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ON THE TEICHMULLER SPACE OF ACUTE TRIANGLES

HIDEKI MIYACHI, KEN’ICHI OHSHIKA, AND ATHANASE PAPADOPOULOS

ABSTRACT. We continue the study of the analogue of Thurston’s metric on
the Teichmiiller space of Euclidean triangle which was started by Saglam-
Papadopoulos in [11]. By direct calculation, we give explicit expressions of
the distance function and the Finsler structure of the metric restricted to the
subspace of acute triangles. We deduce from the form of the Finsler unit sphere
a result on the infinitesimal rigidity of the metric. We give a description of the
maximal stretching loci for a family of extreme Lipschitz maps.

Keywords: Thurston’s asymmetric metric, Lipschitz metric, extreme Lips-
chitz maps, stretch locus, Teichmiiller theory, space of Euclidean triangles,
geodesics, Finsler structure

AMS codes: 30F60, 51F99, 57M50, 32G15, 57K20

1. INTRODUCTION

In his paper [15], William Thurston introduced an asymmetric metric on the
Teichmiiller space of complete hyperbolic metrics of finite type on a given surface,
where the distance between two points is defined as the logarithm of the smallest
dilatation constant of a Lipschitz homeomorphism between two marked surfaces
equipped with hyperbolic structures representing these points. Thurston discovered
several properties of this metric, called now Thurston’s metric. In particular, he
gave a description of a large class of geodesics, called stretch lines, he showed that
any two points are connected by a geodesic, he proved that this metric is Finsler,
and he gave a description of the unit sphere of the conorm of this Finsler structure
at each cotangent space of Teichmiiller space, as an embedding of the space of
projective measured laminations on the surface.

In the last couple of decades, Thurston’s metric has been adapted to many
different settings. We list here some of these settings, to give an indication of some
of the developments: Teichmiiller spaces of surfaces with boundary, see e.g. the
recent papers [5] and [1]; Teichmiiller space of the torus, see [2] and [6]; Randers—
Teichmiiller metrics [9]; singular flat metrics underlying a fixed quadrangulation
[12]; higher dimensional hyperbolic manifolds [3]; higher Teichmiiller theory, see
[14], and there are others. This list is necessarily very partial, and the work and the
literature on this topic is growing at a fast rate. See also the list of problems in [13],
and [8] and [16] for two recent surveys on Thurston’s metric and its developments.

Recently, Ismail Saglam and the third author of the present paper developed
the theory of Thurston’s Lipschitz metric on the Teichmiiller space of Euclidean
triangles, that is, the moduli space of marked Euclidean triangles (see [11]). They
proved in particular that restricted to the space of acute triangles, the Lipschitz
distance between two marked triangles is equivalent to another distance, defined
as the logarithm of the maximum of the lengths of the three edges and the three
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altitudes of the two triangles. This new formula is an analogue of Thurston’s
alternative description of his distance in terms of ratios of lengths of simple closed
geodesics (see [15, p. 4]). In [11], the authors also proved that for A > 0, the metric
induced on the space of acute triangles having fixed area A is Finsler. They gave a
characterisation of geodesics in AT 4: a path is geodesic if and only if the angle at
each labelled vertex of triangles in this family varies monotonically. Finally, they
proved that the isometry group of AT 4 is isomorphic to S3, the symmetric group
on {1,2,3}.

The aim of the present paper is to continue studying Thurston’s metric on the
Teichmiiller space of Euclidean triangles inaugurated in [11]. Following [11], for
A > 0, we let T4 and AT 4 denote respectively the Teichmiiller spaces of Euclidean
triangles and acute triangles of fixed area A (see §2). Unlike the metric described
by Thurston on the Teichmiiller space of hyperbolic surfaces, the Lipschitz metric
on AT 4 is symmetric as shown in [11]. In the present paper, developing the theory
of Thurston’s metric on the Teichmiiller spaces of triangles further, we obtain the
following:

e Explicit formulae for the Lipschitz metric and its associated Finsler infini-
tesimal structure on AT 4, after identifying the space T 4 with the upper-half
plane H in the complex plane C.

e A description of the Finsler ball at a point in the tangent space of A% 4
using the new parameters, and an infinitesimal rigidity result, saying that
the infinitesimal unit ball at a give point determines the triangle as a point
in Teichmiiller space.

e A characterisation of the stretch locus for an extremal Lipschitz map be-
tween acute triangles, and an analogue of Teichmiiller’s result (respectively
Thurston’s result) on the existence of foliations (respectively laminations)
on which the Lipschitz constant for the extremal Lipschitz map is optimal.

e The perhaps surprising result that, contrary to the usual case of Thurston’s
metric, there are instances where there are no extremal Lipschitz homeo-
morphisms between two triangles.

