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Abstract 18 
 19 

Threats to species under climate change can be understood as a time at which the signal of 20 

climate change in ecological processes emerges from the noise of ecosystem variability, defined 21 

as ‘time of emergence’ (ToE). Here, we show that ToE for the great tit (Parus major) will occur 22 

earlier at the level of population size than trait (laying date) and vital rates (survival, recruitment) 23 

under the RCP 8.5 scenario, suggesting amplified climate change signal at the population level. 24 

ToE thus varies across levels of biological organization that filter trends and variability in 25 

climate differently. This has implications for the detection of climate impacts on wild species, as 26 

a shift in population size may precede changes in traits and vital rates. Further work would need 27 

to identify the ecological level that may experience an earlier detection of the climate signal for 28 

species with contrasting life histories and climate trends and variability. 29 

  30 
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Main Text 31 
 32 

The impact of anthropogenic climate change on wildlife populations is a topic of 33 

profound concern. Climate change occurs in the context of broad-band natural climate 34 

variability, often making it difficult to discern the explicit effects of long-term change driven by 35 

forced response to greenhouse gases. In addition, ecological responses to environmental 36 

variation are stochastic with multiple sources of variation, including observed and unobserved 37 

variability in abiotic and biotic factors that interact with natural climate variability. Accordingly, 38 

detecting responses to anthropogenically-forced changes in climate is challenging 
1
. This is, 39 

however, crucial for the detection and attribution of ecological responses to climate change 40 

because changes in climate have direct impacts on ecosystem processes and society 
2
.  41 

 42 

To detect changes in climate, climatologists have extensively used the concept of time of 43 

emergence in climate (ToEclimate) 
3,4

. It defines the point in time when the signal of climate 44 

change emerges from the noise of natural climate variability. It has been applied for instance on 45 

changes in temperatures 
3
, rainfall 

5
 and in polar climate 

1,4
. Here, we apply this concept, for the 46 

first time, across levels of ecological organization to identify the time at which the signal of 47 

climate change in ecological processes emerges from the stochastic noise associated with natural 48 

climate and ecological variability (time of emergence, ToE). We assess the ToE from trait 49 

(ToEtrait), to vital rates (e.g. survival, recruitment) (ToEvital), and population size (ToEpop) (Fig. 1) 50 

to study how the climate signal cascades through the levels of biological organization. Climate-51 

induced changes in resources, that influence fitness-related traits, are expected to generate 52 

changes in vital rates, which lead to population-level responses. We may thus expect that the 53 

time of emergence is delayed across levels of biological organization, occurring earlier for traits 54 

than for vital rates and population size 
6–8

. However, those responses depend on the sensitivity of 55 

vital rates to climate variation and the sensitivity of population growth rate to changes in vital 56 

rates, potentially driving more complex patterns across levels of biological organization 
1,8,9

. 57 

 58 

There are not many systems for which this hypothesis can be tested because it requires 59 

long-term data at various levels of biological organization. Here, we use one of the best long-60 

term ecological time series study system on the great tit (Parus major) at the Hoge Veluwe 61 

National Park (the Netherlands) from 1985 to 2020 (Fig. 1). The great tit is a short-lived small 62 

passerine bird species abundant in European gardens and woodlands and it is not migratory. 63 

Global warming influences this population in several ways. In spring, warmer temperatures lead 64 

to an advanced peak date of caterpillar biomass, an important food resource for great tits for 65 

feeding their offspring during the breeding season. However, the advancement in laying dates is 66 

slower than the advancement in food peak date, leading to a phenological mismatch between 67 

offspring requirements and food peak 
10

. This mismatch influences the vital rates of great tits 
11

. 68 

In summer, warmer temperatures are expected to influence the intensity and frequency of 69 

beechnut production (Fagus sylvatica) 
12,13

, an important food resource for great tits in winter, 70 

also affecting their vital rates 
14

. Taking advantage of this unique system to quantify the ToE 71 

across biological levels of organization, we identified the point in time when climate-driven 72 

signals in trait (laying date), vital rates (survival, recruitment) and population dynamics can be 73 

distinguished from noise by constructing prediction intervals of ecological projections using the 74 

Community Earth System Model Large Ensemble (CESM-LE) 
15

. 75 

 76 
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We first quantified the ToE in caterpillar peak dynamics (ToEcaterpillar). Using the 77 

established relationship between spring temperatures and caterpillar peak (period 1985 – 2020) 78 
16

