
HAL Id: hal-04191367
https://cnrs.hal.science/hal-04191367

Submitted on 30 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

xOS: The End Of The Process-Thread Duo Reign
Alain Tchana, Dorian Goepp, Stella Bitchebe, Renaud Lachaize

To cite this version:
Alain Tchana, Dorian Goepp, Stella Bitchebe, Renaud Lachaize. xOS: The End Of The Process-
Thread Duo Reign. APSys ’23: 14th ACM SIGOPS Asia-Pacific Workshop on Systems, Aug 2023,
Seoul, South Korea. pp.1-8, �10.1145/3609510.3609817�. �hal-04191367�

https://cnrs.hal.science/hal-04191367
https://hal.archives-ouvertes.fr


xOS: The End Of The Process-Thread Duo Reign
Alain Tchana∗

Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG,
38000 Grenoble, France

Dorian Goepp
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG,

38000 Grenoble, France

Stella Bitchebe
McGill University, School of Computer Science,

Montreal, Canada

Renaud Lachaize
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG,

38000 Grenoble, France

ABSTRACT

Process and Thread are first-order abstractions of the oper-
ating system (OS), whose implementation is wired into the
OS core. Several research works have shown the inadequacy
of these two main abstractions for modern isolation needs,
leading to the introduction of additional abstractions with
new isolation and communication features. Despite their use-
fulness, these new proposals are introduced in a somewhat
ad-hoc manner, compromising their broad and consensual
adoption.

This position paper presents xOS, an OS design that does
not introduce yet another first-class isolation abstraction
but instead investigates how the OS can help application
programmers, libraries, and OS developers integrate and
easily use new abstractions. To our knowledge, xOS is the
first work in this area. Similar to file system development
built around a Virtual File System (VFS), xOS introduces
the concept of Isolation Context (IC), which should be the
unique first-class abstraction wired into the OS core. ICs can
be realized in several pluggable Isolation Context Factories
(ICFs) such as ProcessFactory (provides processes), Thread-
Factory (provides threads), Docker Engine (provides Docker
containers), KVM (provides KVM virtual machines), Wasp
(provides virtines), etc. We discuss our plan to redesign a
general-purpose OS from these foundations, the required
APIs, and how to support new and legacy applications.

CCS CONCEPTS

• Software and its engineering → Operating systems; •
Security and privacy → Operating systems security;

∗Corresponding author: alain.tchana@grenoble-inp.fr

APSys ’23, August 24–25, 2023, Seoul, Republic of Korea

© 2023 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
14th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys ’23), August 24–

25, 2023, Seoul, Republic of Korea, https://doi.org/10.1145/3609510.3609817.

KEYWORDS

Operating Systems, Security, Isolation, Concurrency
ACM Reference Format:

Alain Tchana, Dorian Goepp, Stella Bitchebe, and Renaud Lachaize.
2023. xOS: The End Of The Process-Thread Duo Reign. In 14th ACM

SIGOPS Asia-Pacific Workshop on Systems (APSys ’23), August 24–25,

2023, Seoul, Republic of Korea. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3609510.3609817

1 MOTIVATION

An OS should allow application developers to satisfy three
fundamental needs:

• (N1) defining activities (called Execution Flows, EFs for
short) that can execute concurrently and enable work
distribution;

• (N2) defining isolation boundaries (code and data mem-
ory areas that EFs can access) to enforce safety and
security guarantees;

• (N3) establishing communication between EFs.
The first two needs above (N1 and N2) constitute the two
sides of the same coin, which is the need for separation: iden-
tifying distinct flows and delineating their respective pro-
tection domains. And the third need (N3) is a consequence
of separation: facilities for synchronization, data exchange,
and remote/cross-domain code invocation. Pursuing these
goals has resulted in a large body of works that have pro-
posed solutions and abstractions [6, 7, 15, 19–21, 24–26, 28]
which, albeit innovative and ingenious, are mostly narrower
to specific cases and, therefore, not generic. This led us to
the following observations that motivate xOS.

Observation 1: First-class abstractions proliferate over the

years. The notions of process and thread are the two first-
class abstractions offered by contemporary OSes (to satisfy
N1 and N2), accompanied by Inter-Process Communication
(IPC) mechanisms (to satisfy N3). They were introduced in
the early years of the systems design field and have been
intended for activities with precise modularity and isola-
tion boundaries. These abstractions statically implement,
throughout an EF’s entire lifetime, a mapping between an
EF and an isolation domain (e.g., a per-flow separate address

https://doi.org/10.1145/3609510.3609817
https://doi.org/10.1145/3609510.3609817


APSys ’23, August 24–25, 2023, Seoul, Republic of Korea Alain Tchana, Dorian Goepp, Stella Bitchebe, and Renaud Lachaize

Table 1: Examples of first-class abstractions for isolation and communication introduced in recent years.

