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ON THE TEICHMÜLLER SPACE OF ACUTE TRIANGLES

HIDEKI MIYACHI, KEN’ICHI OHSHIKA, AND ATHANASE PAPADOPOULOS

Abstract. We continue the study of the analogue of Thurston’s metric on
the Teichmüller space of Euclidean triangle which was started by Saglam-

Papadopoulos in [11]. By direct calculation, we give explicit expressions of

the distance function and the Finsler structure of the metric restricted to the
subspace of acute triangles. We deduce from the form of the Finsler unit sphere

a result on the infinitesimal rigidity of the metric. We give a description of the
maximal stretching loci for a family of extreme Lipschitz maps.
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1. Introduction

In his paper [15], William Thurston introduced an asymmetric metric on the
Teichmüller space of complete hyperbolic metrics of finite type on a given surface,
where the distance between two points is defined as the logarithm of the smallest
dilatation constant of a Lipschitz homeomorphism between two marked surfaces
equipped with hyperbolic structures representing these points. Thurston discovered
several properties of this metric, called now Thurston’s metric. In particular, he
gave a description of a large class of geodesics, called stretch lines, he showed that
any two points are connected by a geodesic, he proved that this metric is Finsler,
and he gave a description of the unit sphere of the conorm of this Finsler structure
at each cotangent space of Teichmüller space, as an embedding of the space of
projective measured laminations on the surface.

In the last couple of decades, Thurston’s metric has been adapted to many
different settings. We list here some of these settings, to give an indication of some
of the developments: Teichmüller spaces of surfaces with boundary, see e.g. the
recent papers [5] and [1]; Teichmüller space of the torus, see [2] and [6]; Randers–
Teichmüller metrics [9]; singular flat metrics underlying a fixed quadrangulation
[12]; higher dimensional hyperbolic manifolds [3]; higher Teichmüller theory, see
[14], and there are others. This list is necessarily very partial, and the work and the
literature on this topic is growing at a fast rate. See also the list of problems in [13],
and [8] and [16] for two recent surveys on Thurston’s metric and its developments.

Recently, İsmail Sağlam and the third author of the present paper developed
the theory of Thurston’s Lipschitz metric on the Teichmüller space of Euclidean
triangles, that is, the moduli space of marked Euclidean triangles (see [11]). They
proved in particular that restricted to the space of acute triangles, the Lipschitz
distance between two marked triangles is equivalent to another distance, defined
as the logarithm of the maximum of the lengths of the three edges and the three
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altitudes of the two triangles. This new formula is an analogue of Thurston’s
alternative description of his distance in terms of ratios of lengths of simple closed
geodesics (see [15, p. 4]). In [11], the authors also proved that for A > 0, the metric
induced on the space of acute triangles having fixed area A is Finsler. They gave a
characterisation of geodesics in ATA: a path is geodesic if and only if the angle at
each labelled vertex of triangles in this family varies monotonically. Finally, they
proved that the isometry group of ATA is isomorphic to S3, the symmetric group
on {1, 2, 3}.

The aim of the present paper is to continue studying Thurston’s metric on the
Teichmüller space of Euclidean triangles inaugurated in [11]. Following [11], for
A > 0, we let TA and ATA denote respectively the Teichmüller spaces of Euclidean
triangles and acute triangles of fixed area A (see §2). Unlike the metric described
by Thurston on the Teichmüller space of hyperbolic surfaces, the Lipschitz metric
on ATA is symmetric as shown in [11]. In the present paper, developing the theory
of Thurston’s metric on the Teichmüller spaces of triangles further, we obtain the
following:

• Explicit formulae for the Lipschitz metric and its associated Finsler infini-
tesimal structure on ATA, after identifying the space TA with the upper-half
plane H in the complex plane C.
• A description of the Finsler ball at a point in the tangent space of ATA

using the new parameters, and an infinitesimal rigidity result, saying that
the infinitesimal unit ball at a give point determines the triangle as a point
in Teichmüller space.
• A characterisation of the stretch locus for an extremal Lipschitz map be-

tween acute triangles, and an analogue of Teichmüller’s result (respectively
Thurston’s result) on the existence of foliations (respectively laminations)
on which the Lipschitz constant for the extremal Lipschitz map is optimal.
• The perhaps surprising result that, contrary to the usual case of Thurston’s

metric, there are instances where there are no extremal Lipschitz homeo-
morphisms between two triangles.

The present setting of the Teichmüller space of the triangle is a simple case
where Thurston’s ideas on his Lipschitz metric have simple analogues and can be
described in an elementary way, without heavy use of Thurston’s theory of surfaces.