, we projected caterpillar peak dynamics under a high emission climate scenario with no policy 79 

intervention (RCP 8.5 scenario), back in the past and into the future, from 1920 to 2100. The 80 

peak date of caterpillar biomass advanced over time 
16

, with an expected ToEcaterpillar in 2034, if 81 

we only account for climate natural variability (Fig. 2). When many sources of ecological 82 

stochasticity were included in the projections, such as uncertainty in parameter estimates and 83 

process variance corresponding to unexplained temporal environmental stochasticity beyond that 84 

explained by climate, ToEcaterpillar was detected later, in 2049 (Extended Data Fig. 1). 85 

 86 

Second, we quantified the ToE in trait dynamics, namely laying date (ToElaying). Using 87 

the established relationship between spring temperatures and laying dates (period 1985 – 2020) 88 
16

, we projected laying dates dynamics from 1920 to 2100. Laying occurred earlier and earlier 89 

over years, with an expected ToElaying in 2045 and 2068 (with climate natural variability only and 90 

with all sources of uncertainties, respectively) (Fig. 2, Extended Data Fig. 1). Under warmer 91 

spring conditions, directional selection for earlier laying has been reported in plethora of species 92 
17–24

. The shift in laying date has been interpreted as a phenotypic plastic response to increasing 93 

temperatures, tracking the advance in the phenology of the food peak 
25–28

. Our results 94 

demonstrate that the difference between laying dates and date of the food peak, the so-called 95 

phenological mismatch (Fig. 1), might not be detectable before 2100 when including many 96 

sources of ecological uncertainties in the projections (Extended Data Fig. 1). However, when 97 

only climate natural variability was accounted for in the modelling, ToEmismatch was detectable 98 

and expected to occur in 2049 (Fig. 2). Increasing ecological complexity delays the ToEmismatch as 99 

we expected, but mainly through the interaction with environmental stochasticity.  100 

 101 

Third, thanks to the individual long-term monitoring of great tits, we estimated annual 102 

age-specific great tits vital rates (survival, recruitment) using a state-of-the-art integrated 103 

population model 
29–32

 (period 1985 – 2020, Extended Data Fig. 2). Annual vital rates were 104 

linked to past beechnut production, mismatch and density (period 1985 – 2020, Table S1). Then, 105 

we projected age-specific vital rates by 2100 under expected future conditions of mismatch and 106 

beechnut production and quantified the ToE in vital rates (ToEvital). Beechnut production is 107 

expected to change in the future 
33–35

, but there is currently no predictive model available for this 108 

food resource. Therefore, we simulated two extreme scenarios, one of decreasing beechnut 109 

production by 2100 and another of increasing production (Extended Data Fig. 3). Under the 110 

scenario of decreasing beechnut production (scenario 1), we found a decrease in vital rates over 111 

time, with a ToEvital between 2050 and 2060 for most of the ages when we only accounted for 112 

climate natural variation (Fig. 3, Extended Data Fig. 4). When all sources of ecological 113 

uncertainties were accounted for, ToEvital was not detectable before 2100 (Fig. 3, Extended Data 114 

Fig. 5). Similarly, under the scenario of increasing beechnut production (scenario 2), we found 115 

an increase in vital rates over time, with a ToEvital between 2054 and 2084 for most of them when 116 

we accounted for climate natural variability only (Fig. 3, Extended Data Fig. 6). Interestingly, 117 

the ToEvital occurred earlier for survival than recruitment rates because of a stronger signal on 118 

survival. While the ToEvital did not differ much between the two scenarios for survival, it is 119 

delayed up to 20 years for recruitment under the scenario of increasing, compared to decreasing, 120 

beechnut production. The climate-driven signals in recruitment rates by beechnut production 121 

were obscured by density dependence, which plays a stronger role under favorable conditions 122 
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(i.e. when there are more years with a high beech crop) and weaker under poor conditions. As 123 

expected, when all sources of ecological uncertainties were accounted for, ToEvital was 124 

undetectable (Fig. 3, Extended Data Fig. 7).  125 

 126 

Finally, to quantify the ToE in population size (ToEpop), we projected the great tit 127 

population size from 1920 to 2100 by parametrizing a stochastic age-structured population model 128 

with the projected vital rates (Extended Data Fig. 4-7). Under the scenario of decreasing 129 

beechnut production, population size decreased with a ToEpop in 2028 when we accounted for 130 

climate natural variability only, whereas population size increased under the scenario of 131 

increasing beechnut production with a ToEpop in 2055 (Fig. 3). When all sources of ecological 132 

uncertainties were accounted for, ToEpop occurred later, in 2069 under the first scenario and in 133 

