vector ξ(𝑗)  ∈  ℇ 

encapsulates all the parameters 𝒙(𝑖),  𝒗in,(𝑖), 𝒓(𝑖) and 𝒘(𝑖). 

5. Numerical results 

5.1.Comparison between truncated fast MPC and Casadi/IPOPT 

First, we compare the control performance given by the truncated fast gradient 

solver presented in Sect. 3 and IPOPT solver of Casadi. The 4-subsystem-decomposition 

described in Sect. 2 is reused to conduct the simulation presented in this section. In 

addition, the local controllers for the Joule-Thomson cycle (𝑆1) and the turbine 𝑇1 (𝑆4) 

are nonlinear MPCs. 

The performance of the Ipopt (CasADi) solver and the truncated gradient solver used to 

solve the local optimal control problems of 𝑆1 and 𝑆4 are compared together. This can be 

done by evaluating the open-loop performance indicated by 𝐽𝑠
NMPC(𝑢𝑠

∗), where 𝑢𝑠
∗ is the 

solution of (15) – (17). More precisely, the process below is realized: 

(1)  Create realistic set of state 𝑥𝑠, set-point 𝑟𝑠 and  𝑣𝑠
in denoted by 𝒟sle ≔

{(𝑥𝑠
(𝑖)

, 𝑟𝑠
(𝑖)

, 𝒗𝑠
(𝑖)

)}𝑖=1
𝑁𝑑𝑡𝑎 .  

(2) Solve the problem (15) - (17) by using solver Ipopt and truncated gradient at 

triplets (𝑥𝑠
(𝑖)

, 𝑟𝑠
(𝑖)

, 𝑣𝑠
(𝑖)

) (for 𝑖 = 1, … , 𝑁𝑑𝑡𝑎). 



(3) The open-loop performances 𝐽𝑠
NMPC,(𝑖)

(𝑢𝑠
∗,Ipopt

) and  𝐽𝑠
NMPC,(𝑖)

(𝑢𝑠
∗,grd

) of the solver 

Ipopt and truncated gradient are computed. Then, the average of performance ratio 

𝐽 between the two solvers is deduced, namely: 

𝐽 =
1

𝑁𝑑𝑡𝑎
∑

𝐽𝑠
NMPC,(𝑖)

(𝑢𝑠
∗,solver)

𝐽𝑠
NMPC,(𝑖)

(𝑢𝑠
∗,base)

𝑁𝑑𝑡𝑎

𝑖=1

× 100%  with solver ≔ {grd,Ipopt} (32)  

The performance in terms of optimization and computation time is analyzed. 

Table 2 shows the maximum computation time 𝑡cpt
max and the open-loop performance 𝐽 

associated to several solver’s configuration on tolerance error ϵtol and maximum iteration 

𝑁𝑚𝑎𝑥. The local costs  𝐽𝑠
NMPC,(𝑖)

(𝑢𝑠
∗,base) appearing at the denominator in (32) is chosen 

to be the ones associated to the IPOPT solver with the configuration of ϵtol =

10−4 and 𝑁max = 10. The computation time for subsystem S1 when using the truncated 

gradient-based solver is significantly reduced, while the optimization performance are 

almost identical. This can be realized by the fact that the computation time given by the 

choice of ϵ = 10−4 and 𝑁max = 10 reduced from 4.76s to 0.0499s by using gradient-

based solver with 𝑁𝑚𝑎𝑥 = 100, whereas the performance index 𝐽 is not too much 

changed. 

Table 1: Comparison of the truncated gradient solver and the IPOPT solver.  