2. Teichmüller space of triangles

2.1. labelled triangles. We identify the Euclidean plane with the complex plane
C in the canonical way. Consider a triangle in the Euclidean plane. We label its
vertices by an ordered triple so that this labelling induces a counter-clockwise orien-
tation on the boundary of the triangle. We call such a triangle labelled. Consider a
2-simplex σ0 with vertices labelled as a, b, c, fixed once and for all. The labelled tri-
angle is thought of as a pair (T, f) of a triangle T equipped with a vertex-preserving
homeomorphism f : σ0 → T , called the marking of the triangle. In this setting, for
v ∈ {a, b, c}, the vertex of T corresponding to the vertex labelled as v of σ0 via the
marking is called the v-vertex of T .

Henceforth, for a labelled triangle T and for v ∈ {a, b, c}, we use the notation
zv(T ) ∈ C for the v-vertex of T . Let θv(T ) be the angle of T at the v-vertex. We
denote by ev(T ) the edge of the triangle which is opposite to the v-vertex, and by
|ev(T )| its Euclidean length.
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2.2. The space of triangles. We say that two labelled triangles T and T ′ are
(Teichmüller)-equivalent if there is a label-preserving isometry (in terms of the
Euclidean metric) from T onto T ′.

Let TA be the set of Teichmüler equivalence classes of triangles of area A. Let
ATA be the subset of TA consisting of acute triangles. For v ∈ {a, b, c}, we denote
by OTv, or, more simply, Ov, the subset of TA consisting of obtuse triangles with
obtuse angle at the v-vertex.

Convention 1. From now on, to simplify notation, we omit the subscript A (which
concerns the area of triangles) from the symbols in the case of unit area triangles
(i.e. A = 1). For instance, we set T = T1. We also simply write T to denote the
Teichmüller equivalence class of a triangle T .

2.3. Realisation of the space of triangles. In §6 of the paper [11], the authors
suggested an identification between the space AT 1

2
of acute triangles of area 1

2 and

an ideal triangle in the hyperbolic plane. We shall use this identification.
The space TA is naturally identified with the upper-half-plane H ⊂ C, by taking

z ∈ H to the equivalence class of a labelled triangle Tz with

(2.1) za(Tz) = (2A/y)1/2z, zb(Tz) = 0, zc(T ) = (2A/y)1/2

with area A in C, where z = x + iy. We denote by z the inverse of this map,
which takes each point in TA to a number in H. For T ∈ TA with z = z(T ), we
call Tz the normalised position of T . Under this identification, the space ATA of
acute triangles is realised as the interior of the ideal (hyperbolic) triangle A with
vertices 0, 1, ∞. The boundary ∂A consists of right triangles. For instance, the
hyperbolic geodesic connecting 0 and 1 parametrises the right triangles of area A
whose right angles are at the vertex labelled a. Let ra (resp. rb, rc) denote the
complete hyperbolic geodesic connecting 0 and 1 (resp. ∞ and 0, ∞ and 1). The
complement of the closure of the ideal triangle with vertices 0, 1 and ∞ consists of
obtuse triangles. For a vertex v ∈ {a, b, c}, we denote by Ov the domain enclosed
by rx and ∂H (see Figure 1).

For v ∈ {a, b, c}, we set TA(v) = ATA ∪ rv ∪OTv.

2.4. Lipschitz metric. Consider two labelled triangles T and T ′ on the plane,
and let f : T → T ′ be a label-preserving continuous map. The Lipschitz constant
of f is defined as

L(f) = sup
x,y∈T,x 6=y

deuc(f(x), f(y))

deuc(x, y)

where deuc denotes the Euclidean metric of the plane. A map f is said to be
Lipschitz if L(f) < ∞. A label-preserving map f : T → T ′ is said to be edge-
preserving if for v ∈ {a, b, c}, f(ev(T )) ⊂ ev(T

′). Note that a label-preserving
homeomorphism is always edge-preserving.

We define L(T, T ′) by

L(T, T ′) := inf{L(f) | f is a label-preserving homeomorphism between T and T ′},
and set

dL(T, T ′) = logL(T, T ′).

A label-preserving and edge-preserving Lipschitz map g : T → T ′ is said to be ex-
tremal if L(T, T ′) = L(g). Notice that an extremal Lipschitz map is not necessarily
a homeomorphism.
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Figure 1. The space of triangles TA. The hyperbolic ideal tri-
angle A with vertice {0, 1,∞} is identified with the space ATA
of acute triangles. For v ∈ {a, b, c}, rv consists of right triangles
whose angle is π/2 at the v-vertex, and Ov consists of obtuse tri-
angles which have an obtuse angle at the vertex labelled v.

One can easily see that dL is a distance function on TA, cf. [11]. We call dL the
Lipschitz metric on TA. We give a topology the set TA (and hence ATA) induced
from the Lipschitz metric.

Convention 2. A similarity of the complex plane with factor
√
A gives a natural

isometric identification (with respect to the Lipschitz metric) between T and TA.
For this reason, henceforth, we shall only work with the space of of triangles of unit
area.