The present setting of the Teichmiiller space of the triangle is a simple case
where Thurston’s ideas on his Lipschitz metric have simple analogues and can be
described in an elementary way, without heavy use of Thurston’s theory of surfaces.

2. TEICHMULLER SPACE OF TRIANGLES

2.1. labelled triangles. We identify the Euclidean plane with the complex plane
C in the canonical way. Consider a triangle in the Euclidean plane. We label its
vertices by an ordered triple so that this labelling induces a counter-clockwise orien-
tation on the boundary of the triangle. We call such a triangle labelled. Consider a
2-simplex o with vertices labelled as a, b, ¢, fixed once and for all. The labelled tri-
angle is thought of as a pair (T, f) of a triangle T equipped with a vertex-preserving
homeomorphism f: o9 — T, called the marking of the triangle. In this setting, for
v € {a, b, c}, the vertex of T corresponding to the vertex labelled as v of o via the
marking is called the v-vertex of T.

Henceforth, for a labelled triangle T and for v € {a,b,c}, we use the notation
2,(T) € C for the v-vertex of T. Let 6,(T) be the angle of T at the v-vertex. We
denote by e, (T) the edge of the triangle which is opposite to the v-vertex, and by
le, (T)] its Euclidean length.
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2.2. The space of triangles. We say that two labelled triangles T and T” are
(Teichmiiller)-equivalent if there is a label-preserving isometry (in terms of the
Euclidean metric) from T onto T”.

Let T4 be the set of Teichmiiler equivalence classes of triangles of area A. Let
AT 4 be the subset of T4 consisting of acute triangles. For v € {a,b, ¢}, we denote
by O%F,, or, more simply, £,, the subset of ¥ 4 consisting of obtuse triangles with
obtuse angle at the v-vertex.

Convention 1. From now on, to simplify notation, we omit the subscript A (which
concerns the area of triangles) from the symbols in the case of unit area triangles
(i.e. A=1). For instance, we set T = T;. We also simply write T to denote the
Teichmdiller equivalence class of a triangle T .

2.3. Realisation of the space of triangles. In §6 of the paper [11], the authors
suggested an identification between the space QIT% of acute triangles of area % and
an ideal triangle in the hyperbolic plane. We shall use this identification.

The space ¥ 4 is naturally identified with the upper-half-plane H C C, by taking
z € H to the equivalence class of a labelled triangle T, with

(21) za(Tz) = (QA/y)1/2zv zb(Tz) =0, ZC(T) = (QA/y)1/2

with area A in C, where z = = + iy. We denote by z the inverse of this map,
which takes each point in T4 to a number in H. For T' € T4 with z = 2(T'), we
call T, the normalised position of T. Under this identification, the space A% 4 of
acute triangles is realised as the interior of the ideal (hyperbolic) triangle 2 with
vertices 0, 1, co. The boundary 92 consists of right triangles. For instance, the
hyperbolic geodesic connecting 0 and 1 parametrises the right triangles of area A
whose right angles are at the vertex labelled a. Let t, (resp. t, t.) denote the
complete hyperbolic geodesic connecting 0 and 1 (resp. oo and 0, oo and 1). The
complement of the closure of the ideal triangle with vertices 0,1 and co consists of
obtuse triangles. For a vertex v € {a,b,c}, we denote by O, the domain enclosed
by t, and OH (see Figure 1).
For v € {a,b,c}, we set Ty(v) = AT 4 U, UDT,,.

