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Computational protein design
repurposed to explore enzyme
vitality and help predict antibiotic
resistance

Eleni Michael, Rémy Saint-Jalme, David Mignon and
Thomas Simonson*

Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France

In response to antibiotics that inhibit a bacterial enzyme, resistancemutations inevitably
arise. Predicting them ahead of time would aid target selection and drug design. The
simplest resistance mechanism would be to reduce antibiotic binding without
sacrificing too much substrate binding. The property that reflects this is the enzyme
“vitality”, defined here as the difference between the inhibitor and substrate binding free
energies. To predict such mutations, we borrow methodology from computational
protein design. We use a Monte Carlo exploration of mutation space and vitality
changes, allowing us to rank thousands of mutations and identify ones that might
provide resistance through the simple mechanism considered. As an illustration, we
chose dihydrofolate reductase, an essential enzyme targeted by several antibiotics. We
simulated its complexeswith the inhibitor trimethoprimand the substrate dihydrofolate.
20 active site positions were mutated, or “redesigned” individually, then in pairs or
quartets. We computed the resulting binding free energy and vitality changes. Out of
seven known resistance mutations involving active site positions, five were correctly
recovered. Ten positions exhibited mutations with significant predicted vitality gains.
Direct couplings between designed positions were predicted to be small, which
reduces the combinatorial complexity of the mutation space to be explored. It also
suggests that over the course of evolution, resistance mutations involving several
positions do not need the underlying point mutations to arise all at once: they can
appear and become fixed one after the other.

KEYWORDS
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1 Introduction

When bacteria are challenged with an antibiotic that inhibits an essential enzyme, mutations
appear that reduce antibiotic effectiveness (Condra et al., 1995; Podnecky et al., 2017; Thompson
et al., 2020). Understanding and predicting them would aid in target selection and drug design.
Resistance to an enzyme inhibitor can involve several mechanisms. Perhaps the simplest would be to
reduce the antibiotic binding without sacrificing too much substrate binding. The property that
reflects this is the enzyme “vitality”, defined here as the difference between the inhibitor and substrate
binding free energies. To predict potential resistancemutations that use this mechanism, we propose
methodology borrowed from computational protein design (CPD), a powerful tool to explore and
characterize large sets of enzyme mutations (Stoddard, 2016; Leman et al., 2020; Michael and
Simonson, 2022). The method uses a Monte Carlo (MC) exploration of mutation space and gives
estimates of ligand binding, thanks to an adaptive flattening of a free energy landscape (Villa et al.,
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2018). This allows us to rank mutations according to enzyme vitality and
predict ones that might provide resistance through the simple mechanism
considered here. The simulation method was recently successful for a
related problem, allowing an accurate prediction of ligand binding to
redesigned variants of an aminoacyl-tRNA synthetase (Opuu et al., 2020).

As an illustration, we considered dihydrofolate reductase (DHFR),
an essential enzyme targeted by several antibiotics (Thompson et al.,
2020). DHFR generates tetrahydrofolate by transfering a hydride from
NADPH to dihydrofolate (DHF) (Stryer, 1988; Adamczyk et al., 2011).
Tetrahydrofolate derivatives are then consumed as one-carbon unit
donors in a variety of biosyntheses, including those of thymidine and
DNA. DHFR is targeted by both antibacterial and anticancer drugs.
We considered Escherichia coliDHFR and its binding of trimethoprim
(TMP), a competitive inhibitor commonly used as an antibiotic
(Bugrysheva et al., 2017). Using MC simulations and adaptive
landscape flattening, we mapped out enzyme vitality changes over
sequence space.