2.5. Parametrisation. For a labelled triangle T of unit area, the corresponding
parameter z = z(T ) is expressed by

(2.2) z(T ) =
|ec(T )|
|ea(T )|

eiθb(T ), cos θb(T ) =
|ea(T )|2 + |ec(T )|2 − |eb(T )|2

2|ea(T )||ec(T )|
.

Notice that T = (a, b, c) is similar to the triangle with (ordered) vertices (z(T ), 0, 1)
by a label-preserving similarity map. A label-preserving affine map from T1 = Tz1
to T2 = Tz2 is given by

AT1;T2
(ζ) =

√
Im(z1)

Im(z2)

(
z2 − z1
z1 − z1

ζ +
z1 − z2
z1 − z1

ζ

)
.

Its Lipschitz constant, which we denote by LAf (T1, T2), is expressed as

(2.3) LAf (T1, T2) =

√
Im(z1)

Im(z2)

∣∣∣∣z2 − z1z1 − z1

∣∣∣∣+

∣∣∣∣z1 − z2z1 − z1

∣∣∣∣ =
|z2 − z1|+ |z2 − z1|
2Im(z1)1/2Im(z2)1/2

(cf. [10, §2]). We note the following.

Proposition 2.1. The parametrisation z : T→ H is a homeomorphism.

Proof. We only need to show the bi-continuity. Let T1 and T2 be points in T. By
the definition of the Lipschitz metric, we have

L(T1, T2) ≥
∣∣∣∣max

{
|ea(T1)|
|ea(T2)|

,
|eb(T1)|
|eb(T2)|

,
|ec(T1)|
|ec(T2)|

}∣∣∣∣ .
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Figure 2. The shaded region represents tha a-pencil P (T ; a) for
z(T ) ∈ A ∪Oa.

Figure 3. P (T ; v) and BP (T ; v) for z(T ) ∈ A and v ∈ {a, b, c}.

Hence, when a sequence {Tn} ⊂ T converges to T in the Lipschitz metric L, the
lengths of the edges also converge. By (2.2), this implies that {z(Tn)} converges
to z(T ) in H. The continuity of the inverse map z−1 follows from (2.3) and the
relation logL(T1, T2) ≤ logLAf (T1, T2) for any pair of triangles T1 and T2. �

2.6. Pencils and Backward pencils. For ξ, η ∈ ∂H with ξ 6= η, we denote
by r = r(ξ, η) the complete hyperbolic geodesic in H joining them. For d > 0,
we denote by N(r, d) the d-neighborhood of the geodesic r. Let T be a labelled
triangle. Suppose that z(T ) lies in T(v) for v ∈ {a, b, c}. For the vertex v of T , we
define the v-pencil P (T ; v) by

P (T ; v) := N(rv′ , dv′) ∩N(rv′′ , dv′′) ∩ (A ∪Ov)

with {v, v′, v′′} = {a, b, c}, where dw = − log tan(θw(T )/2) for w ∈ {v′, v′′}, (cf.
Figure 2).

Given an acute triangle T , we define the v-backward pencil BP (T ; v) as

BP (T ; v) = (C−N(rv′ , dv′)) ∩ (C−N(rv′′ , dv′′)) ∩ A

(see Figure 3). After identifying T with H, P (T ; v) and BP (T ; v) are also regarded
as subsets of T for v ∈ {a, b, c}.

2.7. Symmetries. The symmetric group S3 of degree 3 acts on T naturally as
permutations of the labelled vertices. This symmetric group is thought of as the
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mapping class group of a triangle (see §6 of the paper [11]). Under the identification
between T and H, the action of S3 on H is generated by two transformations

(2.4) ωab(z) =
z

z − 1
, ωac(z) =

1

z
,

where the former permutes the a and b-vertices, and the latter permutes the a and
c-vertices. For z0 ∈ H ∼= T, the above actions are induced by the (orientation-
reversing) congruences

Rab : Tz0 3 ζ 7→ −
|z0 − 1|
z0 − 1

(
ζ −

√
2

Im(z0)

)
+
|z0 − 1|√
2Im(z0)

∈ Tωab(z0)

Rac : Tz0 3 ζ 7→
|z0|
z0

ζ ∈ Tωac(z0).

For the record, we note that the transformation of T corresponding to the permu-
tation between the b and c-vertices is expressed as

ωbc(z) = 1− z,
and it is induced by the congruence

Rbc(ζ) =

√
2

Im(z0)
− ζ.

3. The Lipschitz distance and its Finsler structure

In this section, we discuss the Lipschitz metric on the Teichmüller space of acute
triangles. The goal of this section is to prove the following theorem, which follows
from Proposition 3.2 and Proposition 3.5 given later.