2.4. Lipschitz metric. Consider two labelled triangles T and T’ on the plane,
and let f: T — T’ be a label-preserving continuous map. The Lipschitz constant

of f is defined as
L(f)= sup deuc(f(2), f(y))

z,y€T, x4y deuc(zv y)
where dey. denotes the Euclidean metric of the plane. A map f is said to be
Lipschitz if L(f) < oo. A label-preserving map f: T — T is said to be edge-
preserving if for v € {a,b,c}, f(e,(T)) C e,(T"). Note that a label-preserving
homeomorphism is always edge-preserving.
We define L(T,T") by

L(T,T') := inf{L(f) | f is a label-preserving homeomorphism between T" and 7"},

and set

dp(T,T") = log L(T,T").
A label-preserving and edge-preserving Lipschitz map ¢g: T — T” is said to be ez-
tremal if L(T,T") = L(g). Notice that an extremal Lipschitz map is not necessarily
a homeomorphism.
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FIGURE 1. The space of triangles T 4. The hyperbolic ideal tri-
angle 20 with vertice {0,1,00} is identified with the space A% 4
of acute triangles. For v € {a,b,c}, v, consists of right triangles
whose angle is 7/2 at the v-vertex, and 9, consists of obtuse tri-
angles which have an obtuse angle at the vertex labelled v.

One can easily see that dy, is a distance function on T 4, cf. [11]. We call dj, the
Lipschitz metric on T 4. We give a topology the set T4 (and hence AT 4) induced
from the Lipschitz metric.

Convention 2. A similarity of the complex plane with factor /A gives a natural
isometric identification (with respect to the Lipschitz metric) between T and ¥ 4.
For this reason, henceforth, we shall only work with the space of of triangles of unit
area.

2.5. Parametrisation. For a labelled triangle T of unit area, the corresponding
parameter z = z(T) is expressed by

lec(D)| o, ) lea(T) + lec(T) — ley(T)[?
(2.2) 2(T) = —==e"*"") 0 cos0,(T) =
lea(T)] 2leq(T)llec(T)]|
Notice that T' = (a, b, ¢) is similar to the triangle with (ordered) vertices (2(T),0,1)
by a label-preserving similarity map. A label-preserving affine map from 77 = T},

to Ty, =T, is given by

Az (O) = Im(z1) (22 —ZTC ! _ZzC) .

Im(z) \ 21 — 71 21— 71

Its Lipschitz constant, which we denote by La;(T1,T5), is expressed as

Im(z)
Im(ZQ)

_ |2 —Z] + 2 — &
2Im(21)1/2Im(z2)1/2

22 — 21 21 — 22

(23)  Lay(Ti,T2) =

21— 721 z1— 721
(cf. [10, §2]). We note the following.
Proposition 2.1. The parametrisation z: T — H is a homeomorphism.

Proof. We only need to show the bi-continuity. Let T} and T be points in €. By
the definition of the Lipschitz metric, we have

e { T T |ec<T1>|}’
eI lea(T2)|” leclT2)| S|

L(Ty,T) >
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2(T)
Ba(T)
0u(T) 0e(T)
0 1
FIGURE 2. The shaded region represents tha a-pencil P(T’;a) for
z2(T) e AU O,
P(T50) BP(T;b)
lBP(T: ¢ Z(T)

FIGure 3. P(T;v) and BP(T;v) for 2(T) € % and v € {a,b,c}.

Hence, when a sequence {7, } C ¥ converges to T in the Lipschitz metric L, the
lengths of the edges also converge. By (2.2), this implies that {z(T},)} converges
to 2(T) in H. The continuity of the inverse map z~! follows from (2.3) and the
relation log L(T1,Ty) < log La¢(Th,T») for any pair of triangles T} and T5. O

2.6. Pencils and Backward pencils. For ¢,n € JH with £ # 7, we denote
by v = t({,n) the complete hyperbolic geodesic in H joining them. For d > 0,
we denote by N(t,d) the d-neighborhood of the geodesic t. Let T' be a labelled
triangle. Suppose that z(T) lies in T(v) for v € {a,b, c}. For the vertex v of T', we
define the v-pencil P(T;v) by

P(T;v) := N(vy,dy) N N(tyr,dy ) N(RAUD,)

with {v,v’,v"} = {a,b,c}, where d,, = —logtan(6,,(T)/2) for w € {v',v"}, (cf.
Figure 2).
Given an acute triangle T', we define the v-backward pencil BP(T;v) as

BP(T, ’U) = ((C — N(tu/7d7)/)) |l ((C —_ N(‘CU//’ dv//)) N Ql

(see Figure 3). After identifying T with H, P(T;v) and BP(T;v) are also regarded
as subsets of T for v € {a,b, c}.