2074 under the second scenario (Fig. 3).  134 

 135 

Remarkably, for any scenario of beech crop production, the ToEpop occurred earlier than 136 

the ToEvital when all sources of uncertainties were accounted for. This is consistent with previous 137 

work based on numerical simulations that has shown that under a fast rate of environmental 138 

change and low predictability, a population can decline before any apparent change in mean 139 

value of the trait  
8
. Similarly, in an experimental design, a fast change in prey availability 140 

resulted in the decline of a protozoan ciliate population preceding a shift in mean body size 
8
. 141 

Therefore, the ToEpop can occur earlier than ToEvital and the detection of ToE depends on the 142 

level of biological organization considered, its sensitivity to climate (i.e. magnitude and shape of 143 

the functional relationship between climate and ecological variable), but also on the amount of 144 

variability both in the climate and ecological systems.  145 

Climate trends and variability are differently filtered by the vital rates (survival, 146 

reproduction) and the ages 
1
. In addition, density dependence may prolong the ToEpop 

1 
as 147 

illustrated here with our two scenarios of changes in beech crop production. Under the scenario 148 

of decreasing beech crop production (scenario 1), both survival and recruitment rates decrease, 149 

the magnitude of this decrease being age-specific. Competition also decreases, allowing for more 150 

immigrants. The negative influence of beech crop on vital rates, only partially compensated by 151 

an increase in the number immigrants, leads to a rapid population decline, with an early ToE. 152 

Under the scenario of increasing beech crop production (scenario 2), survival and recruitment 153 

rates increase. However, competition also increases, leading to a weak positive effect of beech 154 

crop on recruitment rates, the latter being density-regulated 
36

. Similarly, the number of 155 

immigrants joining the population are positively influenced by beech crop, but strongly regulated 156 

by density, resulting in fewer immigrants. The positive influence of beech crop on survival rates, 157 

counterbalanced by a strong density regulation acting on the number immigrants and on 158 

recruitment rates leads to a moderate increase in population size, and a later ToEpop.  159 

Ecological variability is also key to detect ToE. We found that ToE in mismatch and vital 160 

rates are not detectable before 2100 when ecological variability is accounted for, emphasizing 161 

the difficulties to detect climate change signals in ecological processes. Thankfully, some of this 162 

noise from sampling and process errors can be reduced by increasing monitoring effort and 163 

improving our understanding of how the biological systems respond to biotic and abiotic factors.  164 

 165 

The detection of ToE across levels of biological organization is context-specific, and the 166 

earlier detection at the population level we showed here is unlikely for semelparous species, or if 167 
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climate affects primarily fertility 
1
. In addition, several climate variables with different ToE may 168 

affect the various ecological organizational levels, hence making difficult to predict which 169 

ecological level may experience an earlier detection of the climate signal. Future studies could 170 

build upon our analysis to better understand and detect when climate-driven changes in 171 

ecosystems will clearly emerge from the “noise” of variability across species with contrasting 172 

life histories inhabiting different environments (e.g. various climate variability and trends) 
1
. 173 

This is particularly urgent as ecosystems have a limited ability to adapt, and large changes 174 

outside past experience could be particularly devastating 
37,38

. 175 

 176 
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Figure Legends  194 
Fig. 1. Schematic illustration of the general approach. The first panel shows forecasted 195 

caterpillar peak dates, great tit laying dates, mismatch between caterpillar peak date and laying 196 

date, as well as beech crop production (two scenarios) in the studied great tit population expected 197 

from 1920 to 2100. From the ecological time series, the points in time when climate-driven 198 

signals in food peak, laying and mismatch can be distinguished from noise (ToE) are identified. 199 

On the second panel, great tit life cycle showing age-specific vital rates (survival Si, recruitment 200 

Ri) and the number of immigrants joining the population (Nim) as functions of mismatch, beech 201 

crop and density N. On the third panel, forecasted vital rates and great tit population size from 202 

1920 to 2100 according to expected mismatch under global warming and beech crop (two 203 

scenarios). From the time series of vital rates and population sizes, the points in time when 204 

climate-driven signals in vital rates (ToEvital) and population size (ToEpop) can be distinguished 205 

from noise are identified. 206 

 207 

Fig. 2. Caterpillar peak dates, great tit laying dates, and mismatch forecasted under global 208 
warming in the studied great tit population between 1920 and 2100. Each line corresponds to 209 

one climate scenario (40 in total), and the black line corresponds to the mean. Vertical dotted 210 

lines indicate the historical period (1922-1950), horizontal line indicates the lower bound of the 211 