Theorem 3.1 (An expression of the Lipschitz distance). Let T be a point in A,
and T a point in A. Set z = z(T ) ∈ H, and suppose that w = z(T ′) lies in
P (T ;x) ∪BP (T ;x) for x ∈ {a, b, c}. Then, we have

dL(T, T ′) =



1

2

∣∣∣∣log
Im(w)

Im(z)

∣∣∣∣ (if x = a)

1

2

∣∣∣∣log
Im(w)

|w|2
|z|2

Im(z)

∣∣∣∣ (if x = b)

1

2

∣∣∣∣log
Im(w)

|w − 1|2
|z − 1|2

Im(z)

∣∣∣∣ (if x = c).

We shall show Theorem 3.1 by giving extremal maps concretely for each case.

Finsler structure. In [11], Sağlam and Papadopoulos gave an expression of the
Finsler structure of the deformation space of acute triangles using the side-length
parametrisation. In this section, we shall give a new description of the Finsler
structure which arises naturally from our setting, using a direct calculation. It is
often interesting to have a formula for the norm of a vector and to draw the unit ball
in the tangent space, once we know that a geometrically defined distance function
arises from a Finsler structure. This will imply in particular an infinitesimal rigidity
result which is similar to the one obtained in [7, 4].

Let z0 be a point in A. Let θ1 and θ2 be the arguments of z0 and z0 − 1
respectively, with −π < θ1, θ2 ≤ π. We consider six regions in the tangent space
Tz0T = C divided by three lines passing through the origin with angles θ1, θ2, and
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Figure 4. The decomposition of the tangent space at z0 into six sectors

θ1 + θ2− π. We denote these regions by Sx(z0), SBx (z0) (x ∈ {a, b, c}), as in Figure
3. We define the norm FA(z0, v) of a vector v ∈ Tz0T = C by

FA(z0, v) =



1

2

|Im(v)|
Im(z0)

(v ∈ Sa(z0) ∪ SBa (z0))

1

2

∣∣∣∣ Im(v)

Im(z0)
− 2Re

(
v

z0

)∣∣∣∣ (v ∈ Sb(z0) ∪ SBb (z0))

1

2

∣∣∣∣ Im(v)

Im(z0)
− 2Re

(
v

z0 − 1

)∣∣∣∣ (v ∈ Sc(z0) ∪ SBc (z0)).

One can check easily that FA is continuous on A × C. The Finsler infinitesimal
norm is obtained by differentiating the distance in Theorem 3.1. Thus, we we have
the following.

Theorem 3.2 (Finsler structure). The Lipschitz distance dL on A is a Finsler
distance with Finsler norm FA.

Proof. For any v ∈ C, we have

|Im(z0 + tv)|
Im(z0)

= 1 + t
Im(v)

Im(z0)

Im(z0 + tv)

|z0 + tv|2
|z0|2

Im(z0)
=

(
1− 2tRe

(
v

z0

)
+ o(t)

)(
1 + t

Im(v)

Im(z0)

)
= 1 + t

(
Im(v)

Im(z0)
− 2Re

(
v

z0

))
+ o(t)

Im(z0 + tv)

|z0 + tv − 1|2
|z0 − 1|2

Im(z0)
=

(
1− 2tRe

(
v

z0 − 1

)
+ o(t)

)(
1 + t

Im(v)

Im(z0)

)
= 1 + t

(
Im(v)

Im(z0)
− 2Re

(
v

z0 − 1

))
+ o(t)
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as t→ 0. Suppose first that v lies in Sa(z0). Since Im(v) ≥ 0 for v ∈ Sa(z0), from
Theorem 3.1 and the above calculation, we have

dL(z0, zt) =
1

2

Im(v)

Im(z0)
+ o(t) =

1

2

|Im(v)|
Im(z0)

+ o(t) (t→ 0)

for a differentiable path in P (Tz0 ; a) which is tangent to v at t = 0. We have the
same conclusion for a differentiable path in BP (Tz0 ; a) which tangent to v at t = 0.

Suppose next that v lies in Sb(z0). Express v as v = v1 + iv2 = ξeiθ. As depicted
in Figure 3, we have θ1 + θ2 − 2π ≤ θ ≤ θ1 − π then, and hence θ2 − θ1 − 2π ≤
θ − 2θ1 ≤ −π − θ1. Then we have

Im(v)− 2Re(sin θ1e
−iθ1v) = ξ sin θ − 2ξ sin θ1 cos(θ − θ1) = ξ sin(θ − 2θ1) > 0,

where the last inequality follows from the fact that both sin(θ2−θ1) and sin(π−θ1)
are positive and fromthe bounds for θ given above. Since z0 = (eiθ1/ sin θ1)Im(z0),
we have

Im(v)

Im(z0)
− 2Re

v

z0
=
ξ sin(θ − 2θ1)

Im(z0)
> 0.

