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. By direct calculation, we give explicit expressions of the distance function and the Finsler structure of the metric restricted to the subspace of acute triangles. We deduce from the form of the Finsler unit sphere a result on the infinitesimal rigidity of the metric. We give a description of the maximal stretching loci for a family of extreme Lipschitz maps.

Introduction

In his paper [START_REF] Thurston | Minimal stretch maps between hyperbolic surfaces[END_REF], William Thurston introduced an asymmetric metric on the Teichmüller space of complete hyperbolic metrics of finite type on a given surface, where the distance between two points is defined as the logarithm of the smallest dilatation constant of a Lipschitz homeomorphism between two marked surfaces equipped with hyperbolic structures representing these points. Thurston discovered several properties of this metric, called now Thurston's metric. In particular, he gave a description of a large class of geodesics, called stretch lines, he showed that any two points are connected by a geodesic, he proved that this metric is Finsler, and he gave a description of the unit sphere of the conorm of this Finsler structure at each cotangent space of Teichmüller space, as an embedding of the space of projective measured laminations on the surface.

In the last couple of decades, Thurston's metric has been adapted to many different settings. We list here some of these settings, to give an indication of some of the developments: Teichmüller spaces of surfaces with boundary, see e.g. the recent papers [START_REF] Huang | Optimal Lipschitz maps on one-holed tori and the Thurston metric theory of Teichmüller space[END_REF] and [START_REF] Alessandrini | Generalized stretch lines for surfaces with boundary[END_REF]; Teichmüller space of the torus, see [START_REF] Belkhirat | Thurston's weak metric on the Teichmüller space of the torus[END_REF] and [START_REF] Miyachi | Tangent spaces of the Teichmüller space of the torus with Thurston's weak metric[END_REF]; Randers-Teichmüller metrics [START_REF] Miyachi | The Teichmüller-Randers metric[END_REF]; singular flat metrics underlying a fixed quadrangulation [START_REF] Saglam | Thurston's asymmetric metric on the space of singular flat metrics with a fixed quadrangulation[END_REF]; higher dimensional hyperbolic manifolds [START_REF] Guéritaud | Maximally stretched laminations on geometrically finite hyperbolic manifolds[END_REF]; higher Teichmüller theory, see [START_REF] Tholozan | Teichmüller geometry in the highest Teichmüller space[END_REF], and there are others. This list is necessarily very partial, and the work and the literature on this topic is growing at a fast rate. See also the list of problems in [START_REF] Su | Problems on the Thurston metric[END_REF], and [START_REF] Pan | The geometry of the Thurston metric: A survey[END_REF] and [START_REF] Xu | Thurston's metric on the Teichmüller space of flat tori[END_REF] for two recent surveys on Thurston's metric and its developments.

Recently, İsmail Saglam and the third author of the present paper developed the theory of Thurston's Lipschitz metric on the Teichmüller space of Euclidean triangles, that is, the moduli space of marked Euclidean triangles (see [START_REF] Saglam | Minimal stretch maps between Euclidean triangles[END_REF]). They proved in particular that restricted to the space of acute triangles, the Lipschitz distance between two marked triangles is equivalent to another distance, defined as the logarithm of the maximum of the lengths of the three edges and the three 1 altitudes of the two triangles. This new formula is an analogue of Thurston's alternative description of his distance in terms of ratios of lengths of simple closed geodesics (see [15, p. 4]). In [START_REF] Saglam | Minimal stretch maps between Euclidean triangles[END_REF], the authors also proved that for A > 0, the metric induced on the space of acute triangles having fixed area A is Finsler. They gave a characterisation of geodesics in AT A : a path is geodesic if and only if the angle at each labelled vertex of triangles in this family varies monotonically. Finally, they proved that the isometry group of AT A is isomorphic to S 3 , the symmetric group on {1, 2, 3}.

The aim of the present paper is to continue studying Thurston's metric on the Teichmüller space of Euclidean triangles inaugurated in [START_REF] Saglam | Minimal stretch maps between Euclidean triangles[END_REF]. Following [START_REF] Saglam | Minimal stretch maps between Euclidean triangles[END_REF], for A > 0, we let T A and AT A denote respectively the Teichmüller spaces of Euclidean triangles and acute triangles of fixed area A (see §2). Unlike the metric described by Thurston on the Teichmüller space of hyperbolic surfaces, the Lipschitz metric on AT A is symmetric as shown in [START_REF] Saglam | Minimal stretch maps between Euclidean triangles[END_REF]. In the present paper, developing the theory of Thurston's metric on the Teichmüller spaces of triangles further, we obtain the following:

• Explicit formulae for the Lipschitz metric and its associated Finsler infinitesimal structure on AT A , after identifying the space T A with the upper-half plane H in the complex plane C. • A description of the Finsler ball at a point in the tangent space of AT A using the new parameters, and an infinitesimal rigidity result, saying that the infinitesimal unit ball at a give point determines the triangle as a point in Teichmüller space. • A characterisation of the stretch locus for an extremal Lipschitz map between acute triangles, and an analogue of Teichmüller's result (respectively Thurston's result) on the existence of foliations (respectively laminations) on which the Lipschitz constant for the extremal Lipschitz map is optimal. • The perhaps surprising result that, contrary to the usual case of Thurston's metric, there are instances where there are no extremal Lipschitz homeomorphisms between two triangles. The present setting of the Teichmüller space of the triangle is a simple case where Thurston's ideas on his Lipschitz metric have simple analogues and can be described in an elementary way, without heavy use of Thurston's theory of surfaces.

Teichmüller space of triangles

2.1. labelled triangles. We identify the Euclidean plane with the complex plane C in the canonical way. Consider a triangle in the Euclidean plane. We label its vertices by an ordered triple so that this labelling induces a counter-clockwise orientation on the boundary of the triangle. We call such a triangle labelled. Consider a 2-simplex σ 0 with vertices labelled as a, b, c, fixed once and for all. The labelled triangle is thought of as a pair (T, f ) of a triangle T equipped with a vertex-preserving homeomorphism f : σ 0 → T , called the marking of the triangle. In this setting, for v ∈ {a, b, c}, the vertex of T corresponding to the vertex labelled as v of σ 0 via the marking is called the v-vertex of T .

Henceforth, for a labelled triangle T and for v ∈ {a, b, c}, we use the notation z v (T ) ∈ C for the v-vertex of T . Let θ v (T ) be the angle of T at the v-vertex. We denote by e v (T ) the edge of the triangle which is opposite to the v-vertex, and by |e v (T )| its Euclidean length.

2.2.

The space of triangles. We say that two labelled triangles T and T are (Teichmüller)-equivalent if there is a label-preserving isometry (in terms of the Euclidean metric) from T onto T .

Let T A be the set of Teichmüler equivalence classes of triangles of area A. Let AT A be the subset of T A consisting of acute triangles. For v ∈ {a, b, c}, we denote by OT v , or, more simply, O v , the subset of T A consisting of obtuse triangles with obtuse angle at the v-vertex.

Convention 1. From now on, to simplify notation, we omit the subscript A (which concerns the area of triangles) from the symbols in the case of unit area triangles (i.e. A = 1). For instance, we set T = T 1 . We also simply write T to denote the Teichmüller equivalence class of a triangle T .

2.3.

Realisation of the space of triangles. In §6 of the paper [START_REF] Saglam | Minimal stretch maps between Euclidean triangles[END_REF], the authors suggested an identification between the space AT 1 2 of acute triangles of area 1 2 and an ideal triangle in the hyperbolic plane. We shall use this identification.

The space T A is naturally identified with the upper-half-plane H ⊂ C, by taking z ∈ H to the equivalence class of a labelled triangle T z with (2.1)

z a (T z ) = (2A/y) 1/2 z, z b (T z ) = 0, z c (T ) = (2A/y) 1/2
with area A in C, where z = x + iy. We denote by z the inverse of this map, which takes each point in T A to a number in H. For T ∈ T A with z = z(T ), we call T z the normalised position of T . Under this identification, the space AT A of acute triangles is realised as the interior of the ideal (hyperbolic) triangle A with vertices 0, 1, ∞. The boundary ∂A consists of right triangles. For instance, the hyperbolic geodesic connecting 0 and 1 parametrises the right triangles of area A whose right angles are at the vertex labelled a. Let r a (resp. r b , r c ) denote the complete hyperbolic geodesic connecting 0 and 1 (resp. ∞ and 0, ∞ and 1). The complement of the closure of the ideal triangle with vertices 0, 1 and ∞ consists of obtuse triangles. For a vertex v ∈ {a, b, c}, we denote by O v the domain enclosed by r x and ∂H (see Figure 1). For v ∈ {a, b, c}, we set

T A (v) = AT A ∪ r v ∪ OT v .
2.4. Lipschitz metric. Consider two labelled triangles T and T on the plane, and let f : T → T be a label-preserving continuous map. The Lipschitz constant of f is defined as

L(f ) = sup x,y∈T,x =y d euc (f (x), f (y)) d euc (x, y) where d euc denotes the Euclidean metric of the plane. A map f is said to be Lipschitz if L(f ) < ∞. A label-preserving map f : T → T is said to be edge- preserving if for v ∈ {a, b, c}, f (e v (T )) ⊂ e v (T )
. Note that a label-preserving homeomorphism is always edge-preserving.

