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Abstract

Correctional institutions are a crucial hotspot amplifying SARS-CoV-2 spread and disease disparity

in the U.S. In the California state prison system, multiple massive outbreaks have been caused by

transmission between prisons. Correctional staff are a likely vector for transmission into the prison

system from surrounding communities. We used publicly available data to estimate the magnitude

of flows to and between California state prisons, estimating rates of transmission from communities

to prison staff and residents, among and between residents and staff within facilities, and between

staff and residents of distinct facilities in the state’s 34 prisons through March 22, 2021. We use a

mechanistic model, the Hawkes process, reflecting the dynamics of SARS-CoV-2 transmission, for

joint estimation of transmission rates. Using nested models for hypothesis testing, we compared the

results to simplified models (i) without transmission between prisons, and (ii) with no distinction
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between prison staff and residents. We estimated that transmission between different facilities’ staff

is a significant cause of disease spread, and that staff are a vector of transmission between resident

populations and outside communities. While increased screening and vaccination of correctional

staff may help reduce introductions, large-scale decarceration remains crucially needed as more

limited measures are not likely to prevent large-scale disease spread.

1 Introduction

Prisons and jails, like other dense congregate settings, have been exceptionally fertile ground for

the SARS-CoV-2 virus since its introduction into the United States. Prisons were the sites of 27

outbreaks of over 2,000 COVID-19 cases each in the U.S. in the first year of the pandemic [1], and

prison outbreaks continue to arise [2]. Rates of COVID-19 infection have been 2.6 times higher than

the community rate in prison residents and 1.6 times higher in prison staff [3]. In the 34 facilities

operated by the California Department of Corrections and Rehabilitation (CDCR), 50,575 resident

cases and 15,259 staff cases were recorded as of October 9, 2021, and 240 residents and 46 staff died

from COVID-19 in that time (staff mortality as of November 2021) [3]. Prisons and jails are an

“epidemiological pump” [4] exporting cases to surrounding communities at accelerated rates [4–20].

Disease outbreaks are often especially large in correctional facilities due to bad conditions such as

overcrowding [11,12,15,16,18,19,21–28], lack of ventilation and access to healthcare [11,15,18,19,

22,24,26,28,29], and populations with elevated risk factors for severe disease [8,9,11,14,16,18,19,

22,24,26,28].

In addition to expanding and continuing overall disease spread, correctional institutions amplify

racial inequities in disease burden. The rate of incarceration is six times as high for Black people

as for white people. Similarly, Latinx and indigenous people are incarcerated at a rate three times

that of white people [30]. For this reason, outbreaks in prisons tend to amplify disparities in disease

burden [31–41], with all its consequences including the mass disabling impacts of post-acute sequelae

of COVID-19 (i.e. long COVID) [42–45], even without accounting for disparities among prison

residents. Racial differences in incidence and/or mortality within correctional facilities may further

exacerbate health disparity [46]. Additionally, counties with more Latinx and Indigenous people

and lower average incomes are associated with higher infection rates in correctional facilities located
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there [30], indicating another contribution of incarceration to racial disparities in disease burden

and early death [47]. Overrepresentation of Black prison staff may mean that COVID exposure

among staff also contributes to racial inequity in disease burden, as it does among residents [48].

Both the large size of correctional facility outbreaks and their frequency of occurrence contribute

to their impact. Here we investigate the routes by which introductions of SARS-CoV-2 occur.

Several outbreaks in prisons have likely been sparked via infected staff [49–53], and by transfers

of infected residents between facilities [54–57]. For example, the San Quentin outbreak of June

and July 2020, which led to 2241 cases and was caused by a transfer of infected residents from

the Correctional Institute for Men (CIM) in Chino, California [58]. In many settings staff have

been screened but not widely tested [59] Vaccination rates are low among corrections staff [60].

Prison staff have tended to report higher rates of COVID-19 than the surrounding community [48],

though lower than among prison residents, suggesting that they may be a vector of transmission

from prison to community.

Previous work [61] identified an effect of countywide COVID-19 case rates on prison cases. Re-

search incorporating both staff and resident cases [62,63] found an association between community

cases and staff cases, and between staff and resident cases, in US federal prisons, and recommended

containment among staff to stem introductions of COVID-19 and other diseases into prisons. Re-

duction of prison populations by decarceration was found to decrease the risk of COVID-19 infection

in federal prisons [63,64].

We use publicly available data to estimate the magnitude of flows to and from California state

prisons, estimating rates of transmission from communities to prison staff and residents, among and

between residents and staff within facilities, and between staff and residents of distinct facilities.