Name Isolation Units Communication Mechanism Hardware Features Used

Dune [6] Dune processes In-VM system calls Intel VT-x
SeCage [20] Secret compartments VMFUNC Intel VT-x & Intel VMFUNC
LwC [19] Lightweight contexts Memory mappings switching -
Scone [4] Secure containers Shields & asynchronous syscalls Intel SGX
Skybridge [21] Client/server processes EPTP switching VM function Intel VMFUNC & Intel EPT
Donky [26] Security Domains Domain calls Intel MPK
cubicleOS [25] Cubicles Cross-component function call Intel MPK
cVM (cap-vm) [24] cap VMs Capability-based function call CHERI
Virtines [28] Virtines Hypercalls1 Intel VT-x, AMD SVM
orbit [15] Orbit tasks PTEs copying2 -

space in the case of single-threaded processes). This rigid-
ity of processes and threads has been regularly challenged
for being unsuitable or insufficient, especially for new EF
and isolation scenarios [15], which seek extensibility (e.g.,
user-defined functions, web browser extensions, kernel ex-
tensions, etc.), secure partitioning (e.g., session handlers,
key signing, etc.), and observability (e.g., deadlock detection,
garbage collection, checkpointing, etc.).

To fill this gap, numerous first-class abstractions [6, 7, 15,
19–21, 24–26, 28] and, consequently, communication mech-
anisms have been proposed in the scientific literature in a
constant flow over the past 20 years — some examples are
listed in Table 1.

Most of these abstractions take advantage of recent hard-
ware features introduced by manufacturers for different pur-
poses: virtualization (e.g., VT-x [11], EPT [14], VMFUNC [12],
APICv [13], etc.), confidential computing (e.g., Intel SGX [10]
and ARM TrustZone [1], AMD SEV [2] and Intel TDX, etc.),
or safety and security (e.g., CHERI [29]). As a result, there
are many ways to separate software components (and their
respective execution flows) from each other and to let them
communicate, at diverse levels of granularity.
All of these prior proposals in this area are somewhat ad

hoc or “siloed”: each one comes with its own base concepts,
and, more importantly, its own set of specific integration
hooks within the deepest layers of existing OSes. This com-
plicates the introduction of new abstractions, as well as their
bridging with existing ones. As a consequence, research in
the domain is slowed and impeded.

Proposition 1:We claim that it is possible to define a gen-

eral principle and a standard methodology for developing

new first-class isolation and concurrency abstractions to be

integrated within the OS.

Observation 2: Leaking design choices regarding tasks and

isolation in OSAPIs impedes application adaptation. The above-
mentioned proliferation of low-level abstractions is not only
problematic for kernel maintenance and evolution but also
for application developers because abstractions are fully ex-
posed to the developers and thus strongly impact the appli-
cation design. Indeed, applications and/or libraries generally
require intrusive modifications to be ported from one point
in the design space to another. This is detrimental for applica-
tion developers in many situations, e.g., to support different
platforms or to explore different trade-offs between perfor-
mance and security. As a result, application developers will
generally settle for the “least common denominator,” e.g., us-
ing pervasive and possibly coarse-grained abstractions such
as processes or virtual machines.

Moreover, this problem also introduces limitations regard-
ing the dynamic optimization of applications, as it is gener-
ally impossible to transparently reconfigure the task man-
agement, isolation, and communication abstractions they
use. To illustrate this, let us consider an application devel-
oper that opts for multi-threading to benefit from efficient
shared-memory communication. Consequently, her appli-
cation cannot be distributed over several computers and
can only scale within the limits of one physical machine.
If, conversely, the developer chooses to rely on containers
or virtual machines (VMs) to achieve independent scaling,
she must use inter-machine communication channels such
as TCP sockets. In this case, if the containers or VMs are
(re)located on the same computer, they would still need to
use inter-machine communication, which is a suboptimal
choice in the present situation. Developers, therefore, face a
dilemma: either make the application horizontally scalable
at the cost of performance or forfeit scalability for better
performance. This dilemma comes from the developer being
compelled to commit statically to the abstraction and the
1Through virtine hypervisor
2Between orbit tasks



xOS: The End Of The Process-Thread Duo Reign APSys ’23, August 24–25, 2023, Seoul, Republic of Korea

communication mechanism she will use while ignoring how
the application will be distributed in the infrastructure.