We define L(T, T ) by

L(T, T ) := inf{L(f ) | f is a label-preserving homeomorphism between T and T },
and set d L (T, T ) = log L(T, T ). A label-preserving and edge-preserving Lipschitz map g : T → T is said to be extremal if L(T, T ) = L(g). Notice that an extremal Lipschitz map is not necessarily a homeomorphism. One can easily see that d L is a distance function on T A , cf. [START_REF] Saglam | Minimal stretch maps between Euclidean triangles[END_REF]. We call d L the Lipschitz metric on T A . We give a topology the set T A (and hence AT A ) induced from the Lipschitz metric.

Convention 2. A similarity of the complex plane with factor

√ A gives a natural isometric identification (with respect to the Lipschitz metric) between T and T A . For this reason, henceforth, we shall only work with the space of of triangles of unit area.

2.5. Parametrisation. For a labelled triangle T of unit area, the corresponding parameter z = z(T ) is expressed by

(2.2) z(T ) = |e c (T )| |e a (T )| e iθ b (T ) , cos θ b (T ) = |e a (T )| 2 + |e c (T )| 2 -|e b (T )| 2 2|e a (T )||e c (T )| .
Notice that T = (a, b, c) is similar to the triangle with (ordered) vertices (z(T ), 0, 1) by a label-preserving similarity map. A label-preserving affine map from T 1 = T z1 to T 2 = T z2 is given by

A T1;T2 (ζ) = Im(z 1 ) Im(z 2 ) z 2 -z 1 z 1 -z 1 ζ + z 1 -z 2 z 1 -z 1 ζ .
Its Lipschitz constant, which we denote by L Af (T 1 , T 2 ), is expressed as

(2.3) L Af (T 1 , T 2 ) = Im(z 1 ) Im(z 2 ) z 2 -z 1 z 1 -z 1 + z 1 -z 2 z 1 -z 1 = |z 2 -z 1 | + |z 2 -z 1 | 2Im(z 1 ) 1/2 Im(z 2 ) 1/2
(cf. [10, §2]). We note the following.

Proposition 2.1. The parametrisation z : T → H is a homeomorphism.

Proof. We only need to show the bi-continuity. Let T 1 and T 2 be points in T. By the definition of the Lipschitz metric, we have Hence, when a sequence {T n } ⊂ T converges to T in the Lipschitz metric L, the lengths of the edges also converge. By (2.2), this implies that {z(T n )} converges to z(T ) in H. The continuity of the inverse map z -1 follows from (2.3) and the relation log

L(T 1 , T 2 ) ≥ max |e a (T 1 )| |e a (T 2 )| , |e b (T 1 )| |e b (T 2 )| , |e c (T 1 )| |e c (T 2 )| .
L(T 1 , T 2 ) ≤ log L Af (T 1 , T 2 )
for any pair of triangles T 1 and T 2 .

2.6. Pencils and Backward pencils. For ξ, η ∈ ∂H with ξ = η, we denote by r = r(ξ, η) the complete hyperbolic geodesic in H joining them. For d > 0, we denote by N (r, d) the d-neighborhood of the geodesic r. Let T be a labelled triangle. Suppose that z(T ) lies in T(v) for v ∈ {a, b, c}. For the vertex v of T , we define the v-pencil P (T ; v) by

P (T ; v) := N (r v , d v ) ∩ N (r v , d v ) ∩ (A ∪ O v ) with {v, v , v } = {a, b, c}, where d w = -log tan(θ w (T )/2) for w ∈ {v , v }, (cf.
Figure 2). Given an acute triangle T , we define the v-backward pencil BP (T ; v) as

BP (T ; v) = (C -N (r v , d v )) ∩ (C -N (r v , d v )) ∩ A
(see Figure 3). After identifying T with H, P (T ; v) and BP (T ; v) are also regarded as subsets of T for v ∈ {a, b, c}.

2.7.

Symmetries. The symmetric group S 3 of degree 3 acts on T naturally as permutations of the labelled vertices. This symmetric group is thought of as the mapping class group of a triangle (see §6 of the paper [START_REF] Saglam | Minimal stretch maps between Euclidean triangles[END_REF]). Under the identification between T and H, the action of S 3 on H is generated by two transformations

(2.4) ω ab (z) = z z -1 , ω ac (z) = 1 z ,
where the former permutes the a and b-vertices, and the latter permutes the a and c-vertices. For z 0 ∈ H ∼ = T, the above actions are induced by the (orientationreversing) congruences

R ab : T z0 ζ → - |z 0 -1| z 0 -1 ζ - 2 Im(z 0 ) + |z 0 -1| 2Im(z 0 ) ∈ T ω ab (z0) R ac : T z0 ζ → |z 0 | z 0 ζ ∈ T ωac(z0) .
For the record, we note that the transformation of T corresponding to the permutation between the b and c-vertices is expressed as

ω bc (z) = 1 -z,
and it is induced by the congruence

R bc (ζ) = 2 Im(z 0 ) -ζ.