2.7. Symmetries. The symmetric group &3 of degree 3 acts on T naturally as
permutations of the labelled vertices. This symmetric group is thought of as the
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mapping class group of a triangle (see §6 of the paper [11]). Under the identification
between ¥ and H, the action of G5 on H is generated by two transformations

zZ 1
(24) wab(z) = ;a wac(z) = %7
where the former permutes the a and b-vertices, and the latter permutes the a and
c-vertices. For zg € H = ¥, the above actions are induced by the (orientation-
reversing) congruences

20— 1| (=
Rab:TZUBC’_)_|£ |<C_
Zo—l

|20 — 1]
—c T, (»
Im(zo)> 2Im(zp) ab(%0)

|z0| =

Rac: Tzy (> %C € T, (z0)-

For the record, we note that the transformation of ¥ corresponding to the permu-
tation between the b and c-vertices is expressed as

wa(Z) =1-7%
and it is induced by the congruence

Rbc(g) = - C

Im(zo)

3. THE LIPSCHITZ DISTANCE AND ITS FINSLER STRUCTURE

In this section, we discuss the Lipschitz metric on the Teichmiiller space of acute
triangles. The goal of this section is to prove the following theorem, which follows
from Proposition 3.2 and Proposition 3.5 given later.

Theorem 3.1 (Anﬁexpression of the Lipschitz distance). Let T' be a point in 2,
and T a point in A. Set z = 2(T) € H, and suppose that w = z(T') lies in
P(T;2) UBP(T;x) for x € {a,b,c}. Then, we have

1 Im(w) L

5 IOgIm(z)’ 2 (if x = a)
(T, T") = % I hfw(r;’) Ir'jb (if 2 = b)

1 Im(w) |z —1)? o

518 T — 1 Tmpe) | T

We shall show Theorem 3.1 by giving extremal maps concretely for each case.

Finsler structure. In [11], Saglam and Papadopoulos gave an expression of the
Finsler structure of the deformation space of acute triangles using the side-length
parametrisation. In this section, we shall give a new description of the Finsler
structure which arises naturally from our setting, using a direct calculation. It is
often interesting to have a formula for the norm of a vector and to draw the unit ball
in the tangent space, once we know that a geometrically defined distance function
arises from a Finsler structure. This will imply in particular an infinitesimal rigidity
result which is similar to the one obtained in [7, 4].

Let zp be a point in A. Let 6; and 6y be the arguments of zy and zy — 1
respectively, with —m < 61, 8, < w. We consider six regions in the tangent space
T.,% = C divided by three lines passing through the origin with angles 61, 62, and
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FIGURE 4. The decomposition of the tangent space at zy into six sectors

01 + 02 — m. We denote these regions by S.(20), SZ(z0) (x € {a,b,c}), as in Figure
3. We define the norm F®(zg,v) of a vector v € T,,,;T = C by

1 [Im(v)]
2tz (v € Sulz0) U SE (z0)
F%(z,v) = 5 ’Im(zo) — 2Re (Zo> ’ (v € Sp(20) U SP(20))

% ’111?((;)) ~ 2Re (20”_ 1)‘ (v € Se(20) U SB(20)).

One can check easily that F'® is continuous on 2 x C. The Finsler infinitesimal
norm is obtained by differentiating the distance in Theorem 3.1. Thus, we we have
the following.

Theorem 3.2 (Finsler structure). The Lipschitz distance dy, on 2 is a Finsler
distance with Finsler norm F*.

Proof. For any v € C, we have
[Tm(zg + tv)] Im(v)

Im(zp) =1t tlm(zo)

Im(z + tv) ZOF) = (1 — 2tRe <;j> +0(t)) <1 4 ¢ m() >

|20 + tv|2 Im(zo 0 Tm(zp)

=1+t (IIIT(Z)) —2Re (2)) o)
Im(zo +tv) |20 — 1] _ (1 ~ 2fRe (ZO”_ 1) +0(t)> (1 +tII§11((;)))

20 + tv — 12 Im(z)
0 ’ e <IIIT((;)) oRe (ZOU 1)) +olt)
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as t — 0. Suppose first that v lies in S, (2p). Since Im(v) > 0 for v € S,(2p), from
Theorem 3.1 and the above calculation, we have

1 Im(v) _ 1 [Im(v)]

dr(z0,2t) = 2Tm(z) t+o(t) = 2 Im(zo)

for a differentiable path in P(T},;a) which is tangent to v at t = 0. We have the
same conclusion for a differentiable path in BP(T%,;a) which tangent to v at t = 0.