Another negative consequence of this proliferation of com-
partmentalization interfaces exposed to application code is
that they are difficult to design and use correctly, which re-
sults in a new and growing set of security vulnerabilities [17].
We believe that abstracting away the isolation primitives ex-
posed to the applications could help reduce the number of
such vulnerabilities and simplify their mitigation by contain-
ing them in more controlled parts of the OS.

Proposition 2: We propose to decouple the need for the

expressiveness of concurrency (flow separation) and com-

munication between EFs from the choice of isolation ab-

straction and the underlying communication mechanism.

2 TOWARDS A NEW OS DESIGN

xOS is a new OS design with two key differences from exist-
ing OSes: (1) it facilitates the integration of new first-class
isolation abstractions, and (2) it arbitrates the choice of isola-
tion abstractions (and communication channels) for parallel
applications.

Fig. 1 summarizes the architecture of xOS. At the bottom
level (yellow boxes), xOS manages the isolation abstractions,
which can be implemented in kernel space or userspace
(§ 2.1). At the top level (orange boxes), xOS exposes a parallel
programming model to developers of end-user applications
(§ 2.2). Unless the developer explicitly wants to choose the
isolation abstraction to apply manually, xOS can embed a
runtime that determines the most appropriate abstraction
(§ 2.3) based on the application (its type, the context of its de-
ployment, etc.). To do so, the developer specifies the applica-
tions workflow (i.e. the set of sequential and parallel tasks, as
well as their communication graph), the isolation boundaries
required for specific pieces of code and data, and indications
regarding the desired security/performance trade-off. After
that, xOS instantiates the isolation unit closest to the devel-
oper’s needs, depending on available hardware features (EPT,
SGX, etc.), and applies the corresponding communication
mechanism (shared memory, sockets, etc.).

2.1 Virtual Isolation Contexts (VIC)

xOS is inspired by the way current OSes handle file sys-
tems. They provide a Virtual File System (VFS) interface
that defines a set of standard file operations (e.g., struct
inode_operations for Linux). Concrete file systems imple-
ment these operations and register themselves with the VFS.
Similarly, xOS includes the concept of Virtual Isolation

Context (VIC) at its core, which provides a central foundation
for abstracting the differences between various isolation ab-
stractions. Isolation Context Factories (ICFs) register with the

VIC layer and each ICF provides a distinct implementation
of the VIC interface, which leverages one or several isolation
techniques and one or several communication mechanisms
(such as the ones described in Table 1). We use the term Isola-

tion Context (IC) to refer to each instance of isolation domain
created by an ICF. Note that ICFs can be implemented as
kernel modules or as user-level components (see respectively
the LwC and Scone examples in Figure 1).3

Below, we briefly describe the main operations of the VIC
interface that every ICF must implement.

• ic_init(): first checks whether required (hardware)
features are available (e.g., VMFUNC for SeCage [20])
and initializes any needed state/data.

• get_ICFs (): returns the ids of registered ICFs. This
can be leveraged by the runtime to discover the set of
available ICFs on a given machine.

• ic_create(): creates an IC instance. In the case of tradi-
tional process and thread abstractions, the implemen-
tation of this function is similar to the clone() syscall
in Linux.

• ic_switch_in() and ic_switch_out(): invoked by
the OS scheduler4 when an execution flow (associ-
ated to a given IC) must be scheduled in/out on a CPU.
These functions provide the context switching mecha-
nism that is suitable for the hardware/software isola-
tion technique(s) employed by the IC (e.g., additional
hardware registers to be saved and restored).

• ic_dump() and ic_restore(): respectively checkpoint
and restore an IC. A checkpoint captures the full state
(data and execution state) encapsulated in a given IC,
which is useful for fault tolerance and also for migra-
tion.

The VIC interface defines a set of callbacks that ICFs can
use to register functions implementing the relationships be-
tween distinct ICFs:

• register_com(𝑖𝑑1, 𝑖𝑑2): registers a communication
mechanism that is compatible for interactions between
a pair of distinct IC types.

• mutate(𝑖𝑑1, 𝑖𝑑2): transforms an IC instance of (ICF)
type 𝑖𝑑1 into an an IC of type 𝑖𝑑2. This function is
used by the runtime (see §2.3). Since it is unrealistic to
expect that system developers will provide an imple-
mentation of this function for every combination of
source and destination ICF types, xOS uses a fallback
strategy based on a “pivot” ICF type (the traditional

3In Figure 1, the vicuser driver and libvicuser components occupy roles
that are analogous to the ones of the FUSE (Filesystem in Userspace) compo-
nents in the VFS architecture: fuse driver and libfuse.
4Note that the design of xOS is also compatible with hierarchical schedul-
ing. For example, the secure container abstraction provided by Scone [4]
leverages M:N threading.