The Lipschitz distance and its Finsler structure

In this section, we discuss the Lipschitz metric on the Teichmüller space of acute triangles. The goal of this section is to prove the following theorem, which follows from Proposition 3.2 and Proposition 3.5 given later. Theorem 3.1 (An expression of the Lipschitz distance). Let T be a point in A, and T a point in A. Set z = z(T ) ∈ H, and suppose that w = z(T ) lies in P (T ; x) ∪ BP (T ; x) for x ∈ {a, b, c}. Then, we have

d L (T, T ) =                1 2 log Im(w) Im(z) (if x = a) 1 2 log Im(w) |w| 2 |z| 2 Im(z) (if x = b) 1 2 log Im(w) |w -1| 2 |z -1| 2 Im(z) (if x = c).
We shall show Theorem 3.1 by giving extremal maps concretely for each case.

Finsler structure. In [START_REF] Saglam | Minimal stretch maps between Euclidean triangles[END_REF], Saglam and Papadopoulos gave an expression of the Finsler structure of the deformation space of acute triangles using the side-length parametrisation. In this section, we shall give a new description of the Finsler structure which arises naturally from our setting, using a direct calculation. It is often interesting to have a formula for the norm of a vector and to draw the unit ball in the tangent space, once we know that a geometrically defined distance function arises from a Finsler structure. This will imply in particular an infinitesimal rigidity result which is similar to the one obtained in [START_REF] Pan | Local rigidity of the Teichmüller space with the Thurston metric[END_REF][START_REF] Huang | The infinitesimal and global Thurston geometry of Teichmüller space[END_REF]. Let z 0 be a point in A. Let θ 1 and θ 2 be the arguments of z 0 and z 0 -1 respectively, with -π < θ 1 , θ 2 ≤ π. We consider six regions in the tangent space T z0 T = C divided by three lines passing through the origin with angles θ 1 , θ 2 , and 

θ 1 + θ 2 -π.
We denote these regions by S x (z 0 ), S B

x (z 0 ) (x ∈ {a, b, c}), as in Figure 3. We define the norm F A (z 0 , v) of a vector v ∈ T z0 T = C by

F A (z 0 , v) =                1 2 |Im(v)| Im(z 0 ) (v ∈ S a (z 0 ) ∪ S B a (z 0 )) 1 2 Im(v) Im(z 0 ) -2Re v z 0 (v ∈ S b (z 0 ) ∪ S B b (z 0 )) 1 2 Im(v) Im(z 0 ) -2Re v z 0 -1 (v ∈ S c (z 0 ) ∪ S B c (z 0 )).
One can check easily that F A is continuous on A × C. The Finsler infinitesimal norm is obtained by differentiating the distance in Theorem 3.1. Thus, we we have the following.

Theorem 3.2 (Finsler structure). The Lipschitz distance d L on A is a Finsler distance with Finsler norm F A .

Proof. For any v ∈ C, we have

|Im(z 0 + tv)| Im(z 0 ) = 1 + t Im(v) Im(z 0 ) Im(z 0 + tv) |z 0 + tv| 2 |z 0 | 2 Im(z 0 ) = 1 -2tRe v z 0 + o(t) 1 + t Im(v) Im(z 0 ) = 1 + t Im(v) Im(z 0 ) -2Re v z 0 + o(t) Im(z 0 + tv) |z 0 + tv -1| 2 |z 0 -1| 2 Im(z 0 ) = 1 -2tRe v z 0 -1 + o(t) 1 + t Im(v) Im(z 0 ) = 1 + t Im(v) Im(z 0 ) -2Re v z 0 -1 + o(t)
as t → 0. Suppose first that v lies in S a (z 0 ). Since Im(v) ≥ 0 for v ∈ S a (z 0 ), from Theorem 3.1 and the above calculation, we have

d L (z 0 , z t ) = 1 2 Im(v) Im(z 0 ) + o(t) = 1 2 |Im(v)| Im(z 0 ) + o(t) (t → 0)
for a differentiable path in P (T z0 ; a) which is tangent to v at t = 0. We have the same conclusion for a differentiable path in BP (T z0 ; a) which tangent to v at t = 0. Suppose next that v lies in S b (z 0 ). Express v as v = v 1 + iv 2 = ξe iθ . As depicted in Figure 3, we have