Unlike prior studies, we use a mechanistic model, the Hawkes process, reflecting the dynamics of

SARS-CoV-2 transmission for estimation and hypothesis testing.

2 Methods

2.1 Data

Case counts for prison residents and staff from April 1, 2020 to March 22, 2021 were obtained from

the UCLA COVID Behind Bars project, which collected publicly available data from the California

3

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 25, 2023. ; https://doi.org/10.1101/2023.08.24.23294583doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.24.23294583
http://creativecommons.org/licenses/by/4.0/


Department of Corrections and Rehabilitation (CDCR). These data report a daily cumulative

number of resident and staff cases at each of the 34 CDCR facilities. Cumulative case counts for

each county were obtained from the California Health and Human Services Open Data Portal.

A daily count of community cases in each California county was estimated by subtracting prison

resident and staff cases in the county from the cumulative count of community cases. Isotonic

regression was then used to estimate nondecreasing series of numbers of county, resident, and staff

cases, and daily new cases were then calculated as the first difference of each of those series.

2.2 Statistical analysis

We modeled transmission between recorded cases using a Hawkes process model (see Appendix A for

details). We used maximum likelihood estimation of the Hawkes process’s parameters to estimate

the rates of transmission between and within the resident and staff populations within the facilities

and between distinct facilities, and from community to residents and staff of a prison in the prison’s

county and across the state.

The model included ten parameters describing intensity of transmission among prison resident,

staff, and community populations, listed and described in Table 1. The ten unknown model param-

eters provide the constants of proportionality determining transmission rates between populations

(see Appendix A for details).

The timing of transmission events was parametrized using a generation interval between infec-

tion of a case and transmission from that case, combined with a reporting interval from a case’s

date of infection to the day that case is listed in case count data. The generation time distribution

used in these estimates was that estimated in a meta-analysis of COVID-19 generation times [65],

a Weibull distribution with mean 5.5 days and standard deviation 1.8 days (parameters α = 3.37,

β = 6.12). The reporting interval was parametrized as a sum of a log-normal incubation period

(mean 5.51 days, s.d. 2.4 days) and log-normal detection delay (mean 5 days, s.d. 2.8 days) as

estimated by Xu et al. [66–68]. The contribution of a source case to creation of secondary cases on

each day was assumed proportional to the probability density of the generation interval, plus the

secondary case’s reporting interval, minus the first case’s reporting interval. The generation inter-

val and second case’s reporting interval conditional on infection date (forward reporting interval)

have the above distributions, while the first case’s reporting interval conditional on reporting date
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(backward reporting interval) is estimated as follows, where pr(∆t) is the probability mass function

of the forward reporting interval and Î(t) is an estimate of the daily number of true infections [69]:

←−pr(∆t; t) =
Î(t−∆t) pr(∆t)∑
s≤t Î(s) pr(t− s)

.

We estimated incidence from the reported case counts as Î(t) = X(t + r̄) where X(t) is reported

case count on day t and r̄ is the nearest whole number to the mean forward reporting delay.

The model parameters were estimated by fitting the data using maximum likelihood estimation,

using the log likelihood function defined in Appendix A. Confidence intervals for each parameter

value were estimated using profile likelihood estimation [70].

We estimated the number and proportion of resident and staff cases attributed to each of the six

different sources of infection modeled—from residents and staff in the same institution, from resi-

dents and staff in the CDCR system as a whole, and from community cases in the county containing

the institution and across the state. Proportion of cases attributed to a source was estimated by

the total intensity of transmission from the source relative to total intensity of transmission from

all sources, where total intensity of transmission from a source is the per capita transmission rate

estimated by the model fit scaled by the total number of cases recorded in the source population.

2.3 Transmission hypotheses

To evaluate the implications of the model fit, we constructed two nested models as special cases of

the full model by constraining its parameters, detailed in Appendix A.5.

An “independent prisons” model, representing a hypothesis that transmission between prisons

is not involved in outbreak dynamics, that is, that outbreaks in prisons originate in introductions

from the surrounding communities, into either the resident or staff populations. This model is

implemented by defining the between-prison transmission parameters of the full model to equal

zero. The remaining parameters were fit using maximum likelihood estimation on the full model’s

log likelihood function.

Second, a “well-mixed prisons” model represents a hypothesis that staff and residents do not

have distinct roles in transmission, and can be treated as interchangeable in modeling. This is

implemented by assuming the contact rates with all populations are equal for staff and for residents.
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The remaining free parameters were fit using maximum likelihood estimation on the full model’s

log likelihood function.