66% interval during that period. Vertical red line corresponds to the time of emergence (ToE). In 212 

thick blue, annual observed values between 1985 and 2020.  213 

 214 

Fig. 3. Times of Emergence (ToE) from caterpillar peak dates to population size in the 215 
Hoge Veluwe great tit population. Columns show the ToE for the two scenarios of beech crop 216 

production (scenario 1: decreasing production by 2100; scenario 2: increasing production) for the 217 

different levels of biological organization (in rows). In red, ToE when only climate uncertainty is 218 

accounted for, and in grey ToE when all sources of ecological uncertainties are accounted for.  219 

  220 
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Methods 316 
 317 

General overview 318 

 319 

To detect climate signals cascading through levels of biological organization, we build a 320 

reproducible three-step approach (Fig. S1). First, long-term data should be collected from trait 321 

values, to vital rates and population size. In parallel, environmental variables should be available. 322 

Different methods can be used to estimate annual vital rates and population size when the 323 

detection probability is lower than 1, e.g. capture-recapture models or integrated population 324 

models (IPM). When the detection probability equals to 1, other methods such as population 325 

census or generalized linear models can be used. Second, the effects of environmental covariates 326 

on annual variation in trait values, vital rates and population size is assessed. This can be done 327 

using linear mixed models (see methods section). Third, these established relationships permit 328 

projecting time series of trait values, vital rates and population size under various environmental 329 

scenarios in the past and in the future to quantify the time of emergence (Fig. S1) by linking 330 

ecological models to climate models.  331 

 332 

Our methodological approach is divided into several objectives: 333 

(1) Our first objective is to determine the point in time when climate-driven signals in 334 

caterpillar peak dates timing can be distinguished from noise (ToEcaterpillar). 335 

(2) Our second objective is to determine the point in time when climate-driven signals in 336 

great tit laying dates can be distinguished from noise (ToElaying). 337 

(3) Our third objective is to determine the point in time when climate-driven signals in 338 

mismatch (between laying dates and food peak) can be distinguished from noise 339 

(ToEmismatch). 340 

(4) Our fourth objective is to determine the point in time when climate-driven signals in vital 341 

rates can be distinguished from noise (ToEvital for each age-specific vital rate). 342 

(5) Our fifth objective is to determine the point in time when climate-driven signals in 343 

population can be distinguished from noise (ToEpop). 344 

 345 

To achieve objectives 1-3, we use functional relationships linking caterpillar peak dates, laying 346 

dates and mismatch to temperatures 
16

. To achieve objectives 4-5, we built an IPM to estimate 347 

annual age-specific vital rates. We then estimated the functional relationships between 348 

environmental variables and vital rates using linear mixed models. Finally, to project the great tit 349 

population dynamics from 1920 to 2100, we simulated two beech crop production scenarios. 350 

 351 

Study site and data collection 352 

 353 

The studied population is located at Hoge Veluwe National Park in the Netherlands 354 

(52°02’N, 5°51’E), a wood of 171 ha. Great tits (Parus major) are short-lived small passerine 355 

birds, abundant in European gardens and woodlands and, in the Netherlands, not migratory. They 356 

are cavity-nesters and readily accept nest boxes as nesting sites, making it possible to monitor the 357 

entire breeding population. They produce one or two clutches each year 
39

. In the study area, 358 

very few females bred in natural cavities and most of them bred in nest boxes 
40

. The population 359 

is open to immigration and emigration 
11

. 360 
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The data used in this study were collected between 1985 and 2020. Nest boxes were 361 

visited during the breeding season and laying dates were recorded (1
st
 egg laid). In addition, 362 

three types of demographic data were recorded. First, the total number of breeding females (Ct). 363 

As most females start to breed at one year of age, the breeding population size is a good proxy 364 

for the total number of females 
41

. Second, fledglings were marked with a uniquely numbered 365 

leg-ring, ringed mothers identified and unringed mothers given a ring to allow for future 366 

identifications. These unringed mothers were assumed to have immigrated into the population 367 

during the year in question. The following year, they are then considered to be local females. 368 

Overall, 2,204 breeding females of known age (local and immigrant) were monitored, providing 369 

capture-recapture (CMR) data of known age females. We grouped the breeding birds of known 370 

age into four age classes: 1, corresponding to the first year of breeding (i.e., second calendar year 371 

of life); 2, corresponding to the second year of breeding; 3 corresponding to the third year of 372 

breeding; and 4, which groups breeding females in their fifth calendar year of life and older. 373 