θ 1 + θ 2 -2π ≤ θ ≤ θ 1 -π then, and hence θ 2 -θ 1 -2π ≤ θ -2θ 1 ≤ -π -θ 1 . Then we have Im(v) -2Re(sin θ 1 e -iθ1 v) = ξ sin θ -2ξ sin θ 1 cos(θ -θ 1 ) = ξ sin(θ -2θ 1 ) > 0,
where the last inequality follows from the fact that both sin(θ 2 -θ 1 ) and sin(π -θ 1 ) are positive and fromthe bounds for θ given above. Since z 0 = (e iθ1 / sin θ 1 )Im(z 0 ), we have

Im(v) Im(z 0 ) -2Re v z 0 = ξ sin(θ -2θ 1 ) Im(z 0 ) > 0.
Hence, from the above calculation, we get, for a differentiable path in P (T z0 ; b) tangent to v at t = 0,

d L (z 0 , z t ) = t 1 2 Im(v) Im(z 0 ) -2Re v z 0 + o(t) = t 1 2 Im(v) Im(z 0 ) -2Re v z 0 + o(t).
The remaining cases for BP (T z0 ; b), P (T z0 ; c), and P B(T z0 ; c) can be dealt with by a similar argument. Some remarks. Regarding Theorem 3.1 and Theorem 3.2, we remark the following.

(1) Theorem 3.2 gives another way of seeing the non-uniqueness of geodesics between two points, a fact which was already noticed in [START_REF] Saglam | Minimal stretch maps between Euclidean triangles[END_REF]. Indeed, we can see that there are uncountably many geodesics between two points in A.

For instance, take z 0 ∈ A and z 1 ∈ P (T z0 ; a). Then, a piecewise C 1 -path z t (0 ≤ 1 ≤ 1) connecting z 0 to z 1 whose imaginary part Im(z t ) is increasing is a geodesic between z 0 and z 1 . Similarly, when z 1 ∈ BP (T z0 ; a), if the imaginary part is decreasing, z t is a geodesic between z 0 and z 1 . (2) For z 0 ∈ A, the unit ball associated with the Finsler norm F A at z 0 is a hexagon with vertices 2z 0 , 2(z 0 -1), 2z 0 (z 0 -1), -2z 0 , -2(z 0 -1) and -2z 0 (z 0 -1). The diagonals divides the unit ball into six triangles, each of which is similar to T z0 . See Figure 3. (3) From the second remark, we deduce the following infinitesimal rigidity result: The isometry type of the unit ball determines uniquely a triangle in the parameter space. The same kind of infinitesimal rigidity concerning cotangent spaces of Teichmüller spaces of closed surfaces with Thurston's metric was proved in [START_REF] Pan | Local rigidity of the Teichmüller space with the Thurston metric[END_REF][START_REF] Huang | The infinitesimal and global Thurston geometry of Teichmüller space[END_REF]. With the preceding notation, we can state our infinitesimal rigidity result as follows.

Corollary 3.1. Let z 0 and z 1 be points in A. Suppose that there is a linear isometry from (T z0 A,

F A (z 0 , •)) to (T z1 A, F A (z 1 , •)).
Then the triangles T z1 and T z0 are congruent. 

F v ,θ v = F v ,θ v (T ) and G v = G v (T )
for the vertex v, where v, v ∈ {a, b, c} are distinct vertices, as in Figure 6. The figure only show the case when v = a, but the other cases can be drawn just by changing the symbols of vertices.

In the leftmost triangle of Figure 6, F b,θ a is drawn as follows. Let a, b, and c be the a-vertex, the b-vertex, and the c-vertex of T , respectively. Draw a perpendicular from b to its opposite side with its foot r, and then a segment from c to its opposite side so that the angle ∠bpc is equal to θ, where p is the foot of the segment. We denote the intersection between the segments br and cp by q. Let E a , D b and D c be the triangles bcq, bpq, and cqr, respectively. Consider the foliations on D b (resp. D c ) whose leaves are Euclidean segments parallel to the segment rb (resp. the segment pc). We call these foliations the maximally stretched foliations. The maximal stretching locus F b,θ a consists of the foliated triangles D b and D c , and the triangle E a . We call the triangle E a the expanding region. The maximal stretching locus F c,θ a for the second triangle in Figure 6 is defined in the same way. The names will be justified below (see Remark 3.1).

In the rightmost triangle of Figure 6, its maximal stretching locus G a is drawn as follows. Draw the perpendicular from a to the opposite side, with its foot p. In this section, we discuss an extremal Lipschitz map from a normalised triangle T to a normalised triangle in the pencil P (T ; v) for v ∈ {a, b, c}. We use the notation 3.1, and shall discuss only the case when v = a. In the case when v = b and c, we can define the Lipschitz maps in the same way, taking conjugates by congruences (cf. §2.7).

3.2.1. Let T 0 and T 1 be triangles with z 0 = x 0 + iy 0 = z(T 0 ) ∈ T(a), and z 1 = u 0 + iv 0 = z(T 1 ) ∈ P (T 0 ; a).