Suppose next that v lies in Sy(2p). Express v as v = vy +ivy = e, As depicted
in Figure 3, we have 6, + 6, — 2 < 6 < 61 — 7 then, and hence 6, — 6; — 27w <
0 — 2607 < —m — 6;. Then we have

Im(v) — 2Re(sinf1e~10) = £sin§ — 2€sin 6 cos(f — 6;) = Esin(h — 26;) > 0,

where the last inequality follows from the fact that both sin(fy —6;) and sin(mw —6;)
are positive and fromthe bounds for § given above. Since zy = (e? /sin 67 )Im(z),
we have

+o(t) (t—0)

Im(v) v Esin(f —26;)
Tm(zp) B QRG% o Tm(zp)

> 0.

Hence, from the above calculation, we get, for a differentiable path in P(T.,;b)
tangent to v at t =0,

dp (20, 21) = 1= (Im(“) - 2Re“) +olt)

2 \Im(zp) 20
1| Im(v) v
=t- — 2Re— t).
2 ’Im(zo) ezo +o(?)
The remaining cases for BP(T,,;b), P(T.,;c), and PB(T,,;c) can be dealt with
by a similar argument. O

Some remarks. Regarding Theorem 3.1 and Theorem 3.2, we remark the follow-
ing.

(1) Theorem 3.2 gives another way of seeing the non-uniqueness of geodesics
between two points, a fact which was already noticed in [11]. Indeed, we
can see that there are uncountably many geodesics between two points in 2.
For instance, take zg € 2 and 27 € P(T%,;a). Then, a piecewise C1-path z,
(0 <1 <1) connecting zp to z; whose imaginary part Im(z;) is increasing
is a geodesic between zy and z;. Similarly, when z; € BP(T,,;a), if the
imaginary part is decreasing, z; is a geodesic between 2y and 2.

(2) For zp € A, the unit ball associated with the Finsler norm F*? at zj is a
hexagon with vertices 2zg, 2(z9 — 1), 220(20 — 1), —220, —2(20 — 1) and
—220(20 — 1). The diagonals divides the unit ball into six triangles, each of
which is similar to T%,. See Figure 3.

(3) From the second remark, we deduce the following infinitesimal rigidity re-
sult: The isometry type of the unit ball determines uniquely a triangle in
the parameter space. The same kind of infinitesimal rigidity concerning
cotangent spaces of Teichmiiller spaces of closed surfaces with Thurston’s
metric was proved in [7, 4]. With the preceding notation, we can state our
infinitesimal rigidity result as follows.

Corollary 3.1. Let zg and z1 be points in 2. Suppose that there is a linear isometry
from (T, 2, F*(z,-)) to (T, A, F*(21,-)). Then the triangles T,, and T, are
congruent.
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FIGURE 5. The shape of the Finsler unit ball at zo = 1/3+4. The
diagonals (dashed lines) divide the hexagon into six triangles and
each triangle is similar to 17, .

cb

FIGURE 6. The stretching loci 79, F&f G,

3.1. Stretching loci. Let us fix an acute triangle 7. With a vertex v € {a,b, ¢}
and an angle 6 € (0,(T),7/2), we associate three kinds of pictures F2 ¢ = F"¢(T)
and G, = G,(T) for the vertex v, where v,v" € {a,b,c} are distinct vertices, as in
Figure 6. The figure only show the case when v = a, but the other cases can be
drawn just by changing the symbols of vertices.

In the leftmost triangle of Figure 6, F2¢ is drawn as follows. Let a, b, and ¢ be
the a-vertex, the b-vertex, and the c-vertex of T', respectively. Draw a perpendicular
from b to its opposite side with its foot r, and then a segment from c to its opposite
side so that the angle Zbpc is equal to 6, where p is the foot of the segment. We
denote the intersection between the segments br and cp by ¢q. Let E,, Dy and D,
be the triangles Abeq, Abpg, and Acqr, respectively. Consider the foliations on Dy,
(resp. D.) whose leaves are Euclidean segments parallel to the segment rb (resp.
the segment pc). We call these foliations the maximally stretched foliations. The
mazimal stretching locus F2¥ consists of the foliated triangles Dy, and D,., and the
triangle E,. We call the triangle E, the expanding region. The maximal stretching
locus F&? for the second triangle in Figure 6 is defined in the same way. The names
will be justified below (see Remark 3.1).
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In the rightmost triangle of Figure 6, its maximal stretching locus G, is drawn
as follows. Draw the perpendicular from a to the opposite side, with its foot p.
Divide the triangle into two right triangles D, = Aapb and D. = Aapc. Consider
the foliations on Dy and D, consisting of Euclidean segments parallel to ap. The
mazimal stretching locus G, consists of foliated triangles Dy and D..