APSys ’23, August 24–25, 2023, Seoul, Republic of Korea Alain Tchana, Dorian Goepp, Stella Bitchebe, and Renaud Lachaize

User

Kernel

Hardware

Process

VFS

ext 3fat ext 4

block devices

read, write, ...

Runtime

Scheduler

Memory
management

VIC

ic_create, ...

ThreadFProcessF lwCSkybridge cVMWasp

MMU EPT VMFUNC CHERI SGX

vicuser
driver

Concurrent
application

libc + libef

Scone

libvicuser

Figure 1: Overview of the xOS layer abstractions (on the right), compared with the existing Virtual File System

design of Linux (on the left). ProcessF, ThreadF, Wasp, Scone, etc., are all isolation context factories.

process abstraction): each ICF must provide at least
a pair of functions enabling to transform a IC into a
process and vice versa.

Proposition 3: xOS moves Process and Thread abstrac-

tions outside of the system core. They are instead registered

in xOS as ICFs.

It is worth noticing that the design of xOS supports nesting,
i.e., a hierarchical grouping of EFs and their corresponding
ICs. This principle allows combining several ICFs in order
to simplify the construction and deployment of applications
featuring multiple levels of isolation, e.g., using containers
within a virtual machine — a common need on public cloud
platforms. In the case of nesting, a control structure config-
ured for each level of the hierarchy (akin to the VMCS [9],
whose flags specify the causes of a guest virtual machine’s
exits) allows defining the events that require the intervention
of the next (upper) level. However, we note that supporting
nesting in a general way introduces many open challenges,
including both functional and performance concerns, among
which: (i) the identification of potential incompatibilities
preventing the encapsulation of a given isolation abstrac-
tion within another one, and (ii) the limitations of many
hardware-assisted isolation techniques with respect to multi-
ple levels of nesting (and the overhead/complexity required
to overcome them via emulation).

2.2 Programming Model

To help developers compartmentalize their applications, the
programming model of xOS allows them to define Execution
Flows (EF) and communication channels between them. An
EF corresponds to a concurrent and preemptible task. Like
a thread, it encapsulates an independent flow of control.
Unlike a thread, it does not make any assumption about
the degree of resource sharing (or lack thereof) with other
flows it interacts with, including memory regions and system
objects (e.g., open file descriptors).

The programming interface exposed by xOS to application
developers for the manipulation of EFs is quite similar to a
traditional threading API, yet with three notable exceptions,
discussed below: (i) flow creation, (ii) flow migration, and
(iii) inter-flow communication.

When instantiating an EF, a developer may indicate the
set of acceptable ICFs that can be used to provide an environ-
ment to host and run this flow, or she can instead delegate
this burden to xOS, which offers a high-level specification
of the isolation and performance requirements (like with
FlexOS [18]). In the latter case, the xOS runtime will choose
the most appropriate ICF according to the current deploy-
ment context (the workload, the availability of the ICF’s
hardware components, etc.).
An EF can be successively mapped to several IC types

during its lifetime (thanks to the dump, restore and mutate
facilities described in §2.1). This enables the dynamic recon-
figuration of the isolation and communication techniques



xOS: The End Of The Process-Thread Duo Reign APSys ’23, August 24–25, 2023, Seoul, Republic of Korea

used by an EF, in-place or upon the migration of the flow
to another location (e.g., another CPU or physical machine).
For example, if an application encapsulated in a VM is mi-
grated to an empty node (thus, with fewer risks of attacks),
an OS policy may trigger a reconfiguration of the isolation
technique (e.g., replacing the VM with a container) in order
to improve performance.
The programming model of xOS imposes an explicit

message-based communication between EFs, via unidirec-
tional or bidirectional communication channels, which ab-
stracts away differences between local and remote interac-
tions. More precisely, xOS provides two communication APIs
to manage interactions between EFs. The first one, partially
inspired by Fable [27] is fairly low level; it aims at maximum
efficiency (e.g., supporting optimized buffer allocation and
ownership management) at the expense of some complexity.
The second one is a socket-like interface, and is aimed at
facilitating the porting of legacy applications.
The choice of a message-based interface may raise con-

cerns about application performance and development com-
plexity. Although we do not yet have sufficient experimen-
tal results to validate this important design choice, we be-
lieve that these potential issues can be significantly miti-
gated. First, regarding performance, our communicationAPIs
do not preclude some IC implementations from internally
leveraging shared memory flows (similarly to the optimiza-
tions introduced in some implementations of the multikernel
model [5]), possibly with limited or zero data copies. Second,
we observe that many multi-thread or multi-process appli-
cations leveraging shared-memory tend to rely on a limited
number of high-level programming patterns (e.g., producer-
consumer, remote procedure call, map-reduce, etc.) for which
we can provide reusable and optimized implementations.