We applied a likelihood ratio test to evaluate whether there were significant differences in

the fit between the full model and either nested model, with three and six degrees of freedom,

respectively. We estimated parameter confidence intervals using profile likelihood, and the number

and proportion of resident and staff cases attributed to each source, for the two nested models as

for the full model as described above.

2.4 Sensitivity analysis

Since true dates of infection are unknown and can only be approximated by dates of case detection,

there is an inherent amount of uncertainty in the transmission dynamics of the cases recorded that

can not be avoided. To examine the dependence of model results on assumptions about precision

in detection of cases’ timing, we fit the full model’s parameters using a range of assumed reporting

delay distributions, and the best fit results were plotted. The mean and standard deviation of

the reporting delay distribution were varied independently by scaling and shifting its probability

density function, and the effects of variation in the mean and standard deviation on the model

estimate were reported separately.

2.5 Code and data availability

All data used in this study came from public sources. Source code and data files are available from

the corresponding author by request.

3 Results

The data analyzed included 48,389 resident, 17,778 staff, and 2,492,711 community cases after

removing prison cases from the California counties’ counts. Outbreaks in California state prisons

often coincided with surges of COVID-19 transmission in their surrounding communities (Figure 1),

and outbreaks among residents often coincided with surges of cases among staff. The correlations

among seven-day average case counts in a facility and its county were 0.42 between residents and

staff, 0.24 between community and staff, and 0.14 between community and residents.

6

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 25, 2023. ; https://doi.org/10.1101/2023.08.24.23294583doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.24.23294583
http://creativecommons.org/licenses/by/4.0/


SQ SVSP VSP WSP

PVSP RJD SAC SATF SCC SOL

ISP KVSP LAC MCSP NKSP PBSP

CRC CTF CVSP DVI FOL HDSP

CHCF CIM CIW CMC CMF COR

ASP CAL CCC CCI CCWF CEN

7/1/20 1/1/21 7/1/20 1/1/21 7/1/20 1/1/21 7/1/20 1/1/21

7/1/20 1/1/21 7/1/20 1/1/21

0

20

40

60

0
5

10
15
20
25

0

20

40

60

0
5

10
15
20
25

0

10

20

30

40

0

10

20

30

40

0

10

20

0

20

40

60

0

20

40

60

0

20

40

60

80

0

20

40

60

0

30

60

90

0

10

20

30

40

50

0

20

40

60

0

30

60

90

0

20

40

60

0

10

20

30

40

50

0

100

200

0

100

200

0

300

600

900

0

20

40

60

0

10

20

30

40

0

10

20

30

0

100

200

0

25

50

75

0

20

40

60

0

100

200

0

10

20

30

0

25

50

75

0

10

20

30

40

50

0

100

200

0

100

200

0

25

50

75

0

40

80

120

Date

7−
D

ay
 A

ve
ra

ge
 o

f D
ai

ly
 C

om
m

un
ity

, R
es

id
en

t, 
an

d 
S

ta
ff 

C
as

es

Population
Community
Residents
Staff

Figure 1: The 7-day average of daily community, resident, and staff cases in each prison and its

county, between April 1, 2020 and March 22, 2021. The 7-day average of community cases does

not include resident and staff cases in prisons and has been scaled by 1/100. See Table C.1 for

abbreviations of facility names.
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The full Hawkes process model estimated that transmission to residents was almost entirely

from other residents within a facility, and transmission to staff was largely from staff at the same

facility (Table 1, Figure 2, Figure 3, Figures B.1–B.6). Infective residents within the same facility

are estimated to have contributed about 99.5% of the transmission to resident cases, and similarly

staff at the same facility contributed about 92.9% of the transmission to staff. A smaller amount

of transmission is estimated between staff across facilities, contributing about 3.1% of transmission

to staff. Transmission between residents and staff within a facility is similarly comparatively rare,

contributing about 0.4% of resident and 2.9% of staff cases. Contact with the local community

contributes about 0.8% to staff cases. The result is similar under the independent prisons model,

which assumes no transmission between facilities, and correspondingly attributes more staff cases

to local community contacts, while under the well-mixed prisons model, which makes no distinc-

tion between staff and residents, transmission to each is primarily from local staff and residents,

secondarily from other facilities, and thirdly from local communities.