We define

f z0,z1 (ξ + iη) =        y 0 v 0 u 0 x 0 ξ + i v 0 y 0 η (ξ + iη ∈ D b ) 2 v 0 u 0 + y 0 2 1 -u 0 1 -x 0 ξ - 2 y 0 x 0 + i v 0 y 0 η (ξ + iη ∈ D c ).
One can check that the map f z0,z1 is a label-preserving Lipschitz map from T z0 to T z1 .

3.2.2. For 0 ≤ k 1 , k 2 ≤ 1, we define a stretch map f Gv,(k1,k2) associated with G a and (k 1 , k 2 ) on T as follows.

Let T ∈ T(a) be in normalised position. We define

(3.1) f Ga,(k1,k2) (ξ + iη) =        k 1 ξ + iη (k 1 x 0 + k 2 (1 -x 0 )) 1/2 if ξ + iη ∈ D b k 1 ξ 0 + k 2 (ξ -ξ 0 ) + iη (k 1 x 0 + k 2 (1 -x 0 )) 1/2 (ξ + iη ∈ D c ),
where ξ 0 = 2/y 0 x 0 (cf. (2.1)). Since

f Ga,(k1,k2) (z a (T )) = 2 y 0 1/2 k 1 x 0 + iy 0 (k 1 x 0 + k 2 (1 -x 0 )) 1/2 f Ga,(k1,k2) (z b (T )) = 0 f Ga,(k1,k2) (z c (T )) = 2 y 0 1/2 (k 1 x 0 + k 2 (1 -x 0 ))) 1/2 ,
f Ga,(k1,k2) coincides with f z0,z1 , which maps T to a triangle T 1 with (3.2)

z 1 = z(T 1 ) = k 1 x 0 + iy 0 k 1 x 0 + k 2 (1 -x 0 )
.

We denote such a triangle T 1 by St(T, G a , (k 1 , k 2 )). We note that f Ga,(k1,k2) is label-preserving and edge-preserving, and that f Ga, [START_REF] Alessandrini | Generalized stretch lines for surfaces with boundary[END_REF][START_REF] Alessandrini | Generalized stretch lines for surfaces with boundary[END_REF] is the identity map. Note also that f Ga,(0,k2) and f Ga,(k1,0) are not homeomorphisms. In these two cases, the images are right triangles and the maps are not injective. 

d euc (f Ga,(k1,k2) (ζ 1 ), f Ga,(k1,k2) (ζ 2 )) = 1 (k 1 x 0 + k 2 (1 -x 0 ))) 1/2 d euc (ζ 1 , ζ 2 ) > d euc (ζ 1 , ζ 2 )
when k 1 k 2 < 1 since 0 < x 0 , 1 -x 0 < 1. Therefore, f Ga,(k1,k2) stretches T along the foliations in D b and D c . This is the reason why G a (and hence G v for v = b, c) is called the maximal stretching locus, and the map f Ga,(k1,k2) (and hence f Gv,(k1,k2) for v = b, c) is named a stretch map.

We have the following. 

∈ T(v), z(St(T, G v , (k 1 , k 2 )))) is contained in P (T ; v) for any 0 ≤ k 1 , k 2 ≤ 1 with |k 1 | + |k 2 | > 0.
Conversely, for any z ∈ P (T ; v), there is a unique pair Proof. As in the proof of Proposition 3.1, we only consider the case when v = a. By definition, f Ga,(k1,k2) is the composition of a contraction of the horizontal direction with Lipschitz constant 1 and an expansion with factor 1/(x 0 k

(k 1 , k 2 ) with 0 ≤ k 1 , k 2 ≤ 1 with |k 1 | + |k 2 | > 0 such that z = z(St(T, G v , (k 1 , k 2 ))). Therefore, the map [0, 1] × [0, 1] \ {(0, 0)} (k 1 , k 2 ) → St(T, G v , (k 1 , k 2 )) ∈ P (T ; x)
1 + (1 -x 0 )k 2 )) 1/2 .
Furthermore, the contraction preserves distances in the imaginary direction. Hence we have

(3.3) L(f Ga,(k1,k2) ) = 1 (x 0 k 1 + (1 -x 0 )k 2 )) 1/2 .
On the other hand, the altitudes of T and T = St(T, G a , (k 1 , k 2 )) are (2Ay 0 ) 1/2 and (2Ay 0 ) 1/2 /(x 0 k 1 + (1 -x 0 )k 2 )) 1/2 . Since each altitude is equal to the length of the perpendicular from the a-vertex to its opposite side, the Lipschitz constant of any label-preserving and edge-preserving Lipschitz map from T to T is at least