3.2. Extremal Lipschitz maps associated with pencils.
Notation 3.1. For z € H, we set T, to be the labelled triangle with vertices
2a(T) = 2, 24(T2) = 0, 2.(T,) = 1.

In this section, we discuss an extremal Lipschitz map from a normalised triangle
T to a normalised triangle in the pencil P(T;v) for v € {a,b,c}. We use the
notation 3.1, and shall discuss only the case when v = a. In the case when v = b
and ¢, we can define the Lipschitz maps in the same way, taking conjugates by
congruences (cf. §2.7).

3.2.1. Let Ty and T be triangles with 2o = g + iyo = 2(To) € T(a), and 2z, =
ug + ivg = z(Th) € P(Tp;a).
We define

% (“%H“%) (¢ +in € Dy)
Vo \To Yo

fro.2 (§ +im) = _ _
o Loy (55 (i) 1)) omem

One can check that the map f,, ., is a label-preserving Lipschitz map from T, to
T,,.

3.2.2. For 0 < ky, ke < 1, we define a stretch map fg, (k, ko) associated with G, and
(k1,k2) on T as follows.
Let T' € T(a) be in normalised position. We define
ki€ +in
(k1$0 + k2(1 — .’Eo))l/2
k1o + k2(§ — o) +in
(k1o + k(1 — 20))1/2

where & = v/2/yoxo (cf. (2.1)). Since

2 1/2 klmo + iyo
2o(T)) = | —
fgaa(k?hkl2)( ( )) <y0) (]ﬁﬂ?o T k‘g(l — 1‘0))1/2
Gu, 1 i) (26(T)) = 0

(if &€ +in € Dy)
(BL)  fGa .k ke) (€ + i) =

(& +1in € D),

9\ 1/2
Fou kniny (2e(T)) = (y) (krzo + k(1 — 20)))'72,

JGu (k1 ke coincides with f. .., which maps T to a triangle T1 with

kizo + iyo
3.2 21 =z2(1T1) = .
( ) ! ( 1) k1I0+k2(1 —.130)
We denote such a triangle 71 by St(T,Ga, (k1,k2)). We note that fg, (k) I8
label-preserving and edge-preserving, and that fg, (1 1) is the identity map. Note
also that fg, (0.x,) and fg, (x,,0) are not homeomorphisms. In these two cases, the
images are right triangles and the maps are not injective.
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Remark 3.1. Let (1, be points on T with Re((1) = Re((2). Then, we have

1
deuc(fgay(’ﬁ,kz)(gl)a fgav(klak2)(C2)) = (kle ¥ kg(l _ xo)))l/Q deuc(cla CQ)

> deuc(glv §2)

when kiky < 1 since 0 < o, 1 =z < 1. Therefore, fg, (k, k,) stretches T along the
foliations in Dy, and D.. This is the reason why G, (and hence G, for v =">, c) is
called the maximal stretching locus, and the map fg, (k, k,) (and hence fg, (i, k)
forv =1">, c¢) is named a stretch map.

We have the following.

Proposition 3.1 (Parameterisations of Pencils). For v € {a,b,c} and T € %(v),
z2(St(T, Gy, (k1,k2)))) is contained in P(T;v) for any 0 < ki, ko < 1 with |ki| +
|k2| > 0. Conversely, for any z € P(T;v), there is a unique pair (ki,ks) with
0 < ky,ka <1 with |k1| + |k2| > 0 such that z = 2(St(T, Gy, (k1,k2))). Therefore,
the map

[0, 1] X [O, 1] \ {(0, 0)} = (k‘l, kg) — St(T, G, (k/’l, k‘g)) S P(T; 33)
is a homeomorphism.