Likelihood ratio testing found that the full model differed significantly from the independent

prisons model (p < 0.01), indicating that the rate of transmission between distinct CDCR facilities

is significantly different from zero. The rate between staff at distinct facilities in particular has 95%

confidence interval distinct from zero in the full model.

The full model also differed significantly from the well-mixed prisons model (p < 0.001), indi-

cating a difference between the sources for transmission to staff and to residents. This suggests

that transmission from community to staff, and subsequently from staff to residents, is likely a

contributor to prison COVID-19 cases.
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Table 1: Description and estimated values of model parameters, with 95% confidence intervals.

Parameter Definition Full model fit Model 1 fit Model 2 fit

βw Intensity per case from residents to

residents within a prison

0.995

(0.987, 1.00)

0.996

(0.987, 1.01)

0.490

(0.486, 0.495)

βb Intensity per case from residents to

residents between prisons

1.06× 10−5

(0.00, 9.20× 10−5)

− 0.000279

(0.000260, 0.000290)

γw Intensity per case from staff to residents

and vice versa within a prison

0.0106

(0.00726, 0.0139)

0.0106

(0.00718, 0.0140)

−

γb Intensity per case from staff at one

prison to residents at a different prison

and vice versa

3.20× 10−5

(0.00, 0.000160)

− −

ζw Intensity per case from staff to staff

within a prison

0.932

(0.915, 0.953)

0.954

(0.932, 0.975)

−

ζb Intensity per case from staff to staff

between prisons

0.000935

(0.000416, 0.00145)

− −

ψw Intensity per case from community to

residents in a prison in the same county

3.73× 10−6

(0.00, 2.23× 10−5)

5.94× 10−6

(0.00, 2.59× 10−5)

1.44× 10−5

(3.15× 10−7, 2.38× 10−5)

ψb Intensity per case from community to

residents in a prison in a different county

0.00

(0.00, 1.08× 10−6)

0.00

(0.00, 1.46× 10−6)

0.00

(0.00, 2.09× 10−7)

ξw Intensity per case from community to

staff of a prison in the same county

3.60× 10−5

(5.62× 10−6, 6.64× 10−5)

4.93× 10−5

(1.92× 10−5, 8.19× 10−5)

−

ξb Intensity per case from community to

staff of a prison in a different county

0.00

(0.00, 1.43× 10−6)

1.98× 10−6

(0.00, 5.23× 10−6)

−

9

 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted A
ugust 25, 2023. 

; 
https://doi.org/10.1101/2023.08.24.23294583

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2023.08.24.23294583
http://creativecommons.org/licenses/by/4.0/


Independent Prisons

Well−Mixed Prisons

Full Model

Resident

Staff

Resident

Staff

0.0476% (0.00%, 0.207%)

99.6% (98.7%, 100%)

0.390% (0.263%, 0.512%)

0.00% (0.00%, 0.243%)

0.00% (0.00%, 0.00%)

0.00% (0.00%, 0.00%)

1.08% (0.419%, 1.79%)

2.89% (1.95%, 3.80%)

95.1% (93.0%, 97.2%)

0.898% (0.00%, 2.37%)

0.00% (0.00%, 0.00%)

0.00% (0.00%, 0.00%)

0.337% (0.00738%, 0.558%)

98.0% (97.2%, 98.9%)

0.00% (0.00%, 0.102%)

1.84% (1.72%, 1.91%)

0.0299% (0.00%, 0.179%)

99.5% (98.6%, 100%)

0.387% (0.266%, 0.509%)

0.00% (0.00%, 0.181%)

0.0350% (0.00%, 0.303%)

0.0387% (0.00%, 0.193%)

0.786% (0.123%, 1.45%)

2.88% (1.97%, 3.78%)

93.0% (91.3%, 95.1%)

0.00% (0.00%, 0.646%)

0.287% (0.00%, 1.43%)

3.08% (1.37%, 4.78%)

23.0 (0.00, 100)

48200 (47800, 48600)

189 (127, 248)

0.00 (0.00, 118)

0.00 (0.00, 0.00)

0.00 (0.00, 0.00)

191 (74.6, 318)

514 (347, 675)

16900 (16500, 17300)

160 (0.00, 422)

0.00 (0.00, 0.00)

0.00 (0.00, 0.00)

112 (2.44, 185)

64800 (64300, 65400)

0.00 (0.00, 33.7)

1220 (1140, 1270)

14.4 (0.00, 86.6)

48100 (47700, 48600)

187 (129, 246)

0.00 (0.00, 87.4)

16.9 (0.00, 147)

18.7 (0.00, 93.4)

140 (21.8, 258)