 NMPC of 𝑆1 NMPC of 𝑆4 

Solver 𝑁max 𝜖tol 𝐽 𝑡cpt
max[s] 𝑁max 𝜖tol 𝐽 𝑡cpt

max[s] 

Truncated 

gradient descend 

100 _ 100.2379 0.0499 100 _ 101.3418 0.011 

50 _ 100.2395 0.0398 50 _ 101.3419 0.008 

30 _ 100.2357 0.0322 30 _ 101.3418 0.0043 

10 _ 101.29 0.0246 10 _ 101.3418 0.0014 

Ipopt/Casadi 5 10-1 99.999 2.746 5 10-1 100 0.0589 

10 10-1 100.002 3.756 10 10-1 100 0.0873 

10 10-4 100 4.76 10 10-4 100 0.1720 



 

Figure 4: Evolution of computation time of 𝑆1 needed for computing the optimal set-

point 𝑟opt using the fast-gradient algorithm and the associated control profile 𝑢1. 

Furthermore, the real computation time with respect to the allowable maximum iteration 

𝑁max when using fast-gradient based NMPC solver should be analysed. Fig. 4 shows the 

optimum computation time of 𝑡1
final for 𝑆1 to compute the optimal setpoint 𝑟opt and the 

associated control profile 𝒖𝟏 can be obtained by setting 𝑁max =  20. The increase in 

computation time as 𝑁max decreases from 20 can be explained by the fact that the 

performance of the solver is significantly deteriorated, which prevents the convergence 

of the fixed-point iterations. For the simulation, 𝑁max = 30 chosen for both NMPCs of 

𝑆1 and 𝑆4. 

5.2. Approximate NMPC by neural network 

In this subsection, the most time-consuming NMPC, which is the one of the J-T cycle 

(𝑆1), will be approximated by a deep neural network. The approach described in Sect. 4 

is proceeded by beginning with the data preparation step. The data is collected during the 

closed-loop control simulation for the created profiles of 𝑟1 and 𝑤1, separately, and under 

the hierarchical control algorithm described in Sect. 2.4. Then, many deep neural network 

structures are used to approximate the control law based on the collected data. 



After the data are gathered, the data pre-processing techniques are proceeded, such that: 

data balancing,  data normalization, data Shuffling and data splitting. Once the data is 

ready, three feed-forward neural networks are trained. These configurations are set up so 

that each DNN has a different number of hidden layers, ranging from 1 to 3 hidden layers, 

with each layer having the same number of nodes, i.e., 25 nodes, denoted by NN-1-25, 

NN-2-25, and NN-3-25, respectively. The activation function at each node is the sigmoid 

function (other activation functions have been used but do not give any better 

performance). Concretely, each structure is trained for 10000 epochs with the prepared 

data set and is validated with the validation data set. The resilient back-propagation 

(RPROP) algorithm is used to train the neural network. Table 3 presents the learning 

performance for three DNN structures. The structure NN-2-25, which has the lowest 

mean squared error (MSE) is chosen to conduct the next simulation. 

Table 2. The learning performance of several configuration of DNNs. 

Structure NN architecture MSE Training time 

NN-1-25 [25 25 12] 0.3192 2h47 

NN-2-25 [25 25 25 12] 0.2726 3h15 

NN-3-25 [25 25 25 25 12] 0.2996 3h50 

5.3. Simulation result 

In order to facilitate the result interpretation, some performance indicators will be 

needed. First, the closed-loop performance indicator 𝐽𝑐
𝐶𝐿 is recalled, namely: 

𝐽𝑐
𝐶𝐿 =

1

𝑁𝑠𝑖𝑚
∑ ∑ [|𝑦𝑠

𝑠𝑖𝑚(𝑖) − 𝑟𝑠
𝑑(𝑖)|

𝑄𝑐
(𝑠) + |𝑢𝑠

𝑠𝑖𝑚(𝑖)|
𝑅𝑐

(𝑠) + | max(𝑦𝑠
𝑠𝑖𝑚(𝑖) − 𝑦

𝑠
, 0) |

𝑄𝑐𝑠𝑡𝑟
(𝑠) ]

𝑁𝑠𝑖𝑚

𝑖=1𝑠∈𝒩

(33) 

where the weighting matrices 𝑄𝑐
(𝑠)