1/(x 0 k 1 + (1 -x 0 )k 2 )) 1/2 . Corollary 3.2 (Lipschitz distance for pencils). For v ∈ {a, b, c} and 0 ≤ k 1 , k 2 ≤ 1 with |k 1 | + |k 2 | > 0, we have (3.4) L(T, St(T, G v , (k 1 , k 2 ))) =                1 2 log 1 x 0 k 1 + (1 -x 0 )k 2 (if v = a) 1 2 log |z 0 | 2 x 0 k 1 + (|z 0 | 2 -x 0 )k 2 (if v = b) 1 2 log |z 0 -1| 2 (|z 0 | 2 -x 0 )k 1 + (1 -x 0 )k 2 (if v = c)
where we set z(T ) = z 0 = x 0 +iy 0 . In particular, if we set

z 1 = z(St(T, G v , (k 1 , k 2 ))), we obtain (3.5) L(T z0 , T z1 ) =                1 2 log Im(z 1 ) Im(z 0 ) (if v = a) 1 2 log 1 2 log Im(z 1 ) |z 1 -1| 2 |z 0 -1| 2 Im(z 0 ) (if v = b) 1 2 log Im(z 1 ) |z 1 | 2 |z 0 | 2 Im(z 0 ) (if v = c)
Proof. We shall only give a proof in the case when v = a (cf. (2.4)). If k 1 k 2 = 0, the stretch map f Ga,(k1,k2) is a homeomorphism. Therefore, (3.4) and (3.5) follow from (3.3). Assume now that k 1 = 0. For ≥ 0, we set T = St(T, G a , ( , k 2 )). We take a label-preserving affine map A : T → T 0 and set g = A • f Ga,( ,k2) . Then, g is a label-preserving Lipschitz homeomorphism from T to T 0 . From (2.3) and Proposition 3.2, we have L(f Ga,(0,k2) ) ≤ L(T, T 0 ) ≤ L(g ) ≤ L(A )L(f Ga,( ,k2) ) → L(f Ga,(0,k2) ) as → 0, which implies (3.4) and (3.5) for the case when k 1 = 0. The case when k 2 = 0 can be dealt with in the same way.

3.2.3. Extremal Lipschitz maps are not always homeomorphisms. Let v, v and v be vertices such that {v, v , v } = {a, b, c}. Let T be a triangle in AT. For T ∈ P (T ; v) ∩ (r v ∪ r v ), our stretch map from T to T is not a homeomorphism. In fact, we have the following general statement. Proposition 3.3. In the above setting, there is no extremal label-preserving Lipschitz homeomorphism between T and T .

Proof. Let g : T → T be a label-preserving Lipschitz homeomorphism. We may assume that v = a and T ∈ r b . As was shown in the proof of Proposition 3.2, the Lipschitz constant of the stretch map is the ratio of the altitudes of T and T .

Let p ∈ e a (T ) be the foot of the perpendicular in T from the a-vertex z a (T ) to the opposite edge e a (T ). Since T is an acute triangle, p is different from the b-vertex z b (T ) of T . Since g is a homeomorphism, g(p) = z b (T ) but g(p) ∈ e a (T ). Hence g is not extremal. Proposition 3.5 (Extremal Lipschitz maps for backward pencils). Let z 0 ∈ A and z 1 ∈ BP (T z0 ; a). For x ∈ {b, c}, we have the following:

(1) The contraction g x z0,z1 is an extremal Lipschitz map from T z0 to T z1 with Lipschitz constant Im(z 0 )/Im(z 1 ).

(2) The Lipschitz constant is attained by two points both of which lie either in the expanding region E a or on each leaf of the foliation F x,θ a , where θ is defined in the same manner as in Proposition 3.4.

Proof. From Proposition 3.4, we need only verify that g x z0,z1 is extremal. Let g : T z0 → T z1 be a label-preserving and edge-preserving Lipschitz map. Since the length of the edge e a (T zi ) is 2/Im(z i ) for i = 0, 1, the Lipschitz constant of L(g) satisfies L(g) ≥ 2/Im(z 1 )

2/Im(z 0 ) = Im(z 1 ) Im(z 0 ) = L(g x z0,z1 ),

which implies what we wanted.
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 1 Figure 1. The space of triangles T A . The hyperbolic ideal triangle A with vertice {0, 1, ∞} is identified with the space AT A of acute triangles. For v ∈ {a, b, c}, r v consists of right triangles whose angle is π/2 at the v-vertex, and O v consists of obtuse triangles which have an obtuse angle at the vertex labelled v.

Figure 2 .

 2 Figure 2. The shaded region represents tha a-pencil P (T ; a) for z(T ) ∈ A ∪ O a .

Figure 3 .