511 (351, 671)

16500 (16200, 16900)

0.00 (0.00, 115)

51.0 (0.00, 255)

547 (244, 851)

Local County

Local Residents

Local Staff

Other Counties

Other Residents

Other Staff

Local County

Local Residents

Local Staff

Other Counties

Other Residents

Other Staff

Local County

Local Facility

Other Counties

Other Facility

Local County

Local Residents

Local Staff

Other Counties

Other Residents

Other Staff

Local County

Local Residents

Local Staff

Other Counties

Other Residents

Other Staff

Source Cases Percent 0 10000 20000 30000 40000 50000 60000

Figure 2: Estimated absolute and percent contributions of sources to transmission to residents and staff cases.
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3.1 Sensitivity analysis

We examined how the maximum-likelihood estimate of the full model’s parameters was affected

by assumptions about timing of cases’ detection, by varying the mean and standard deviation of

the reporting delay distribution. The model results are found to be insensitive to variation in the

mean delay. We found that the standard deviation of the reporting delay, indicating the amount

of uncertainty in timing of infections, has a quantitative impact on the model results, but not a

qualitative one in the range of values examined (Figure 4).

4 Discussion

Our results indicate that prison staff unsurprisingly have more outside contact events than prison

residents, both with the surrounding community and with other facilities. The latter may involve

staff who travel between facilities [52,53]: CDCR data shows staff members work at an average of

two facilities [3]. This supports the idea that staff may be an important source of transmission into

and out of prisons. Testing of staff may be inadequate to prevent spread into prisons [59], and the

problem may be exacerbated by low staff vaccination levels [60].

Both testing and vaccination are important occupational health measures for correctional staff

as well as for outbreak prevention [71,72]. Transmission due to transfer of infected residents is not

clearly distinguished from zero by this model, perhaps due to relative rarity compared to everyday

transmission. Nonetheless, it is known to have caused major outbreaks in the CDCR system, and

must be taken very seriously as a source of risk.

Prevention of prison outbreaks is crucial, not only for protection of residents and staff, but to

reduce overall transmission and exacerbation of unjust disparities in disease burden [8, 11, 13, 15,

24,33,73–77]. Decarceration continues to be urgently needed [6,8,11,12,14,15,18,19,21,23,24,26,

30,33,61,74,76,78–97].

This study has a number of limitations. The use of a stationary Hawkes process formulation

does not account for temporal variation in transmission rates, whether due to depletion of sus-

ceptible individuals or other causes. While we use it here to look at the relative contributions to

the transmission rate, which may be relatively insensitive to that approximation, it may introduce

inaccuracy. The time period studied may not be predictive of dynamics after March 2021. Differ-
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Figure 3: Estimated proportion of resident and staff cases attributed to each source of infection,

under the full Hawkes process model and the two nested Hawkes process models.
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Figure 4: Dependence of full model result on mean (left) and standard deviation (right) of assumed

case reporting delay. Tinted bars denote fraction of infection intensity affecting residents and staff

due to each source of infection.

ences between the 34 CDCR facilities may be obscured by this model. Dynamics such as rare but

influential transfers of infected individuals may not be identifiable from the data set used. Variable

case detection could introduce bias; for example, if testing is more frequent during outbreaks in fa-

cilities, the proportion of cases originating in the facilities could be overestimated. The assumption

of symmetric transmission rates between staff and residents may be a limitation, as for example

one or the other population may be more likely to be isolated while infective.

We find the Hawkes process formulation to be a powerful and flexible technique for estimation

of transmission rates between segments of a population. Mechanistic knowledge of the process

such as a generation time distribution can be used directly to infer mixing rates from data without

extensive intermediary steps such as simulation. It can be used to estimate mixing rates in a broad

variety of structured-population disease transmission problems, and it may prove useful in a wide

range of disease modeling applications in the future.
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Appendix

A Model Details

A.1 Hawkes Processes

To estimate the effects of multiple sets of infected cases on one another through time, one can

use a Hawkes (or self-exciting) process [98–102]. This is equivalent to a branching process, or

the assumptions made in e.g. [103]; Hawkes himself used measles contagion as an example of a

self-exciting process.