Hence, from the above calculation, we get, for a differentiable path in P (Tz0 ; b)
tangent to v at t = 0,

dL(z0, zt) = t
1

2

(
Im(v)

Im(z0)
− 2Re

v

z0

)
+ o(t)

= t
1

2

∣∣∣∣ Im(v)

Im(z0)
− 2Re

v

z0

∣∣∣∣+ o(t).

The remaining cases for BP (Tz0 ; b), P (Tz0 ; c), and PB(Tz0 ; c) can be dealt with
by a similar argument. �

Some remarks. Regarding Theorem 3.1 and Theorem 3.2, we remark the follow-
ing.

(1) Theorem 3.2 gives another way of seeing the non-uniqueness of geodesics
between two points, a fact which was already noticed in [11]. Indeed, we
can see that there are uncountably many geodesics between two points in A.
For instance, take z0 ∈ A and z1 ∈ P (Tz0 ; a). Then, a piecewise C1-path zt
(0 ≤ 1 ≤ 1) connecting z0 to z1 whose imaginary part Im(zt) is increasing
is a geodesic between z0 and z1. Similarly, when z1 ∈ BP (Tz0 ; a), if the
imaginary part is decreasing, zt is a geodesic between z0 and z1.

(2) For z0 ∈ A, the unit ball associated with the Finsler norm FA at z0 is a
hexagon with vertices 2z0, 2(z0 − 1), 2z0(z0 − 1), −2z0, −2(z0 − 1) and
−2z0(z0− 1). The diagonals divides the unit ball into six triangles, each of
which is similar to Tz0 . See Figure 3.

(3) From the second remark, we deduce the following infinitesimal rigidity re-
sult: The isometry type of the unit ball determines uniquely a triangle in
the parameter space. The same kind of infinitesimal rigidity concerning
cotangent spaces of Teichmüller spaces of closed surfaces with Thurston’s
metric was proved in [7, 4]. With the preceding notation, we can state our
infinitesimal rigidity result as follows.

Corollary 3.1. Let z0 and z1 be points in A. Suppose that there is a linear isometry
from (Tz0A, F

A(z0, ·)) to (Tz1A, F
A(z1, ·)). Then the triangles Tz1 and Tz0 are

congruent.
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2 1 0 1 2

2

1

0
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Figure 5. The shape of the Finsler unit ball at z0 = 1/3 + i. The
diagonals (dashed lines) divide the hexagon into six triangles and
each triangle is similar to Tz0 .

.

Figure 6. The stretching loci Fb,θa , Fc,θa , Ga

3.1. Stretching loci. Let us fix an acute triangle T . With a vertex v ∈ {a, b, c}
and an angle θ ∈ (θv(T ), π/2), we associate three kinds of pictures Fv′,θv = Fv′,θv (T )
and Gv = Gv(T ) for the vertex v, where v, v′ ∈ {a, b, c} are distinct vertices, as in
Figure 6. The figure only show the case when v = a, but the other cases can be
drawn just by changing the symbols of vertices.

In the leftmost triangle of Figure 6, Fb,θa is drawn as follows. Let a, b, and c be
the a-vertex, the b-vertex, and the c-vertex of T , respectively. Draw a perpendicular
from b to its opposite side with its foot r, and then a segment from c to its opposite
side so that the angle ∠bpc is equal to θ, where p is the foot of the segment. We
denote the intersection between the segments br and cp by q. Let Ea, Db and Dc

be the triangles 4bcq, 4bpq, and 4cqr, respectively. Consider the foliations on Db

(resp. Dc) whose leaves are Euclidean segments parallel to the segment rb (resp.
the segment pc). We call these foliations the maximally stretched foliations. The
maximal stretching locus Fb,θa consists of the foliated triangles Db and Dc, and the
triangle Ea. We call the triangle Ea the expanding region. The maximal stretching
locus Fc,θa for the second triangle in Figure 6 is defined in the same way. The names
will be justified below (see Remark 3.1).
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In the rightmost triangle of Figure 6, its maximal stretching locus Ga is drawn
as follows. Draw the perpendicular from a to the opposite side, with its foot p.
Divide the triangle into two right triangles Db = 4apb and Dc = 4apc. Consider
the foliations on Db and Dc consisting of Euclidean segments parallel to ap. The
maximal stretching locus Ga consists of foliated triangles Db and Dc.

3.2. Extremal Lipschitz maps associated with pencils.

Notation 3.1. For z ∈ H, we set T̃z to be the labelled triangle with vertices

za(T̃z) = z, zb(T̃z) = 0, zc(T̃z) = 1.