, 𝑅𝑐
(𝑠)

 are chosen as followed: 

• Mode 1: For disturbance rejecting scenario: 

𝑄𝑐
(1)

=  diag(103, 103), 𝑅𝑐
(1)

= diag(0,0), 𝑄𝑐𝑠𝑡𝑟
(1)

= 5 ⋅ 109, 𝑄𝑐
(4)

= 103, 𝑅𝑐
(1)

=  0 



• Mode 2: For set-point tracking scenario: 

𝑄𝑐
(1)

=  diag(106, 0.1), 𝑅𝑐
(1)

= diag(0,0), 𝑄𝑐𝑠𝑡𝑟
(1)

= 5 ⋅ 109, 𝑄𝑐
(4)

= 104, 𝑅𝑐
(1)

=  0 

The main advantages of the machine learning controller are in the implementation 

burden and computational efforts. Instead of solving the optimization problem several 

times in the fixed-point iterations, for several set-points to be evaluated and at each 

sampling instants, the NN-based controller only needs to evaluate the function 𝑢𝑠
∗ =

𝐾(ξ(r(𝑖)), θ∗) at each iteration. Consequently, the computation time resulted by the 

implementation of NN-based controller is reduced. More precisely, the computation time 

imposed by the truncated gradient-based solver is reduced by factor 12 (the maximum 

computation times, needed to get the optimal set point, when using the gradient-based 

solver and the trained NN are  3.27 s and 0.27 s, respectively).  In order to take advantage 

of this benefit, the control input can be updated more frequently, which will improve the 

control performance.  

 



Figure 5: Output behaviors of the system in the case of disturbance rejecting under the 

coordination , in which NMPC and NN-based controller are implemented by 𝑆1. The 

updating period is chosen to be τ𝑠 = 5 s and τ𝑠 = 2 s in order to compare the control 

performance. 

Fig. 5 shows the output behaviors and the closed-loop control performance 

associated to the previous set-up of the local controllers, under the control updating period 

τ𝑢 = 5 s, and the one given by using the NN-based controller at 𝑆1 under 𝜏𝑢 = 2 s. In the 

comparison between the NN-based controller and the NMPC controller with the same 

updating period 𝜏𝑢 = 5 s, the cumulative performance is dropped  by 18 % (at time instant 

t= 1600 s of subfigure (5,1)). However, this performance is recovered and even improved 

approximately 50 % (at t = 1600 s) when the updating period is feasibly set to be at 𝜏𝑢 =

2 s thanks to the use of NN-based controller. Finally, the use of NN-based controller is 

validated in the set-point tracking scenario illustrated in Fig. 6. It can be seen that the 

system behavior under the hierarchical control method with NN-based controller and with 

NMPC are similar. The NN-based controller can also mimic the behavior of the NMPC 

of 𝑆1 in the set-point tracking case, which results the same system behaviors with  less 

computation efforts (maximum computation time 𝑡𝑐𝑚𝑝
𝑚𝑎𝑥 = 0.25 s).   

 



 

Figure 6: Output behaviors of the system in the case of set-point tracking under the 

coordination, in which NMPC and NN-based controller are implemented by 𝑆1. The 

updating period is chosen to be τ𝑠 = 5 s and τ𝑠 = 2 s in order to compare the control 

performance. 

6. Conclusion 

In this paper, two methods have been proposed to reduce the computation time 

for solving the constrained nonlinear optimization problem at the local layer of the 

hierarchical control framework. The numerical results have demonstrated the  

effectiveness of the two approaches. More precisely, the computation time is reduced 

drastically by using the Truncated gradient method. Then, the control law is approximated 

by a deep neural network. Finally, the two approaches are then compared in terms of 

computation time and control performance, showing that the deep learning approach 

successfully approximates local control laws and allows for more frequent control 



updates. On-going work aims to validate the control structure with a full cryogenic 

facility. 
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