Hawkes processes assume a intensity function that increases and decreases in proportion to the

number of events that have occurred in the past (e.g. infections are caused by previously infected

individuals): if N
(

[a, b)
)

=
(
# of infection events at times t ∈ [a, b)

)
is the empirical measure of

the point process, with

N(dt) =

1 if an event happens in [t, t+ dt), or

0 otherwise,

then the intensity function is

h(t) = µ(t) +

∫ t

0
ν(t− s)N(ds)

= µ(t) +
∑
ti<t

ν(t− ti),

where ti are the event times in [0, t). Here, µ(t) is an external or deterministic component of the

intensity, whereas ν(t) measures the contribution of past events to the rate of new events. Writing

N(t) = N
(

[0, t)
)

and letting P (t) be a standard Poisson process, we have

N(t) = P

(∫ t

0
µ(s) ds+

∫ t

0

∫ s

0
ν(s− u)N(du) ds

)
.
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More generally, we can consider mutually exciting processes, Ni(dt), i = 1, . . . ,m, with intensi-

ties

hi(t) = µi(t) +
m∑
j=1

∫ t

0
νji(t− s)Nj(ds).

A.2 Discrete-Time Hawkes Processes

Implicit in the definition of Hawkes processes is the assumption that one can always resolve the

timing of each event, so that no two events are simultaneous. Here, the data consists a series of

daily case counts Xi(t) of each type, and multiple cases are commonly observed each day, so we

must define a discrete-time version of the Hawkes process to proceed.

Informally, the Hawkes process is such that ∆Ni(t) = Ni(t+ ∆t)−Ni(t) is Poisson distributed

with rate hi(t) ∆t, where hi(t) depends (only) on events up to time t, whereas the probability of

multiple events in the interval [t, t+ ∆t) is of order (∆t)2, which becomes negligible as ∆t→ 0.

We measure time so that ∆t is one day, and thus cannot neglect the possibility of multiple

events on a single day, and thus define our process Ni(t), t = 0, 1, . . . assuming Ni(0) is given,

whereas ∆Ni(t) = Ni(t+ 1)−Ni(t) is Poisson distributed with rate

hi(t) = µi(t) +

m∑
j=1

t−1∑
s=0

νij(t− s)∆Nj(s),

where we can understand the latter terms as the discrete equivalents of the integrals
∫ t

0 νji(t −

s)Nj(ds). By definition, Ni(t) = Ni(0) +
∑t−1

s=0 ∆Ni(s).

The probability that ∆Ni(t) = nit is then(
hi(t)

)nite−hi(t)

nit!

and the log likelihood for a vector of parameters Θ given N = (N1, . . . , Nm) is thus

`(Θ;N) =
m∑
i=1

(∑
t

log
(
hi(t)

)
∆Ni(t)−

∑
t

hi(t)−
∑
t

log
(

∆Ni(t)!
))

.

A.3 Detection Delays

Inference of transmission dynamics may be affected by the timing of cases’ inclusion in case counts

relative to the date of their infection, if the interval from infection to case reporting date is variable.
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Let each case, identified by an index x, be infected on day tx and included in case counts for

day t′x = tx + dx, where dx has probability mass function pd(s), s = 0, 1, . . .. Let Xi(t) denote the

reported case count on day t while ∆Ni(t) = Ni(t + 1) −Ni(t) is the number of cases infected on

day t. The case counts on day t are then

Xi(t) = #{x | t′x = t }

=
∑
k≥0

#{x | tx = t− k, dx = k }

E[Xi(t)] =
∑
k≥0

∆Ni(t− k) pd(k).

We approximate this process by using a serial interval distribution relating case detections to

previous detections. Case detections on day t are generated at rate

∑
k

hi(t− k) pd(k) =
∑
k

(
µi(t− k) +

∑
j

t−k−1∑
s=0

νij(t− k − s)∆Nj(s)
)
pd(k).

Given a case detected on day s, the probability [69,104] that a given one of its secondary cases

is detected on day t is

P( ty + dy = t |x→ y, tx + dx = s )

=
∑
t1

P( tx = t1 | tx + dx = s )
∑
t2

P( ty = t2 |x→ y, tx = t1 )P( ty + dy = t | ty = t2 ).

Two of those probabilities are given by distributions already defined:

P( ty = t2 |x→ y, tx = t1 ) = νij(t2 − t1)

P( ty + dy = t | ty = t2 ) = pd(dy).

The other one is a backward detection interval probability [69]:

P( tx = t1 | tx + dx = s ) =
∆Ni(t1) pd(s− t1)∑
t′ ∆Ni(t′) pd(s− t′)

.

The true daily incidences ∆N being unobserved, we approximate by assuming the true incidence

curve rises and falls as the reporting curve does with a lag, ∆Ni(t) ∝ Xi(t+ d̄), with d̄ the nearest

integer to the mean reporting delay:

P( tx = t1 | tx + dx = s ) ≈ Xi(t1 + d̄) pd(s− t1)∑
t′ Xi(t′ + d̄) pd(s− t′)

.