Third, ringed fledglings were recorded as recruited to the breeding population if they were 374 

caught breeding in a subsequent year. From the monitoring of breeding females of known age, 375 

we reported for each year t the observed number of breeding females in age class i (Bi,t) and also 376 

the observed number of locally recruited females produced per age class i (Ji,t). In total, this type 377 

of demographic data based on reproductive success consisted of 3,675 breeding events.  378 

 379 

Environmental data collection: food peak, mismatch, beech crop index and 380 

temperatures 381 

 382 

Between 1985 and 2020 (except 1991), annual peak dates of caterpillar biomass 383 

(hereafter food peak) were determined 
42

. The annual mismatch corresponded to the difference in 384 

mean laying date for great tits minus the food peak plus 33. These 33 days accounted for 385 

incubation duration and assumed that nestlings have the highest energy demand 10 days after 386 

hatching 
16

. In addition to caterpillars, beech mast is an important food resource for great tits, 387 

especially during winter when other resources are scarce. It is also indicative of seed production 388 

of other tree species 
14,40

. The beech crop index (BCI), measured as the net weight of all nuts per 389 

m
2
, was recorded annually as a three-level index (1, 2 or 3).  390 

Annual temperatures were recorded. Previous work showed that laying dates in this great 391 

tit population depended on spring temperatures from 11 March to 20 April (hereafter Templaying), 392 

whereas temperatures from 6 March to 14 May had the strongest influence on food peaks 393 

(hereafter Tempcaterpillar) 
16

. We thus recorded mean daily temperatures during these two time 394 

windows. We standardized Templaying and Tempcaterpillar with the mean and the variance of 395 

Templaying and Temppeak observed during this period, so Templaying and Tempcaterpillar were 396 

transformed as z-scores. Temperature data were obtained from the De Bilt station of the KNMI 397 

(Royal Dutch Meteorological Institute), less than 50 km from the Hoge Veluwe field site.  398 

 399 

Objective 1: Forecasting food peak and estimating ToEcaterpillar 400 

 In this population, food peak dates (in Julian date) are linked to temperatures 401 

(Tempcaterpillar) through this relationship 
16

: 402 

                                                                           403 

Eqn. 1 404 
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From this relationship, we estimated past (1920-2019) and future (2020-2100) food peak dates 405 

according to the RCP 8.5 climate scenario that considers no policy intervention. This scenario 406 

brings together 40 ensemble members diagnosing the influence of internal climate variability on 407 

projections 
15

, and it is the preferred choice for assessing climate change impacts risks 408 

throughout the mid-century 
43

. The mean and the standard deviation over 1985-2020 of all 409 

members were used to transform temperatures (Tempcaterpillar) into z-scores. Thus, the mean and 410 

the standard deviation used for standardizing each of the members was the mean of means and 411 

the mean of standard deviations calculated for each member. Such a rescaling allowed observed 412 

temperatures in the study site and climate scenarios (on average across all 40 of them) to be 413 

aligned between 1985 and 2020 so that they had the same mean and variance. From Eqn. 1, we 414 

performed 100 simulations, parameters in the equation being drawn from normal distributions. 415 

This resulted in 100 simulations per member, that is 4,000 simulations from 1920 to 2100. This 416 

gave us expected food peak dates when all sources of ecological uncertainties were accounted 417 

for, including parameter uncertainty and process variance corresponding to unexplained temporal 418 

variation in parameters beyond that explained by climate.  419 

After having visually controlled for a good match between observed food peak dates and 420 

predicted dates (period 1985-2020, Figure 2), we selected an historical time window during 421 

which food peak dates were stable over time (1922-1950, slope of the regression between food 422 

peak dates and years during this time window: 0.032 (SE: 0.025)). We computed the lower 423 

bound (LBcaterpillar) of the 66% prediction interval for food peak dates during this historical 424 

period, and determined the point in time when the upper bound (UBcaterpillar) of the 66% 425 

prediction interval for food peak dates became lower than LBcaterpillar. This point corresponded to 426 

the time of emergence for food peak (ToEcaterpillar). In addition, we forecasted food peak dates but 427 

we only accounted for climate uncertainty in the projections. To do so, we turned off standard 428 

errors and σ (the last term) in Eqn. 1 to obtain 40 projections of food peak dates from 1920 to 429 

2100, i.e. one projection per member. 430 

 431 

Objective 2: Forecasting laying dates and estimating ToElaying (=ToEtrait) 432 

 We replicated the same procedure for laying dates. In this population, laying dates (in 433 

Julian date) are linked to temperatures (Templaying) through this relationship 
16