2.3 Runtime

The runtime chooses the appropriate type of IC for each EF
based on four inputs: the developer indications, the hardware
that currently hosts the EFs, the availability of migration
functions for involved ICs, and the availability of communi-
cation functions between ICs. The runtime intervenes each
time an EF is relocated/migrated (e.g., by a cloud orchestra-
tor). The choice of the IC is guided by performance, while
respecting the isolation requirements expressed by the de-
veloper/administrator.

2.4 Kernel Booting

When the kernel boots, it creates a set of kernel tasks, in-
cluding the init one. xOS allows the execution of kernel
tasks in different isolation envelopes (i.e., using different
ICs), enabling compartmentalization within the kernel. We
introduce a kernel isolation descriptor table (KIDT) to do

so. KIDT allows for specifying the kernel tasks to be com-
partmentalized and the corresponding ICFs to be used for
each compartment. This configuration can be coarse-grained
(for a group of kernel tasks such as interrupt handlers) or
fine-grained (for specific individual tasks such as kswapd).
At the end of the kernel boot, the first user task, init,

starts. The list of usable ICFs for init is provided as a boot
argument. The kernel opens any required communication
channel between itself and the init EF.

init is in charge of starting the default user applications
specified in the /etc/rc* directories in Linux. Say init creates
a shell (e.g. a slightly modified version of bash or zsh), then
any further EF will be started from this shell.

2.5 Launching User Applications

xOS keeps compatibility with legacy software while allowing
new software to enjoy the full benefits of new abstractions,
as explained below.

Legacy applications. They keep using the process and
thread abstractions, which xOS also implements as ICFs. To
run these without modification, we rely onLD_PRELOAD
to shim an adaptor library that replaces functions such as
fork(), exit(), etc., by their EF management counterpart. In
particular, the shim library sets up an environment such that
the execution flows of a legacy application can transparently
interact via shared memory. Note however that legacy appli-
cations cannot benefit from the advanced features of xOS,
i.e., transparent (static/dynamic) reconfiguration of isolation
contexts and communication channels.

Applications based on new IC models. The shell creates new
EFs as legacy applications. Only EFs created from the init
shell can use a larger set of ICFs through explicit calls to
EF_create(). Therefore, developers must write programs
that first run in legacy mode, from which they start the rest
of the application using other ICFs.

3 PRELIMINARY PROTOTYPE

xOS is still in an early stage of development. As a first mile-
stone, we are focusing on the programming model. We cur-
rently only generate code that targets a vanilla Linux OS. The
implementation of the OS kernel and the dynamic adaptation
features will be tackled in the next phase.
Our current prototype consists in a toolchain (imple-

mented atop Coccinelle [3, 16]) that takes as input a C pro-
gram based on our generic IC and EF APIs. The output is a set
variants of the applications, which only differ in the chosen
isolation abstraction and/or inter-flow communication chan-
nel. The tool currently supports two ICFs (traditional thread
and process abstractions) and four different communication



APSys ’23, August 24–25, 2023, Seoul, Republic of Korea Alain Tchana, Dorian Goepp, Stella Bitchebe, and Renaud Lachaize

mechanisms (Internet sockets, Unix domain sockets, pipes,
and shared memory).
The current version of the toolchain imposes some con-

straints on the source code organization (e.g., the main rou-
tine for each EF must be implemented in its own file). In the
next version, we intend to lift these restrictions and intro-
duce support for additional types of isolation mechanisms
(virtual machines, containers, and virtines [28]).

4 RELATEDWORK

FlexOS [18] is a modular unikernel system allowing to post-
pone the decisions regarding the isolation strategy (i.e., the
granularity of the isolation boundaries and the correspond-
ing hardware/software mechanisms chosen to enforce them)
until compilation/deployment time, instead of imposing a
choice at design time. The FlexOS toolkit also includes an
exploration technique to help users navigate the large set
of possible configurations, with respect to the trade-offs
between performance and safety/security. The xOS vision
shares many motivations with FlexOS but has two main dif-
ferences: (i) xOS aims at building a general-purpose host
OS, supporting multiple concurrent applications and ten-
ants; (ii) xOS aims at providing an extreme flexibility for the
choice of isolation and communication mechanisms, until
the launch time of an application, and possibly even with
dynamic reconfiguration. Besides, we envision to reuse some
high-level aspects of FlexOS for xOS, notably regarding the
techniques for the exploration of the configuration space and
the expression of high-level preferences/constraints (e.g., re-
garding the performance budget).