We applied an established CPD model, where the protein and ligand
were described by molecular mechanics and solvent was treated as a
dielectric continuum (Mignon et al., 2020). We developed force field
parameters for DHF and TMP, which are of general interest. We
enumerated allowed conformers, or “rotamers” of each ligand within
the binding pocket.We then used themodel to explore DHFR vitality.We
used long MC simulations to sample mutations (and conformations) of
the 20 residues closest to the substrate position. Each residue was first
mutated separately, with the others keeping their native types. Ten amino
acid positions led to significant vitality gains, of around 1–4 kcal/mol.
Then, 51 pairs of positions were mutated, covering all pairs of active site
positions close enough to interact directly with each other. We also
explored one quartet of positions, as a larger-scale illustration. Out of
104976 possible quartet sequences, 80083 (76%) were extensively sampled
over the course of the MC simulation. Although our study is predictive
andmeant to illustrate themethodology, comparison to known resistance
mutants provides some validation. Of seven resistance mutations that
involve active site positions and are experimentally known, five were
correctly recovered, with significant vitality gains.

By comparing the single-position and pair results, we also determined
the direct coupling strengths between positions. Coupling can lead to
correlated mutations during evolution and might facilitate bacterial
resistance (Cocco et al., 2018; Allen and Waclaw, 2019). Most were
very small, below .25 kcal/mol. Only for a few pairs in close proximity,
couplings as large as 2–3 kcal/mol were predicted for the largest side chain
types. On a practical side, weak direct couplings mean that the MC
exploration can safely be done a few positions at a time (as here), instead
of trying to sample 20 positions all at once in a single simulation, a huge
combinatorial problem. On a fundamental side, the weak couplings
suggest that over the course of evolution, when resistance mutations
involve several positions, the underlying point mutations do not need to
arise all at once—an improbable event. Rather, they can appear and
become fixed in the population one after the other.

2 Methods

2.1 Enzyme vitality with adaptive landscape
flattening

Enzyme vitality is defined by the competition between antibiotic
and binding of the substrate (or the transition state) (Ishikita and

Warshel, 2008; Singh et al., 2012; Jindal et al., 2017). Here, we consider
the antibiotic TMP and the substrate DHF. The corresponding
affinities of a variant, relative to the native DHFR, are denoted
ΔGTMP

Bind and ΔGDHF
Bind , respectively. The vitality (relative to native) is

defined here as

ΔGVit � ΔGDHF
Bind − ΔGTMP

Bind − ΔGDHF
Bind − ΔGTMP

Bind( )Native (1)
The subscript Native on the rightmost parenthesis indicates that the
affinities for native DHFR are subtracted out. With this definition, the
native sequence has a vitality of zero and the best vitalities are large
and negative.

To obtain the relative affinities in Eq. 1, we flatten the free energy
landscape of three systems: apo DHFR and its complexes with DHF
and TMP. All three systems include the NADPH cofactor. During an
MC simulation of each system, a bias potential Ebias is gradually
constructed that depends on the side chain type at each mutating
position (Villa et al., 2018). The form of the bias is given further on.
Eventually, all types appear with comparable probabilities, and
therefore the energy landscape has been flattened. In the case of
perfect flattening, all types have exactly equal probabilities, and the
bias potential of each sequence is equal to its relative folding free
energy ΔGFold, up to a sign change and a constant:

ΔGFold � −ΔEBias + constant (2)
The bias is then included in a second simulation, from which we
obtain the “biased” probabilities p(S) of each sequence variant S.
Finally, the unbiased free energy of each sequence is obtained by
subtracting out the bias:

ΔG S( ) � −kBT ln
p S( )
p Sref( ) − ΔEBias S( ), (3)

where Sref is a designated reference sequence, such as the native
sequence. From the relative free energies, we can estimate relative
affinities by subtracting apo and holo results, and relative vitalities by
subtracting DHF and TMP results.