: 434 

                                                                  Eqn. 2 435 

We estimated the expected annual laying dates between 1920 and 2100 according to the RCP 8.5 436 

climate scenario, with all sources of uncertainty, and when only climate uncertainty was 437 

accounted for. We selected an historical time window during which laying dates were stable over 438 

time (1922-1950, slope of the regression between laying dates and years during this time 439 

window: 0.019 (SE: 0.017)), and we identified the time of emergence for laying dates (ToElaying). 440 

 441 

Objective 3: Forecasting mismatch and estimating ToEmismatch 442 

 443 

 We then calculated the mismatch between laying dates and food peak from 1920 to 2100 444 

as the difference in expected annual laying dates minus the expected annual food peak plus 33
16

. 445 

This was done for the 4,000 simulations accounting for all sources of uncertainties, and for the 446 
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40 simulations accounting for climate uncertainty only. In both cases, we identified the time of 447 

emergence for mismatch (ToEmismatch). 448 

 449 

 450 

Objectives 4-5: Forecasting vital rates and population dynamics and estimating 451 

ToEvital and TOEpop 452 

 453 

1- Estimating annual age-specific vital rates and densities 454 

For populations with a recapture rate of 1, population census can be used as a proxy of 455 

population size, and survival rates can simply be estimated using generalized linear model with 456 

binomial link function, based on whether or not the individual has been observed. Here, we used 457 

an integrated population model (IPM) to obtain accurate and precise estimates of annual 458 

population size and age-specific vital rates. Even if the recapture probability is high on the study 459 

site 
11

, still not all females may be recaptured, resulting in biased estimates of vital rates and 460 

number of individuals. There was also a possibility of double counts, for instance if one female 461 

has produced two broods but was only identified in one of them (because she has deserted one of 462 

the clutches), and a possibility that some clutches are missed (because females have bred in 463 

natural cavities). To estimate age-specific demographic rates and density while accounting for 464 

these issues, we integrated the recorded number of breeding females (Ct), CMR data of females 465 

of known age, and data on reproductive success (i.e., Bi,t  and Ji,t) into an IPM 
30

 (Figure S2). 466 

This framework allowed us to obtain the posterior median of age-specific vital rates (survival Si,t, 467 

recruitment Ri,t), the number of local (Nlocal) and immigrant (Nim) breeding females in each age 468 

class Ni and total N (total density) for each year t with improved precision and free of observation 469 

error 
29–32,44

. The joint analysis of these three datasets thus allowed us to account for observation 470 

error associated with the recorded number of counted breeding females 
45

. It also allowed us to 471 

account for the incomplete information on age structure in the monitoring data (e.g. some 472 

females are of unknown age), for imperfect detection (e.g. recapture probability is not 1) and for 473 

demographic stochasticity 
46

.  474 

 475 

The likelihood of the IPM corresponds to the product of the likelihoods of the three 476 

different datasets, namely CMR data, reproductive success data and population counts 
44

. For 477 

CMR data of breeding females of known age, we used the Cormack-Jolly-Seber model 
47

 which 478 

allows estimation of annual survival between age class i and i+1 (Si,t) and annual recapture (pt) 479 

probabilities. For data on reproductive success, the observed number of daughters locally 480 

recruited per age class i (Ji,t) is Poisson distributed with                          , where   is 481 

the recruitment rate of females of age class i at year t. For the population count data, we used a 482 

state-space model 
48

 that consisted of a process model describing how the population size and 483 

structure changed over time as well as an observation model 
29

. We considered a pre-breeding 484 

age-structured model with the four pre-defined age classes.  485 

The model was fitted within a Bayesian framework using NIMBLE (version 0.9.1) 
49

. We 486 

ran four independent chains with different starting values for 200,000 MCMC iterations, with a 487 

burn-in of 150,000 iterations, thinning every 100
th

 observation and resulting in 2,000 posterior 488 

samples. We used the Brooks and Gelman diagnostic    to assess the convergence of the 489 

simulations and used the rule        to determine whether convergence was reached 
50

. For a 490 

full description of the IPM, the priors used and the R code to fit the IPM, see Gamelon et al. 
51

.  491 
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 492 

2- Linking vital rates to BCI, mismatch and density  493 

The IPM was used to estimate annual age-specific vital rates and densities. Once these 494 

were estimated, we linked annual age-specific vital rates and annual number of immigrants 495 

joining the local population as response variables to annual density, BCI and mismatch (from 496 

1985 to 2020) (see life cycle on Fig. 1). The same approach has been done in previous studies 
52–