Smith et al. describe Fable [27], the blueprint of a system
allowing to dynamically reconfigure the inter-process com-
munication channels used by an application and automat-
ing the selection of the channel types, in order to improve
performance according to the deployment constraints, the
workload properties and the operating conditions. xOS aims
at addressing a superset of the problem, which also encom-
passes the selection of adequate isolation techniques. We are
currently studying how some aspects of the efficient com-
munication interface proposed by the authors of Fable can
be leveraged in the context of xOS.
Service Weaver (SW) [8] is a recent component-based

framework (including a programming model and a runtime)
for cloud applications. It allows decoupling the application
development from the deployment concerns (e.g., choosing
between a monolithic versus a microservice architecture),
including the decision regarding the isolation and distribu-
tion boundaries between components. SW and xOS share a
number of goals, yet at different and complementary levels
of the software stack: the former focuses on high-level and

distributed aspects (e.g., optimized protocols for data serial-
ization and atomic rollouts) whereas the latter is targeting
low-level questions (e.g., regarding OS task management and
fine-grained isolation within each service).
Nu [23] and its successor Quicksand [22] are systems de-

signed for fungibility, i.e., the ability to split a logical process
into subparts (proclets) that can be dynamically distribut-
ed/migrated in a very granular way (in space and time) over
the different servers of a datacenter, with the overall goals of
improving elasticity and resource efficiency. The inter-flow
communication interface used in xOS, which does not ex-
pose shared memory, has some similarities with the one of
Nu. Besides, We believe that the core abstractions (EFs and
ICs) proposed by xOS provide a good substrate to implement
migratable and fungible microtasks like Nu’s proclets.

5 CONCLUSION

In this paper, we make the observation that OS designs must
evolve to accommodate the growing need for isolation in
modern applications and platforms. This need is confirmed
by the plethora of isolation and communication mechanisms
proposed over the last few years. OSes should move away
from tight coupling with the process and thread abstractions
and welcome the addition of arbitrary isolation and commu-
nication mechanisms, as they do for drivers and file systems:
this is the aim of xOS, which addresses the heterogeneity
of workloads and architectures by giving the OS the ability
to select the appropriate isolation layer for each application
at runtime. However, this selection can still be done at the
user’s discretion if she wishes (e.g., an experimented devel-
oper who knows the internal mechanics of her application
and exactly what level of isolation it requires). xOS is meant
to support legacy applications based on the classical process
and thread model, as well as software with more advanced
compartmentalization needs.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful feed-
back. Nel Navou and Dr. Thomas Messi (both from the Uni-
versity of Yaounde I, Cameroon) contributed to preliminary
experiments. Maxime Just (ENS Lyon) contributed to an early
version of the prototype. This work has been partially funded
by: the CNRS MLNS2 International Research Project (IRP),
the ANR Scalevisor ANR-18-CE25-0016 project, and a LIG
“Emergence” grant.

REFERENCES

[1] [n. d.]. ARM Security Technology - Building a Secure System us-
ing TrustZone Technology. https://www.amd.com/en/processors/
amd-secure-encrypted-virtualization. ([n. d.]).

[2] 2020. AMD SEV-SNP: Strengthening VM Isolation with In-
tegrity Protection and More. https://www.amd.com/en/processors/

https://www.amd.com/en/processors/amd-secure-encrypted-virtualization
https://www.amd.com/en/processors/amd-secure-encrypted-virtualization
https://www.amd.com/en/processors/amd-secure-encrypted-virtualization
https://www.amd.com/en/processors/amd-secure-encrypted-virtualization
https://www.amd.com/en/processors/amd-secure-encrypted-virtualization


xOS: The End Of The Process-Thread Duo Reign APSys ’23, August 24–25, 2023, Seoul, Republic of Korea

amd-secure-encrypted-virtualization. (2020).
[3] 2023. [Coccinelle Home Page]. https://coccinelle.gitlabpages.inria.fr/

website/ (Accessed: 2023-06-01). (2023).
[4] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre

Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark L. Stillwell, David Goltzsche, Dave Eyers, Rüdiger
Kapitza, Peter Pietzuch, and Christof Fetzer. 2016. SCONE: Secure
Linux Containers with Intel SGX. In 12th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI 16). USENIX Associ-
ation, Savannah, GA, 689–703. https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/arnautov

[5] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. 2009. The Multikernel: A New OS Architecture
for Scalable Multicore Systems. In Proceedings of the ACM SIGOPS 22nd

Symposium on Operating Systems Principles (SOSP ’09). Association for
Computing Machinery, New York, NY, USA, 29–44. https://doi.org/10.
1145/1629575.1629579

[6] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Maz-
ières, and Christos Kozyrakis. 2012. Dune: Safe User-Level Access to
Privileged CPU Features. In Proceedings of the 10th USENIX Conference

on Operating Systems Design and Implementation (OSDI’12). USENIX
Association, USA, 335–348.

[7] Jiahao Chen, Dingji Li, Zeyu Mi, Yuxuan Liu, Binyu Zang, Haibing
Guan, and Haibo Chen. 2022. DuVisor: A User-level Hypervisor
Through Delegated Virtualization. (Jan. 2022). arXiv:cs/2201.09652

[8] Sanjay Ghemawat, Robert Grandl, Srdjan Petrovic, Michael Whit-
taker, Parveen Patel, Ivan Posva, and Amin Vahdat. 2023. Towards
Modern Development of Cloud Applications. In Proceedings of the

19th Workshop on Hot Topics in Operating Systems (HotOS ’23). As-
sociation for Computing Machinery, New York, NY, USA, 110–117.
https://doi.org/10.1145/3593856.3595909

[9] Intel. 2022. Intel 64 and IA-32 Architectures Software Developper’s

Manual.
[10] Intel. April 2022. Intel Software Developer’s Manual - Chapter 34, Intro-

duction to Intel Software Guard Extensions. Vol. 3D.
[11] Intel. April 2022. Intel Software Developer’s Manual - Section 2-20:

Introduction to Virtual Machine Extensions. Vol. 1.
[12] Intel. April 2022. Intel Software Developer’s Manual - Vol. 3C - Section

25-5.6: VM Functions.
[13] Intel. April 2022. Intel Software Developer’s Manual - Vol. 3C - Section

29-1: APIC Virtualization and Virtual Interrupts.
[14] Intel. April 2022. Intel Software Developer’s Manual - Vol. 3C - Section

29-1: The Extended Page Table Mechanism (EPT).
[15] Yuzhuo Jing and Peng Huang. 2022. Operating System Support for

Safe and Efficient Auxiliary Execution. In 16th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 22). USENIX Asso-
ciation, Carlsbad, CA, 633–648. https://www.usenix.org/conference/
osdi22/presentation/jing

[16] Julia Lawall and Gilles Muller. 2018. Coccinelle: 10 Years of Automated
Evolution in the Linux Kernel. In 2018 USENIX Annual Technical Con-

ference (USENIX ATC 18). USENIX Association, Boston, MA, 601–614.
https://www.usenix.org/conference/atc18/presentation/lawall

[17] Hugo Lefeuvre, Vlad-Andrei Bădoiu, Yi Chien, Felipe Huici, Nathan
Dautenhahn, and Pierre Olivier. 2022. Assessing the Impact of Interface
Vulnerabilities in Compartmentalized Software. In Proceedings of 30th

Network and Distributed System Security (NDSS’23) (NDSS’23). Internet
Society, United States.

[18] Hugo Lefeuvre, Vlad-Andrei Bădoiu, Alexander Jung, Stefan Lucian
Teodorescu, Sebastian Rauch, Felipe Huici, Costin Raiciu, and Pierre
Olivier. 2022. FlexOS: Towards Flexible OS Isolation. In Proceedings of

the 27th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS ’22). As-
sociation for Computing Machinery, New York, NY, USA, 467–482.
https://doi.org/10.1145/3503222.3507759

[19] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak
Garg, Bobby Bhattacharjee, and Peter Druschel. 2016. Light-Weight
Contexts: An OS Abstraction for Safety and Performance. In 12th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 16). USENIX Association, Savannah, GA, 49–64. https://www.
usenix.org/conference/osdi16/technical-sessions/presentation/litton

[20] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015.
Thwarting Memory Disclosure with Efficient Hypervisor-Enforced
Intra-Domain Isolation. In Proceedings of the 22nd ACM SIGSAC Con-

ference on Computer and Communications Security (CCS ’15). Asso-
ciation for Computing Machinery, New York, NY, USA, 1607–1619.
https://doi.org/10.1145/2810103.2813690