2.2 Ligand tautomers and protonation states

The determination of the protonation states and tautomeric forms
of DHF, TMP, and NADPH was done by considering the known
properties of analogous molecules and by using information from
sequence alignments, 3D structure inspection, and statistical analysis
of interactions duringMD simulations of protein-ligand complexes. In
particular, a high-resolution neutron structure solved at neutral pH is
available (PDB code 4PDJ) (Wan et al., 2014), where many hydrogen
atoms can be seen. Atom names for DHF and TMP are shown in
Figure 1. For DHF, the N3-protonated tautomer is clearly seen and
was adopted here. For N5, the pKa is known to be 6.5 (Wan et al.,
2014). We adopted the N5-protonated form here, because it is
considered an important intermediate along the reaction pathway,
prior to hydride transfer from NADPH (Wan et al., 2014). For TMP,
we selected the N1-protonated form, which has a total charge of +1,
because a close interaction with the conserved, negative residue
Asp27 is seen in several crystal structures. For NADPH, we
selected the form with its terminal phosphate deprotonated. This
form appears clearly in the neutron structure. In addition, we surveyed
61 experimental structures of NADPH in complex with DHFR, and
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did a statistical analysis of the phosphate environment. We also
performed MD simulations with the phosphate either singly-
protonated or fully-deprotonated and compared the phosphate
interactions in each case to the PDB survey. This analysis also
strongly supports the fully-deprotonated phosphate model. Details
are in Supplementary Table S1.

2.3 Ligand force field

Atomic charges of the ligands were obtained using ab initio
calculations with Gaussian 9.0 (Frisch et al., 2009). Calculations
were done for the entire TMP and for a DHF moiety that excludes
the glutamic acid portion. Input coordinates were taken from crystal
structures: PDB code 1RX2 (Sawaya and Kraut, 1997) for DHF and
6XG5 (Manna et al., 2021) for TMP. We did energy minimization,
then extracted charges with electrostatic potential fitting (Cornell
et al., 1995). We used the HF//6-31G* method for neutral forms of
each molecule and HF//6-31G** for cationic forms. For each cationic
form, we compared the charges with the corresponding, deprotonated,
neutral form and identified the atoms with the greatest charge
modifications. The new, cationic charges were applied only to the
most affected atoms (7 atoms in all cases), while the other charges kept
their neutral values. The small excess charge thus created was
eliminated by adding a uniform increment to the same seven
atoms, so that the total charge was +1.

Equilibrium geometry parameters were taken from the Gaussian-
minimized geometries, or by analogy with standard groups (Cornell

et al., 1995). Atom types and stiffness constants were determined by
analogy with standard groups. One group with less obvious analogs
was the atom C7 and its neighbors in the pteridine portion of DHF.
The possibility of ring puckering at this atom was considered. In ab
initio structures minimized in vacuum, C7 deviated from the plane of
the ring by about .5 Å, with a dihedral angle for atoms C6-C7-N8-
C8A equal to −28.0°. The energy needed to flatten the ring was
between .5 and 2.4 kcal/mol, depending on the quantum mechanical
method and basis set. In contrast, a survey of 30 experimental
structures of E. Coli DHFR in complex with DHF gave a mean
absolute dihedral angle of 1.3 ± 1.0° and a mean C7 distance from the
ring plane of just .04 ± .03 Å. Details are in Supplementary Figure S1.
Finally, a quantum calculation was done with the M06-2X//6-31G
(d,p) density functional method in solvent conditions, using the
polarizable continuum model (PCM), with a solvent dielectric
constant of 40, intermediate between water and protein. The
resulting energy difference between the flat and puckered ring
configurations was just .4 kcal/mol. Based on the PDB survey and
the low computed energy difference, we assigned a force constant of
zero to the C6-C7-N8-C8A dihedral. The structure minimized with
the force field [using the protX module of Proteus (Simonson, 2019)]
then gave a planar geometry.

To test the DHF force field further, we performed MD simulations
of DHF and the DHFR-DHF complex in solution. Simulation details
and results are in Supplementary Material. When bound to the
protein, DHF sampled both planar and slightly puckered
geometries, with a mean C6-C7-N8-C8A dihedral angle of 11.1 ±
7.8° and a mean C7 distance from the ring plane of .2 ± .2 Å.