In this section, we discuss an extremal Lipschitz map from a normalised triangle
T to a normalised triangle in the pencil P (T ; v) for v ∈ {a, b, c}. We use the
notation 3.1, and shall discuss only the case when v = a. In the case when v = b
and c, we can define the Lipschitz maps in the same way, taking conjugates by
congruences (cf. §2.7).

3.2.1. Let T0 and T1 be triangles with z0 = x0 + iy0 = z(T0) ∈ T(a), and z1 =
u0 + iv0 = z(T1) ∈ P (T0; a).

We define

fz0,z1(ξ + iη) =


√
y0
v0

(
u0
x0

ξ + i
v0
y0
η

)
(ξ + iη ∈ Db)√

2

v0

(
u0 +

√
y0
2

(
1− u0
1− x0

(
ξ −

√
2

y0
x0

)
+ i

v0
y0
η

))
(ξ + iη ∈ Dc).

One can check that the map fz0,z1 is a label-preserving Lipschitz map from Tz0 to
Tz1 .

3.2.2. For 0 ≤ k1, k2 ≤ 1, we define a stretch map fGv,(k1,k2) associated with Ga and
(k1, k2) on T as follows.

Let T ∈ T(a) be in normalised position. We define

(3.1) fGa,(k1,k2)(ξ + iη) =


k1ξ + iη

(k1x0 + k2(1− x0))1/2
(
if ξ + iη ∈ Db

)
k1ξ0 + k2(ξ − ξ0) + iη

(k1x0 + k2(1− x0))1/2
(ξ + iη ∈ Dc),

where ξ0 =
√

2/y0x0 (cf. (2.1)). Since

fGa,(k1,k2)(za(T )) =

(
2

y0

)1/2
k1x0 + iy0

(k1x0 + k2(1− x0))1/2

fGa,(k1,k2)(zb(T )) = 0

fGa,(k1,k2)(zc(T )) =

(
2

y0

)1/2

(k1x0 + k2(1− x0)))1/2,

fGa,(k1,k2) coincides with fz0,z1 , which maps T to a triangle T1 with

(3.2) z1 = z(T1) =
k1x0 + iy0

k1x0 + k2(1− x0)
.

We denote such a triangle T1 by St(T,Ga, (k1, k2)). We note that fGa,(k1,k2) is
label-preserving and edge-preserving, and that fGa,(1,1) is the identity map. Note
also that fGa,(0,k2) and fGa,(k1,0) are not homeomorphisms. In these two cases, the
images are right triangles and the maps are not injective.
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Remark 3.1. Let ζ1, ζ2 be points on T with Re(ζ1) = Re(ζ2). Then, we have

deuc(fGa,(k1,k2)(ζ1), fGa,(k1,k2)(ζ2)) =
1

(k1x0 + k2(1− x0)))1/2
deuc(ζ1, ζ2)

> deuc(ζ1, ζ2)

when k1k2 < 1 since 0 < x0, 1−x0 < 1. Therefore, fGa,(k1,k2) stretches T along the
foliations in Db and Dc. This is the reason why Ga (and hence Gv for v = b, c) is
called the maximal stretching locus, and the map fGa,(k1,k2) (and hence fGv,(k1,k2)
for v = b, c) is named a stretch map.

We have the following.

Proposition 3.1 (Parameterisations of Pencils). For v ∈ {a, b, c} and T ∈ T(v),
z(St(T,Gv, (k1, k2)))) is contained in P (T ; v) for any 0 ≤ k1, k2 ≤ 1 with |k1| +
|k2| > 0. Conversely, for any z ∈ P (T ; v), there is a unique pair (k1, k2) with
0 ≤ k1, k2 ≤ 1 with |k1| + |k2| > 0 such that z = z(St(T,Gv, (k1, k2))). Therefore,
the map

[0, 1]× [0, 1] \ {(0, 0)} 3 (k1, k2) 7→ St(T,Gv, (k1, k2)) ∈ P (T ;x)

is a homeomorphism.

Proof. We shall prove the proposition only in the case when v = a. Set z(T ) = x0+
iy0 and T ′ = St(T,Gv, (k1, k2)) as above. From (3.2), we have 0 ≤ Re(z(T ′)) ≤ 1.
Since 0 ≤ k1, k2 ≤ 1 and 0 ≤ x0 ≤ 1, we have

Im(z(T ′))

Re(z(T ′))
=

y0
k1x0

≥ y0
x0

=
Im(z(T ))

Re(z(T ))
and

Im(z(T ′))

Re(z(T ′))− 1
= − y0

k2(1− x0)
≤ − y0

1− x0
=

Im(z(T ))

Re(z(T ))− 1
,

hence z(T ′) ∈ P (T ; a).
Let z = x+iy be a point in P (T ; a). By solving the equation z = z(St(T,Ga, (k1, k2))),

we obtain

k1 =
xy0
x0y

, k2 =
(1− x)y0
(1− x0)y

.