29

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 25, 2023. ; https://doi.org/10.1101/2023.08.24.23294583doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.24.23294583
http://creativecommons.org/licenses/by/4.0/


Using that, we can model the cases recorded on day t as being generated on day t at rate

h′i(t) =
t∑

k=0

pd(k)
(
µi(t− k) +

∑
j

∞∑
s=0

∞∑
k′=0

Xj(s− k′ + d̄) pd(k
′)∑

k′′ Xj(s− k′′ + d̄) pd(k′′)
νij(t− k − (s− k′))

[
Xj(s)− 1[j = i, s = t]

])
= ρi(t) +

∑
j

∞∑
s=0

σji(t− s; s)
[
Xj(s)− 1[j = i, s = t]

]
,

with

ρi(t) =
t∑

k=0

µi(t− k) pd(k),

σji(∆t; s) =
∞∑
k=0

∞∑
k′=k−∆t+1

νji(∆t− k + k′) pd(k)
Xj(s− k′ + d̄) pd(k

′)∑
k′′ Xj(s− k′′ + d̄) pd(k′′)

.

We use this to define an adjusted likelihood function:

`(Θ;X) =
∑
i

∑
t

(
log
(
h′i(t)

)
Xi(t)− h′i(t)− log

(
Xi(t)!

))
.

A.4 Application to Case Counts

When the process is represented by a series of daily case counts Xi(t) (t = 0, . . . , T ) of each type,

we have a log likelihood function

`(Θ;X) =
m∑
i=1

(∑
t

log(h′i(t))Xj(t)−
∑
t

h′i(t)−
∑
t

log (Xj(t)!)

)

with

h′i(t) = ρi(t) +

m∑
j=1

∑
s

σji(t− s; s)Xj(s).

For our purposes, we will assume mutually exciting groups are the number of infected staff at

each correctional facility and the number of infected residents at each correctional facility. We will

include the number of infected members of each county excluding prison residents and staff as an

external source of hazard.

We write XR
i (t) and XS

i (t) for the daily number of cases reported in residents and staff, respec-

tively, at the ith facility, i = 1, . . . ,mf (where mf is the number of facilities). For the functions σij ,

we use a common generation interval distribution ν(∆t) and detection delay distribution pd(∆t)

to determine the contribution of each past infection to the present force of infection. Assume that
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infectious contacts between residents of facility i and facility j occur at rate βij (with units of

events per unit time), so that the contribution of the former to infection of the latter on day t

is βij
∑T

s=0 σij(t − s; s)XR
i (s). Similarly, assume that infective contacts between staff at facility i

and residents at facility j occur at rate γij , such that its contribution to the infection of residents

of facility j is γij
∑T

s=0 σij(t− s; s)XS
i (s). Assume that infective contacts between staff of facility

i and facility j occur at rate ζij , so that the contribution to infection of staff of facility j due to

residents and staff of facility i is γji
∑T

s=0 σij(t− s; s)XR
i (s) + ζij

∑T
s=0 σij(t− s; s)XS

i (s).

Finally, we model transmission between the community and the prisons. In this study we

consider only transmission into the prisons, not to or between community members, and we assume

that all transmission from outside the prison system is from the California county populations.

Let ψki denote the contact rate between residents of prison i and county k, and let ξki denote the

contact rate between staff of prison i and county k. Denote the daily number of (non-prison) cases

in county k by XC
k (t), k = 1, . . . ,mc, where mc is the number of counties.

We then write the total intensity for residents in prison j, including transmission from residents,

staff, and the surrounding community:

hRj (t) =

mf∑
i=1

T∑
s=0

βij σij(t−s; s)XR
i (s)+

mf∑
i=1

T∑
s=0

γij σij(t−s; s)XS
i (s)+

mc∑
k=1

T∑
s=0

ψkj σij(t−s; s)XC
k (s).

For the intensity for staff in prison j, we have

hSj (t) =

mf∑
i=1

T∑
s=0

γji σij(t−s; s)XR
i (s)+

mf∑
i=1

T∑
s=0

ζij σij(t−s; s)XS
i (s)+

mc∑
k=1

T∑
s=0

ξkj σij(t−s; s)XC
k (s).