497 
54

 that first used an IPM to estimate vital rates and density, and then used regressions to link vital 498 

rates to density and/or environmental covariates. As the annual vital rates and densities are 499 

estimated in the IPM model, they are not obscured by sampling variance and observation errors 500 

and thus this approach does not lead to spurious detection of density dependence 
51,55,56

. In detail, 501 

survival between two successive breeding seasons t and t+1 could be affected by BCI at time t. 502 

Therefore, we linked age-specific survival rates Si,t (on a logit-scale) to BCI at t. Because the 503 

effect of BCI on survival may be age-specific, we included the interaction between age and BCI. 504 

To account for the non-independence of the survival rates among age classes of a given year, we 505 

included the year as a random effect. The linear-mixed model (LMM) took the following form:  506 

                                                              
   Eqn. 3 507 

where μ is the intercept, a is the age class (i.e. 1, 2, 3 and 4), β are the regression coefficients, 508 

year is the random effect and      
 corresponds to the residuals of the LMM. Note that the LMM 509 

was weighted by the inverse of the variance of the survival rates (on a logit-scale) to account for 510 

the uncertainty associated with the survival rates estimated with the IPM. 511 

The recruitment rate of a given breeding season t could be affected by the number of 512 

breeding females at time t in the population (density at t) and by BCI at time t. Therefore, we 513 

linked the age-specific recruitment rates Ri,t (on a log-scale) to density at t Nt and to BCI at t. 514 

Because the effect of BCI and density on recruitment may be age-specific, we included the 515 

interaction between age and BCI and between age and density. The LMM took the following 516 

form:  517 

                 
        

          
        

               
          

       518 

      
  Eqn. 4 519 

where ν is the intercept, a is the age class, β´ are the regression coefficients, and      
 corresponds 520 

to the residuals of the LMM. As done for survival rates, the LMM was weighted by the inverse 521 

of the variance of the recruitment rates (on a log-scale) to account for the uncertainty associated 522 

with the recruitment rates estimated with the IPM. 523 

The number of immigrants joining the population during the breeding season t+1 may be 524 

influenced by BCI and mismatch as well as the number of local breeding females Nlocal at t. 525 

Therefore, we linked the number of immigrant breeding females Nimt+1 to the number of local 526 

breeding females Nlocal,t, BCI and mismatch at t using a generalized linear model (GLM) with 527 

Poisson distribution: 528 

                                                   
  Eqn. 5 529 

where η is the intercept, βI are the regression coefficients, and      
 corresponds to the residuals 530 

of the GLM.  531 

 532 

3- Building the population model 533 

For given conditions of BCI, mismatch and densities, age-specific survival and 534 
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recruitment rates as well as the number of immigrants joining the local population may be 535 

simulated (hereafter denoted Ssim i,t, Rsim i,t and Nimsim,t+1). As a result, the number of breeding 536 

females in the population Nsim,t may be simulated.  537 

In detail, the total number of breeding females in the population at time t+1 Nsim,t+1 538 

corresponded to the sum of breeding females in each age class i Nsim i,t+1  at time t+1 (Figure 1): 539 

                                                          Eqn. 6 540 

 (i) As most of the immigrant breeding females were females of age class 1, we assumed that 541 

Nsim 1,t+1  corresponded to the sum of the number of daughters that were locally recruited into the 542 

population nsim,t+1 (i.e. produced by the breeding females of each age class) and also of the 543 

number of immigrants Nimsim,t+1 arriving into the population: 544 

                                   Eqn. 7 545 

nsim,t+1 was modeled using a Poisson distribution to include demographic stochasticity: 546 

                                                                                 547 

                                     Eqn. 8 548 

(ii)  Nsim 2,t+1 corresponded to the number of females of age class 1 that survived from time t to 549 

time t+1, and was modeled using a binomial process to include demographic stochasticity: 550 

                                     Eqn. 9 551 

(iii) Nsim 3,t+1 and Nsim 4,t+1 corresponded to the number of females in the previous age class that 552 

survived from time t to time t+1: 553 

                                    Eqn. 10 554 

                                                           Eqn. 11 555 

Therefore, for given conditions of BCI, mismatch and densities, Ssim i,t, Rsim i,t and Nimsim,t+1 may 556 

be computed. We accounted for sources of environmental stochasticity due to processes other 557 

than covariates included in the model with a covariance matrix   of “random year effect +      
” 558 

and “random year effect +      
”. The covariance matrix was estimated and new residuals were 559 

generated from a multivariate normal distribution with covariance matrix equal to  . Then, Nsim 560 