The condition z = x + iy ∈ P (T ; a) implies that 0 ≤ k1, k2 ≤ 1. Further-
more, k1 = 0 implies that z(St(T,Ga, (k1, k2))) ∈ rb, and k2 = 0 implies that
z(St(T,Ga, (k1, k2))) ∈ rc. Therefore, k1 and k2 cannot vanish simultaneously. �

Proposition 3.2 (Stretch maps are extremal). For v ∈ {a, b, c} and 0 ≤ k1, k2 ≤ 1
with |k1|+ |k2| > 0, the stretch map fGv,(k1,k2) is an extremal Lipschitz map.

Proof. As in the proof of Proposition 3.1, we only consider the case when v = a. By
definition, fGa,(k1,k2) is the composition of a contraction of the horizontal direction

with Lipschitz constant 1 and an expansion with factor 1/(x0k1 + (1− x0)k2))1/2.
Furthermore, the contraction preserves distances in the imaginary direction. Hence
we have

(3.3) L(fGa,(k1,k2)) =
1

(x0k1 + (1− x0)k2))1/2
.

On the other hand, the altitudes of T and T ′ = St(T,Ga, (k1, k2)) are (2Ay0)1/2

and (2Ay0)1/2/(x0k1 + (1 − x0)k2))1/2. Since each altitude is equal to the length
of the perpendicular from the a-vertex to its opposite side, the Lipschitz constant
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of any label-preserving and edge-preserving Lipschitz map from T to T ′ is at least
1/(x0k1 + (1− x0)k2))1/2. �

Corollary 3.2 (Lipschitz distance for pencils). For v ∈ {a, b, c} and 0 ≤ k1, k2 ≤ 1
with |k1|+ |k2| > 0, we have

(3.4) L(T, St(T,Gv, (k1, k2))) =



1

2
log

1

x0k1 + (1− x0)k2
(if v = a)

1

2
log

|z0|2

x0k1 + (|z0|2 − x0)k2
(if v = b)

1

2
log

|z0 − 1|2

(|z0|2 − x0)k1 + (1− x0)k2
(if v = c)

where we set z(T ) = z0 = x0+iy0. In particular, if we set z1 = z(St(T,Gv, (k1, k2))),
we obtain

(3.5) L(Tz0 , Tz1) =



1

2
log

Im(z1)

Im(z0)
(if v = a)

1

2
log

1

2

∣∣∣∣log
Im(z1)

|z1 − 1|2
|z0 − 1|2

Im(z0)

∣∣∣∣ (if v = b)

1

2
log

Im(z1)

|z1|2
|z0|2

Im(z0)
(if v = c)

Proof. We shall only give a proof in the case when v = a (cf. (2.4)). If k1k2 6= 0,
the stretch map fGa,(k1,k2) is a homeomorphism. Therefore, (3.4) and (3.5) follow
from (3.3).

Assume now that k1 = 0. For ε ≥ 0, we set Tε = St(T,Ga, (ε, k2)). We take
a label-preserving affine map Aε : Tε → T0 and set gε = Aε ◦ fGa,(ε,k2). Then,
gε is a label-preserving Lipschitz homeomorphism from T to T0. From (2.3) and
Proposition 3.2, we have

L(fGa,(0,k2)) ≤ L(T, T0) ≤ L(gε) ≤ L(Aε)L(fGa,(ε,k2))→ L(fGa,(0,k2))

as ε → 0, which implies (3.4) and (3.5) for the case when k1 = 0. The case when
k2 = 0 can be dealt with in the same way. �

3.2.3. Extremal Lipschitz maps are not always homeomorphisms. Let v, v′ and v′′

be vertices such that {v, v′, v′′} = {a, b, c}. Let T be a triangle in AT. For T ′ ∈
P (T ; v) ∩ (rv′ ∪ rv′′), our stretch map from T to T ′ is not a homeomorphism. In
fact, we have the following general statement.

Proposition 3.3. In the above setting, there is no extremal label-preserving Lips-
chitz homeomorphism between T and T ′.

Proof. Let g : T → T ′ be a label-preserving Lipschitz homeomorphism. We may
assume that v = a and T ′ ∈ rb. As was shown in the proof of Proposition 3.2, the
Lipschitz constant of the stretch map is the ratio of the altitudes of T and T ′.

Let p ∈ ea(T ) be the foot of the perpendicular in T from the a-vertex za(T )
to the opposite edge ea(T ). Since T is an acute triangle, p is different from the
b-vertex zb(T ) of T . Since g is a homeomorphism, g(p) 6= zb(T

′) but g(p) ∈ ea(T ′).
Therefore,

L(T, T ′) =
deuc(za(T ′), zb(T

′))

deuc(za(T ), p)
<
deuc(za(T ′), g(p))

deuc(za(T ), p)
≤ L(g).