[21] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and Haibo Chen. 2019.
SkyBridge: Fast and Secure Inter-Process Communication forMicroker-
nels. In Proceedings of the Fourteenth EuroSys Conference 2019 (EuroSys

’19). Association for Computing Machinery, New York, NY, USA, 1–15.
https://doi.org/10.1145/3302424.3303946

[22] Zhenyuan Ruan, Shihang Li, Kaiyan Fan, Marcos K. Aguilera, Adam
Belay, Seo Jin Park, and Malte Schwarzkopf. 2023. Unleashing True
Utility Computing with Quicksand. In Proceedings of the 19th Work-

shop on Hot Topics in Operating Systems (HotOS ’23). Association
for Computing Machinery, New York, NY, USA, 196–205. https:
//doi.org/10.1145/3593856.3595893

[23] Zhenyuan Ruan, Seo Jin Park, Marcos K. Aguilera, Adam Belay, and
Malte Schwarzkopf. 2023. Nu: Achieving Microsecond-Scale Resource
Fungibility with Logical Processes. In 20th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 23). USENIX Associ-
ation, Boston, MA, 1409–1427. https://www.usenix.org/conference/
nsdi23/presentation/ruan

[24] Vasily A. Sartakov, Lluís Vilanova, David Eyers, Takahiro Shinagawa,
and Peter Pietzuch. 2022. {CAP-VMs}: {Capability-Based} Isolation and
Sharing in the Cloud. In 16th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 22). 597–612.
[25] Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch. 2021. CubicleOS:

A Library OS with Software Componentisation for Practical Isolation.
In Proceedings of the 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems. ACM,
Virtual USA, 546–558. https://doi.org/10.1145/3445814.3446731

[26] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl,
Michael Schwarz, Stefan Mangard, and Daniel Gruss. 2020. Donky:
Domain Keys – Efficient in-Process Isolation for RISC-V and X86. In
Proceedings of the 29th USENIX Conference on Security Symposium

(SEC’20). USENIX Association, USA, 1677–1694.
[27] Steven Smith, Anil Madhavapeddy, Christopher Smowton, Malte

Schwarzkopf, Richard Mortier, Robert M Watson, and Steven Hand.
2012. The Case for Reconfigurable I/O Channels. In RESoLVE Work-

shop (Runtime Environments, Systems, Layering and Virtualized Envi-

ronments).
[28] Nicholas C. Wanninger, Joshua J. Bowden, Kirtankumar Shetty, Ayush

Garg, and Kyle C. Hale. 2022. Isolating Functions at the Hardware Limit
with Virtines. In Proceedings of the Seventeenth European Conference on

Computer Systems (EuroSys ’22). Association for ComputingMachinery,
New York, NY, USA, 644–662. https://doi.org/10.1145/3492321.3519553

[29] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert Norton, and Michael Roe. 2014. The CHERI Capability
Model: Revisiting RISC in an Age of Risk. SIGARCH Comput. Ar-

chit. News 42, 3 (jun 2014), 457–468. https://doi.org/10.1145/2678373.
2665740

https://www.amd.com/en/processors/amd-secure-encrypted-virtualization
https://www.amd.com/en/processors/amd-secure-encrypted-virtualization
https://coccinelle.gitlabpages.inria.fr/website/
https://coccinelle.gitlabpages.inria.fr/website/
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1145/1629575.1629579
http://arxiv.org/abs/cs/2201.09652
https://doi.org/10.1145/3593856.3595909
https://www.usenix.org/conference/osdi22/presentation/jing
https://www.usenix.org/conference/osdi22/presentation/jing
https://www.usenix.org/conference/atc18/presentation/lawall
https://doi.org/10.1145/3503222.3507759
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/litton
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/litton
https://doi.org/10.1145/2810103.2813690
https://doi.org/10.1145/3302424.3303946
https://doi.org/10.1145/3593856.3595893
https://doi.org/10.1145/3593856.3595893
https://www.usenix.org/conference/nsdi23/presentation/ruan
https://www.usenix.org/conference/nsdi23/presentation/ruan
https://doi.org/10.1145/3445814.3446731
https://doi.org/10.1145/3492321.3519553
https://doi.org/10.1145/2678373.2665740
https://doi.org/10.1145/2678373.2665740

	Abstract
	1 Motivation
	2 Towards a New OS Design
	2.1 Virtual Isolation Contexts (VIC)
	2.2 Programming Model
	2.3 Runtime
	2.4 Kernel Booting
	2.5 Launching User Applications

	3 Preliminary prototype
	4 Related work
	5 Conclusion
	Acknowledgments
	References