Proof. We shall prove the proposition only in the case when v = a. Set z(T') = zo+
iyo and T" = St(T', G, (k1,k2)) as above. From (3.2), we have 0 < Re(2(7")) < 1.
Since 0 < k1, ks <1 and 0 < zg < 1, we have
!
() _ o g _ (T |
Re(2(T")) kizo — zo Re(z(T))
Im(2(7")) _ Yo < Y _ Im(z(T)
Re(z(T")) — 1 ko(1—mz9) = 1—z9 Re(2(T)) -1’
hence 2(T") € P(T;a).
Let z = x+iy be a point in P(T; a). By solving the equation z = z(St(T, G, (k1, k2))),

we obtain

ky = @7 key = (1_37)1/0.
zoyY (1 —m0)y

The condition z = = + iy € P(T;a) implies that 0 < ky,ke < 1. Further-

more, k1 = 0 implies that z(St(T, G, (k1,k2))) € v, and ky = 0 implies that

z(St(T, Ga, (k1,k2))) € t.. Therefore, k1 and ko cannot vanish simultaneously. O

Proposition 3.2 (Stretch maps are extremal). Forv € {a,b,c} and0 < ki, ks <1
with |ky| + k2| > 0, the stretch map fg, (k, ko) 15 an extremal Lipschitz map.

Proof. As in the proof of Proposition 3.1, we only consider the case when v = a. By
definition, fg, (&, k,) is the composition of a contraction of the horizontal direction
with Lipschitz constant 1 and an expansion with factor 1/(zok; + (1 — z0)k2))'/2.
Furthermore, the contraction preserves distances in the imaginary direction. Hence

we have
1

(33) L(fgm(k17k2)) = (xokl ¥ (1 _ .To)kg))l/z.

On the other hand, the altitudes of T and 7" = St(T, G, (k1,k2)) are (2Ayg)*/?
and (24y0)"Y/?/(xoky + (1 — x0)ks))'/2. Since each altitude is equal to the length
of the perpendicular from the a-vertex to its opposite side, the Lipschitz constant
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of any label-preserving and edge-preserving Lipschitz map from T to T” is at least
1/($0k1 +(17$0)]€2))1/2 O

Corollary 3.2 (Lipschitz distance for pencils). Forv € {a,b,c} and 0 < k1, kg <1
with k1| + k2| > 0, we have

1 1
21 P
5 108 Toky + (|1 —on)kzg (if v =a)
1 Z()| .
. =< =1 =b
(3.4)  L(T,St(T, Gy, (k1,k2))) 5 log ok (ol —2o)Fs (if v="5)
! log 120 1| (if v=rc)

where we set 2(T) = zg = xo+iyo. In particular, if we set z1 = z(St(T, Gy, (k1, k2))),
we obtain

1. Im(z) L
2 %8 o)  v=a)
1 1] 1 1

(3.5) (T, Tey) = { 5 log 5 [log zjnﬁzﬁz i)n(ZO) (if v = b)
1, Im(z) |zf? (if v = ¢)

2 |z1]2 Im(zo)

Proof. We shall only give a proof in the case when v = a (cf. (2.4)). If k1ks # 0,
the stretch map fg, (x,k.) is @ homeomorphism. Therefore, (3.4) and (3.5) follow
from (3.3).

Assume now that k& = 0. For € > 0, we set T, = St(T, G, (¢, k2)). We take
a label-preserving affine map A.: Tc — Tp and set g. = Ac o fg, (k). Then,
ge is a label-preserving Lipschitz homeomorphism from T to Tp. From (2.3) and
Proposition 3.2, we have

L(fg, 0.k2)) < L(T,Ty) < L(ge) < L(A)L(fg, (e.k2)) = L(fg., (0.k2))

as € — 0, which implies (3.4) and (3.5) for the case when k; = 0. The case when
ke = 0 can be dealt with in the same way. [

3.2.3. Extremal Lipschitz maps are not always homeomorphisms. Let v, v' and v”
be vertices such that {v,v’,v"} = {a,b,c}. Let T be a triangle in AT. For T €
P(T;v) N (ty Utyr), our stretch map from T to T” is not a homeomorphism. In
fact, we have the following general statement.

Proposition 3.3. In the above setting, there is no extremal label-preserving Lips-
chitz homeomorphism between T and T".

Proof. Let g: T — T’ be a label-preserving Lipschitz homeomorphism. We may
assume that v = a and 7" € t,. As was shown in the proof of Proposition 3.2, the
Lipschitz constant of the stretch map is the ratio of the altitudes of 7" and T".