For simplicity, we will assume that βij = βw when i = j (within facility) and βij = βb when

i 6= j (between facilities); we use analogous notation for γw, γb, ζw, ζb. Similarly we model the

parameters ψ and ξ as ψw and ξw between a facility and the county containing that facility, and

ψb and ξb between a facility and all other counties. Let the parameters be written as a vector

Θ = (βw, βb, γw, γb, ζw, ζb, ψw, ψb, ξw, ξb). We denote the entire collection of observations XR
i (t),

XS
i (t), XC

k (t) for all i, k, t as X. The log likelihood for the parameters is then

`(Θ;X) =

mf∑
i=1

∑
t

log
(
hRi (t)

)
XR
i (t) +

mf∑
i=1

∑
t

log
(
hSi (t)

)
XS
i (t)

−
mf∑
i=1

∑
t

hRi (t)−
mf∑
i=1

∑
t

hSi (t)−
mf∑
i=1

t∑
τ=0

log(XR
i (τ)!)−

mf∑
i=1

t∑
τ=0

log(XS
i (τ)!).
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This log likelihood function is used to fit the parameter vector Θ using maximum likelihood esti-

mation.

Given a parameter estimate Θ, the contribution of each source population to transmission

to residents or staff is estimated by its contribution to their total Hawkes process intensity over

time, e.g.
∑T

t=0

∑mf

j=1

∑T
s=0 βw σjj(t− s; s)XR

j (s) for within-facility transmission from residents to

residents. The proportion of transmission from each source is estimated by the absolute contribution

divided by the maximum likelihood estimate of the total Hawkes intensity to residents or staff.

A.5 Nested models

The independent prisons model was implemented by defining the between-prison parameters βb,

γb, and ζb to equal zero. The remaining parameters were used in fitting.

The well-mixed prisons model was implemented by constraining βw = γw = ζw, βb = γb = ζb,

ψw = ξw, ψb = ξb, and using the remaining free parameters βw, βb, ψw, ψb in fitting.

B Detailed transmission intensities

Figures B.1–B.6 detail the estimated intensities of transmission to prison residents and staff at-

tributes to various sources, under the full and nested models described above.

C Abbreviations for CDCR facilities

Table C.1 lists the names and abbreviations used for CDCR’s facilities.
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Figure B.1: Incidence rates (gray) and intensities (colors, stacked) for resident cases by facility, in

the maximum likelihood estimate for the full Hawkes process model.
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Figure B.2: Incidence rates (gray) and intensities (colors, stacked) for staff cases by facility, in the

maximum likelihood estimate for the full Hawkes process model.
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Figure B.3: Incidence rates (gray) and intensities (colors, stacked) for resident cases by facility, in

the maximum likelihood estimate for the independent prisons nested model, with local transmission

only.
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Figure B.4: Incidence rates (gray) and intensities (colors, stacked) for staff cases by facility, in the

maximum likelihood estimate for the independent prisons nested model, with local transmission

only.
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Figure B.5: Incidence rates (gray) and intensities (colors, stacked) for resident cases by facility, in

the maximum likelihood estimate for the well-mixed prisons nested model, with staff and resident

exposures assumed identical.
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Figure B.6: Incidence rates (gray) and intensities (colors, stacked) for staff cases by facility, in

the maximum likelihood estimate for the well-mixed prisons nested model, with staff and resident

exposures assumed identical.
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Table C.1: Abbreviated names of CDCR facilities.

Abbreviation Facility

ASP Avenal State Prison

CAL Calipatria State Prison

CCC California Correctional Center

CCI California Correctional Institution

CCWF Central California Women’s Facility

CEN Centinela State Prison

CHCF California Health Care Facility - Stockton

CIM California Institution for Men

CIW California Institution for Women

CMC California Men’s Colony

CMF California Medical Facility

COR California State Prison Corcoran

CRC California Rehabilitation Center

CTF Correctional Training Facility

CVSP Chuckawalla Valley State Prison

DVI Deuel Vocational Institution

FOL Folsom State Prison

HDSP High Desert State Prison

ISP Ironwood State Prison

KVSP Kern Valley State Prison

LAC California State Prison Los Angeles County

MCSP Mule Creek State Prison

NKSP North Kern State Prison

PBSP Pelican Bay State Prison

PVSP Pleasant Valley State Prison

RJD RJ Donovan Correctional Facility

SAC California State Prison Sacramento

SATF California Substance Abuse Treatment Facility

SCC Sierra Conservation Center

SOL California State Prison Solano

SQ San Quentin State Prison

SVSP Salinas Valley State Prison

VSP Valley State Prison

WSP Wasco State Prison
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