Hence g is not extremal. �
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3.3. Extremal Lipschitz maps associated with backward pencils.

3.3.1. Contractions. Let z0 ∈ H be a point in the ideal triangle with vertices 0, 1
and ∞. Let z1 = u0 + iv0 be a point in BP (T ; a). We divide T̃z0 into two right

angled triangles by the perpendicular from the b-vertex 0 of T̃z0 and its ac-side.

For x ∈ {a, c}, we denote by Dx
b = Dx

b (T̃z0) the component which contains the

x-vertex in its boundary. We define the contraction Cbz0,z1 on T̃z0 associated with
the b-vertex by

Cbz0,z1(ζ) =

ζ (ζ ∈ Dc
b)

1 + k

2
ζ +

1− k
2

ζ0

ζ0
ζ (ζ ∈ Da

b ),

where ζ0 = i
Im(z0)

1− z0
and k =

y0
|z0|2 − x0

Re(z1(z0 − 1))

Im(z1(z0 − 1))
. Notice that ζ0 is the foot

of the perpendicular from the b-vertex 0 of T̃z0 to the ac-side. We can check easily
that 0 < k ≤ 1. Indeed, by assumption, z1 ∈ Da

b . By a calculation, we can see that
a Euclidean ray emanating from the b-vertex 0 passing by z1 intersects the ac-side
of T̃z0 at

(3.6) ζ1 =
y0

Im(z1(z0 − 1))
w0.

We can also see that k = |ζ1 − ζ0|/|z0 − ζ0|, and hence that 0 < k ≤ 1. By
definition, Cbz0,z1 is a contraction from the triangle with vertices 0, z0 and ζ0 to the

one with vertices 0, ζ1 and ζ0, and takes T̃z0 to T̃ζ1 . See the map represented by
the right-lower arrow in Figure 7.

We define the contraction Ccz0,z1 associated with the c-vertex by

Ccz0,z1(ζ) = 1− Cb1−z0,1−z1(1− ζ),

obtained by conjugating the contraction Cbωbc(z0),ωbc(z0)
on the vertical line in C

passing through the midpoint 1/2 between the b-vertex 0 and the c-vertex 1 of T̃z0
(see §2.7).

We define the contraction Gbz0,z1 from T̃z0 and T̃z1 associated with the b-vertex
by

Gbz0,z1(ζ) = Ccζ1,z1 ◦ C
b
z0,z1(ζ)

for ζ1 defined in (3.6).

We also define the contraction Gcz0,z1 from T̃z0 and T̃z1 associated with the b-
vertex and also satisfying the properties of Proposition 3.4 just by interchanging
the roles of the b and c-vertices.

The following proposition is an immediate consequence of the definition.

Proposition 3.4 (Lipschitz constants of contractions). Let z0 be a point in A and
z1 a point in BP (Tz0 ; a). Let x be either b or c.

(1) The Lipschitz constant of the contraction Gxz0,z1 is 1.

(2) After identifying Tz0 with T̃z0 by a similarity with factor
√

Im(z0)/2, the
Lipschitz constant of the contraction is attained at two points both of which
lie in either the expanding region Ea or on any leaf of the foliation Fx,θa ,

where θ is the angle at ζ1 of T̃ζ1 .
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Figure 7. Contractions Cbz0,z1 , Ccz0,z1 and Gbz0,z1 .

3.3.2. Extremal maps. Let T be a (marked) acute triangle and z0 = x0 + iy0 =
z(T ) ∈ A. Let z1 = u0 + iv0 ∈ BP (T ; a). We define the piecewise linear maps gbz0,z1
and gcz0,z1 from Tz0 to Tz1 by

gx(ζ) =

√
2

v0
Gbz0,z1

(√
y0
2
ζ

)
for x = b or c.

Proposition 3.5 (Extremal Lipschitz maps for backward pencils). Let z0 ∈ A and
z1 ∈ BP (Tz0 ; a). For x ∈ {b, c}, we have the following:

(1) The contraction gxz0,z1 is an extremal Lipschitz map from Tz0 to Tz1 with

Lipschitz constant
√

Im(z0)/Im(z1).
(2) The Lipschitz constant is attained by two points both of which lie either in

the expanding region Ea or on each leaf of the foliation Fx,θa , where θ is
defined in the same manner as in Proposition 3.4.

Proof. From Proposition 3.4, we need only verify that gxz0,z1 is extremal. Let
g : Tz0 → Tz1 be a label-preserving and edge-preserving Lipschitz map. Since the

length of the edge ea(Tzi) is
√

2/Im(zi) for i = 0, 1, the Lipschitz constant of L(g)
satisfies

L(g) ≥
√

2/Im(z1)√
2/Im(z0)

=

√
Im(z1)

Im(z0)
= L(gxz0,z1),

which implies what we wanted. �
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