Let p € e4(T') be the foot of the perpendicular in T from the a-vertex z,(7T)
to the opposite edge e,(T). Since T is an acute triangle, p is different from the
b-vertex z,(T) of T. Since g is a homeomorphism, g(p) # zp(T”) but g(p) € e.(T").
Therefore,

no_ dewc(2a(T"), 20(T"))  deuc(2a(T"), 9(p))
LML) == @)~ deuelcalp) = 9

Hence g is not extremal. [
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3.3. Extremal Lipschitz maps associated with backward pencils.

3.3.1. Contractions. Let zg € H be a point in the ideal triangle with vertices 0, 1
and co. Let z; = ug + ivg be a point in BP(T;a). We divide T, into two right
angled triangles by the perpendicular from the b-vertex 0 of TZO and its ac-side.
For z € {a,c}, we denote by Df = D¥(T,,) the component which contains the
z-vertex in its boundary. We define the contraction C? . on T, associated with

20,21
the b-vertex by

ct . (€) % k.o 1—k¢ (¢ < i)
20,21 = + TN a

0
Im(zp) Yo  Re(z1(zg—1))
where (y = ¢ = and k o2 — 70 Im(gl(%—l))
of the perpendicular from the b-vertex 0 of T, to the ac-side. We can check easily
that 0 < k£ < 1. Indeed, by assumption, z; € Dj. By a calculation, we can see that
a Euclidean ray emanating from the b-vertex 0 passing by 21 intersects the ac-side
of T}, at

(3.6) G =

. Notice that (y is the foot

Yo
Im(z (zo — 1))
We can also see that & = |(1 — (o|/|20 — (o], and hence that 0 < k£ < 1. By

definition, C’i’oyzl is a contraction from the triangle with vertices 0, zg and (p to the

wo.

one with vertices 0, (; and (y, and takes TZO to Tgl. See the map represented by
the right-lower arrow in Figure 7.

We define the contraction C%, , associated with the c-vertex by

Con(Q)=1-C 1 =(1-0),
obtained by conjugating the contraction Cf,br(z()) whe (20
passing through the midpoint 1/2 between the b-vertex 0 and the c-vertex 1 of TZO
(see §2.7).
We define the contraction szzl from T, and T, associated with the b-vertex
by

) on the vertical line in C

Gl (Q) = CE 2, 0 O L, (Q)
for ¢; defined in (3.6).

We also define the contraction G5 . from T., and T, associated with the b-
vertex and also satisfying the properties of Proposition 3.4 just by interchanging
the roles of the b and c-vertices.

The following proposition is an immediate consequence of the definition.

Proposition 3.4 (Lipschitz constants of contractions). Let zg be a point in A and
z1 a point in BP(T,,;a). Let x be either b or c.

(1) The Lipschitz constant of the contraction G% , is 1.

20,21

(2) After identifying T., with T, by a similarity with factor \/Tm(z0)/2, the
Lipschitz constant of the contraction is attained at two points both of which
lie in either the expanding region E, or on any leaf of the foliation F=Y,
where 0 is the angle at {; of Tcl,
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Cc¢ . and G°

20,217 20,21 20,21°

FIcURrE 7. Contractions C?

3.3.2. Extremal maps. Let T be a (marked) acute triangle and zy = xg + iyp =
2(T) € A. Let 2 = ug+ivg € BP(T;a). We define the piecewise linear maps g2, .,
and gz, . from T, to T, by

x _ 3 b Yo
g (C) - Vo ng,zl ( 2 C)
forxz =borec

Proposition 3.5 (Extremal Lipschitz maps for backward pencils). Let zg € 2 and
z1 € BP(T,,;a). For x € {b,c}, we have the following:
(1) The contraction g%, . is an evtremal Lipschitz map from T, to T, with
Lipschitz constant \/Im(zg)/Im(z1).
(2) The Lipschitz constant is attained by two points both of which lie either in
the expanding region E, or on each leaf of the foliation f,f’e, where 0 is
defined in the same manner as in Proposition 3.4.

Proof. From Proposition 3.4, we need only verify that g7 . is extremal. Let
g: T,, = T,, be a label- preserving and edge-preserving Lipschitz map. Since the
length of the edge e, (T%,) is v/2/Im(z;) for ¢ = 0,1, the Lipschitz constant of L(g)

satisfies
V2/Im(z1) (21)
L(g) = = L(9,,2,);
2/111’1 Zo
which implies what we wanted. (]
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