1,t+1, Nsim 2,t+1, Nsim 3,t+1 and Nsim 4,t+1, functions of Ssim i,t, Rsim i,t and Nimsim,t+1 may be computed and 561 

finally, the density Nsim,t+1 may be simulated.  562 

 563 

4- Forecasting vital rates and population size and estimating ToEvital and ToEpop 564 

 565 

Using the age-structured population model described above, that accounted for the effects 566 

of BCI, mismatch and density on vital rates, we forecasted the great tit population under two 567 

simulated beech crop production scenarios.  568 

 569 

a) Forecasting beech crop index under two scenarios 570 

 571 

BCI is a categorical variable with three levels (1 (low), 2 (medium) and 3 (high 572 

production)). We simulated two extreme scenarios of beech crop production by 2100.  573 

In the first scenario, we simulated a decrease in beech crop production in the future. The 574 

probability of having a year of low production (P(BCI=level 1)) increased over time, from 0.005 575 

in1920 to 0.9 in 2100. The probability of having a year of medium production (P(BCI=level 2)) 576 

was set to 0.1, the average observed between 1985 and 2020. The probability of having a year of 577 

high production (P(BCI=level 3)) corresponded to 1-P(BCI=level 1)-P(BCI=level 2) and thus 578 

ranged from 0.895 to 0 from 1920 to 2100 (Extended Data Fig. 3, left panel). For each year, we 579 
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performed 100 draws from a three-category multinomial distribution with probabilities 580 

P(BCI=level 1), P(BCI=level 2), P(BCI=level 3). This resulted in 100 simulated time-series of 581 

BCI between 1920 and 2100. These projections of BCI expressed as levels (1, 2 and 3) were 582 

used afterwards to project the great tit population size.  583 

In the second scenario, we simulated an increase in beech crop production in the future. 584 

The probability of having a year of high production (P(BCI=level 3)) increased over time, from 585 

0.005 in 1920 to 0.9 in 2100. The probability of having a year of medium production 586 

(P(BCI=level 2)) was set to 0.1. The probability of having a year of low production (P(BCI=level 587 

1)) corresponded to 1-P(BCI=level 2)-P(BCI=level 3) and thus ranged from 0.895 to 0 from 588 

1920 to 2100 (Extended Data Fig. 3, right panel). For each year, we performed 100 draws from a 589 

three-category multinomial distribution with probabilities P(BCI=level 1), P(BCI=level 2), 590 

P(BCI=level 3). This resulted in 100 simulated time-series of BCI between 1920 and 2100.  591 

 592 

b) Forecasting vital rates and great tit population size 593 

 594 

Using trajectories of mismatch expected from 1920 to 2100 under the RCP 8.5 scenario 595 

that accounted for all sources of uncertainties (see objective 3) and simulated trajectories of BCI 596 

simulated according to the first scenario (decreasing beech crop production) as well as the age-597 

specific densities in 1987 estimated with the IPM, we simulated 100 stochastic trajectories in 598 

vital rates and population sizes per ensemble member from 1920 to 2100, resulting in a total of 599 

4,000 stochastic trajectories. We computed the 95% and 66% prediction intervals of the 600 

predicted age-specific vital rates, number of immigrants and total population size. We then 601 

selected an historical time window during which population size was stable over time (1922 – 602 

1950, slope of the regression between population size and years during this time window: 0.092 603 

(SE: 0.217)) and estimated the time of emergence for population size (ToEpop) and vital rates 604 

(ToEvital). In addition, we forecasted the great tit population but accounted for climate uncertainty 605 

only in the projections. To do so, we used trajectories of mismatch expected from 1920 to 2100 606 

that accounted for climate uncertainty only, and turned off stochasticity in Eqn. 8-11 as well as 607 

the covariance matrix, to obtain 40 projections of age-specific vital rates and population sizes 608 

from 1920 to 2100, i.e. one projection per member. 609 

We replicated the exact same procedure with trajectories of BCI simulated according to 610 

the second scenario (increasing beech crop production) to obtain forecasted time-series of vital 611 

rates and population size. 612 

 613 

All of these analyses were performed with R software 
57

.  614 

 615 

Data availability: Data used in the analysis are available at 616 

https://github.com/marleng/ToE_greattit 
58

. 617 

Data on past observed beech crop index, past observed mismatch between laying dates and food 618 

peaks, expected spring temperature according to the RCP 8.5 scenario, past observed annual age-619 

specific population size and vital rates and their variance are provided. 620 

 621 

Code availability: R code used for the analysis is available at  622 

https://github.com/marleng/ToE_greattit 
58

. 623 

 624 

https://github.com/marleng/ToE_greattit
https://github.com/marleng/ToE_greattit
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