FIGURE 1
Chemical structures of DHF (above) and TMP (below). Red arrows indicate the bond rotations defining ligand conformers. A dashed line separates DHF
into the fragment used in Gaussian calculations (left) and the glutamic acid fragment (right). Hydrogens added in the protonated form of the ligands are in blue.
Dots indicate the atoms among which the extra charge is distributed upon protonation.
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2.4 Ligand rotamers

2.4.1 Ligand conformers
To identify favorable ligand conformations, we ran MD for DHF

and TMP in explicit solvent, described by the TIP3P model (Jorgensen
et al., 1983). Run lengths were 500 ns for DHF and 180 ns for TMP.
The system temperature was controlled by Langevin dynamics at
300 K, with a friction coefficient of 1 ps−1. The pressure was kept
constant at 1 atm using a Nose-Hoover Langevin piston (Feller et al.,
1995), with a period of 50 fs. Electrostatic interactions were evaluated
by the Particle Mesh Ewald method (Darden et al., 1993), using a
cutoff distance of 12 Å. Van der Waals interactions were switched off
at a cutoff distance of 12 Å. Simulations were done with the NAMD
program (Phillips et al., 2005).

From the flexibility seen in the simulations, conformers were
defined based on two soft, central dihedral angles and (for DHF)
the Glu moiety, for which we used the 12 standard rotamers of the
Tuffery library (Tuffery et al., 1991; Gaillard and Simonson, 2014).
The soft dihedral angles are defined in Figure 1. Histograms from the
MD simulations are shown in Supplementary Figure S2, with the
selected conformers: 8 for DHF and 32 for TMP. Combining these
conformations with those seen n the crystal and with the 12 Tuffery
rotamers for the Glu moiety of DHF gave 97 rotamers for DHF and
33 for TMP.

2.4.2 Docking the ligands within the DHFR active site
Each ligand conformer was then placed in the DHFR active site,

where all side chains were mutated to alanine to maximize space for
the ligand. The initial placement was done by fitting each conformer
with respect to atoms of the native conformation close to the reaction
site (atoms C6, N5, and C4A in DHF and atoms C4, C5, and C7 in
TMP). Then, we performed 100 steps of minimization with harmonic
restraints on the dihedrals that defined each conformer, using a force
constant of 200 kcal/mol/rad2 and a tolerance range of ±5° around the
initial angle. Calculations were done with the protX module of Proteus
(Simonson, 2019). During minimization, the ligand and all atoms of
DHFR residues within 5 Å of it were allowed to move, while the rest of
the system was kept fixed. Solvent was described implicitly, with the
GBLK model used below for the design stage. The conformers that,
after minimization, did not have clashes with the protein were chosen
to define the ligand rotamers (83 DHF and 33 TMP rotamers).

2.5 Protein structure

The protein was modeled in its apo and two holo states. The apo
system consisted of Escherichia coli DHFR with the NADPH cofactor.
In the two holo systems, either DHF or TMP was added to the apo
state. We used the DHFR:NADP:DHF crystal [PDB code 1RX2
(Sawaya and Kraut, 1997)] for the DHF complex and the apo state.
For the TMP complex, we used a crystal complex [PDB code 6XG5
(Manna et al., 2021)].

All DHFR histidines were set to be singly-protonated, except for
H114 which was doubly-protonated, according to a neutron structure
[PDB code 4PDJ (Wan et al., 2014)] determined at neutral pH. For
DHF, we selected the tautomer with a protonated N3, two hydrogens
on NA2, and a protonated N5, for a total charge of −1. For TMP, we
selected the N1-protonated form, with a total charge of +1 (Figure 1).

For NADPH, we selected the form with a fully-deprotonated terminal
phosphate, with a total charge of −4.

2.6 MMGBLK energy function

Energy was computed using the MMGBLK energy model
(Michael et al., 2017):

E � EMM + EGB + ELK. (4)
TheMM term used the Amber ff99SB protein force field (Cornell et al.,
1995) and ligand parameters derived here. For GB, we used the Native
Environment Approximation (NEA), where the solvation radii of each
residue were computed with the rest of the system in its native
sequence and conformation (Mignon et al., 2020). The protein
dielectric constant was 6.8, which is optimal with the LK model
(Michael et al., 2017). The other LK parameters were reported
earlier (Michael et al., 2017).

2.7 Unfolded state

The unfolded state energy Euf was estimated as a sum over residues
and depends only on the amino acid composition of the sequence:

Euf S( ) � ∑
i∈S

Euf(ti), (5)

where the sum is over all positions of sequence S and Euf(ti) is the
unfolded energy of type t at position i, estimated using a tri-peptide
model. Specifically, for each mutating position, chemical type and
rotamer, we computed the interaction between the sidechain with
itself and the adjacent backbone. Then for each chemical type, we
collected the energy of the best rotamer at each position, and averaged
over all positions to obtain Euf(ti).