 3 Figure 3. P (T ; v) and BP (T ; v) for z(T ) ∈ A and v ∈ {a, b, c}.

Figure 4 .

 4 Figure 4. The decomposition of the tangent space at z 0 into six sectors

Figure 5 .

 5 Figure 5. The shape of the Finsler unit ball at z 0 = 1/3 + i. The diagonals (dashed lines) divide the hexagon into six triangles and each triangle is similar to T z0 ..
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 631 Figure 6. The stretching loci F b,θ a , F c,θ a , G a

  Divide the triangle into two right triangles D b = apb and D c = apc. Consider the foliations on D b and D c consisting of Euclidean segments parallel to ap. The maximal stretching locus G a consists of foliated triangles D b and D c . 3.2. Extremal Lipschitz maps associated with pencils. Notation 3.1. For z ∈ H, we set Tz to be the labelled triangle with vertices z a ( Tz ) = z, z b ( Tz ) = 0, z c ( Tz ) = 1.

Remark 3 . 1 .

 31 Let ζ 1 , ζ 2 be points on T with Re(ζ 1 ) = Re(ζ 2 ). Then, we have

Proposition 3 . 1 (

 31 Parameterisations of Pencils). For v ∈ {a, b, c} and T

1 ,Proposition 3 . 2 (

 132 We shall prove the proposition only in the case when v = a. Set z(T ) = x 0 + iy 0 andT = St(T, G v , (k 1 , k 2 )) as above. From (3.2), we have 0 ≤ Re(z(T )) ≤ 1. Since 0 ≤ k 1 , k 2 ≤ 1 and 0 ≤ x 0 ≤ 1,we have Im(hence z(T ) ∈ P (T ; a). Let z = x+iy be a point in P (T ; a). By solving the equation z = z(St(T, G a , (k 1 , k 2 ))), we obtaink 1 = xy 0 x 0 y , k 2 = (1 -x)y 0 (1 -x 0 )y . The condition z = x + iy ∈ P (T ; a) implies that 0 ≤ k 1 , k 2 ≤ 1. Furthermore, k 1 = 0 implies that z(St(T, G a , (k 1 , k 2 ))) ∈ r b , and k 2 = 0 implies that z(St(T, G a , (k 1 , k 2 ))) ∈ r c . Therefore,k 1 and k 2 cannot vanish simultaneously. Stretch maps are extremal). For v ∈ {a, b, c} and 0 ≤ k 1 , k 2 ≤ 1 with |k 1 | + |k 2 | > 0, the stretch map f Gv,(k1,k2) is an extremal Lipschitz map.

  Therefore,L(T, T ) = d euc (z a (T ), z b (T )) d euc (z a (T ), p) < d euc (z a (T ), g(p)) d euc (z a (T ), p) ≤ L(g).
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 7332 Figure 7. Contractions C b z0,z1 , C c z0,z1 and G b z0,z1 .
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3.3.

Extremal Lipschitz maps associated with backward pencils.

3.3.1. Contractions. Let z 0 ∈ H be a point in the ideal triangle with vertices 0, 1 and ∞. Let z 1 = u 0 + iv 0 be a point in BP (T ; a). We divide Tz0 into two right angled triangles by the perpendicular from the b-vertex 0 of Tz0 and its ac-side. For x ∈ {a, c}, we denote by D x b = D x b ( Tz0 ) the component which contains the x-vertex in its boundary. We define the contraction C b z0,z1 on Tz0 associated with the b-vertex by

where

. Notice that ζ 0 is the foot of the perpendicular from the b-vertex 0 of Tz0 to the ac-side. We can check easily that 0 < k ≤ 1. Indeed, by assumption, z 1 ∈ D a b . By a calculation, we can see that a Euclidean ray emanating from the b-vertex 0 passing by z 1 intersects the ac-side of Tz0 at

We can also see that We define the contraction C c z0,z1 associated with the c-vertex by

obtained by conjugating the contraction C b ω bc (z0),ω bc (z0) on the vertical line in C passing through the midpoint 1/2 between the b-vertex 0 and the c-vertex 1 of Tz0 (see §2.7).

We define the contraction G b z0,z1 from Tz0 and Tz1 associated with the b-vertex by

We also define the contraction G c z0,z1 from Tz0 and Tz1 associated with the bvertex and also satisfying the properties of Proposition 3.4 just by interchanging the roles of the b and c-vertices.

The following proposition is an immediate consequence of the definition. (1) The Lipschitz constant of the contraction G x z0,z1 is 1.

(2) After identifying T z0 with Tz0 by a similarity with factor Im(z 0 )/2, the Lipschitz constant of the contraction is attained at two points both of which lie in either the expanding region E a or on any leaf of the foliation F x,θ a , where θ is the angle at ζ 1 of Tζ1 .
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