2.8 Choice of mutation space

The 20 DHFR residues closest to the DHF substrate were
considered for redesign: 5I, 7A, 19A, 22W, 23N, 28L, 29A, 30W,
31F, 32K, 35T, 36L, 49S, 50I, 52R, 54L, 94I, 100Y, 113T, 153F. All
residue types were allowed except Gly and Pro. Non-mutating residues
between 5 and 10 Å from the binding site did not mutate but could
change rotamers, chosen from the Tuffery library (Tuffery et al., 1991;
Gaillard and Simonson, 2014), extended to include the orientations
encountered in the PDB structure (native rotamers). Both ligands
could adopt different rotamers (conformers and poses). The rest of the
system, including the DHFR backbone, NADPH and all Gly and Pro
residues, kept the positions they had in the experimental structure.

2.9 Calculation of the interaction energy
matrix

For fast MC exploration, we precomputed the interactions
between all pairs of residues, for all side chain types and rotamers,
and stored them in an Interaction Energy Matrix (IEM), as detailed
earlier (Gaillard and Simonson, 2014; Simonson, 2019).
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2.10 MC protocol

The total bias potential EBias at time t is given by:

EBias s1 t( ), s2 t( ), . . . , sp t( ); t( ) � ∑
i

EBias
i si t( ); t( )

+∑
i<j

EBias
ij si t( ), sj t( ); t( ), (6)

where the first sum is over single positions, the second is over pairs,
and si(t) is the side chain type at position i. Single position and pair
biases were updated at regular time intervals; at each update, the
corresponding state of the system was penalized by adding a single-
position eBi (si(t); t), or pair increments eBij(si(t), sj(t); t) to the
current bias potentials. The increments decreased exponentially
over time (Villa et al., 2018):

eBi si t( ); t( ) � e0 exp −Ebias
i si t( ); t( )/E0[ ], (7)

eBij si t( ), sj t( ); t( ) � e0 exp −Ebias
ij si t( ), sj t( ); t( )/E0[ ], (8)

where e0 and E0 are constants, e0 = .2 kcal/mol and E0 = 40 kcal/mol.
To optimize the bias, we did MC simulations with bias updates

every 1000 MC steps. At first, the biases were optimized using only
single-position terms. Two-position terms were added in cases where
the single-position biases were not sufficient to flatten the landscape.
In both adaptation and production MC simulations, we used a 10:
1 ratio of conformation/sequence moves and included moves at two

positions. Simulations were run at 300 K for 20 × 106 steps in single-
position designs and 108 steps otherwise.

2.11 Amino acid classes for coupling analysis

To simplify the analysis of couplings between amino acid pairs, we
grouped amino acid types into ten classes and computed couplings
that were averaged over classes. The classes were: WF, Y, H, RK, ED,
NQ, IVL, M, C, and AST.

3 Results

3.1 Mutating single positions

We began by mutating, or “redesigning” the 20 residues closest to
the DHF substrate, one residue at a time. For each position, we
performed the bias adaptation stage, such that the sequence space
was progressively flattened. Side chain types that could not fit sterically
were manifested by bias values that increased to more than 20 kcal/
mol, and were then excluded from the exploration space. Excluded
types are shown in Table 1 for each ligand state: apo, DHF- or TMP-
bound. After the flattening, we ran further, “production” MC, from
which we obtained the biased populations and the stability, affinity
and vitality changes (Eqs. 1, 3). Figure 2 shows the distribution of
vitalities at each redesigned position. Ten positions had favorable
vitality gains, of 1–4 kcal/mol on average. Vitality was mostly lost
(more positive values) upon mutations at positions 19A, 32K, 36L,
52R, and 113T. A few very large vitality gains were due to loss of TMP
binding through steric exclusion.

Experimental resistance mutations from different studies are listed
in Supplementary Table S2. Table 2 lists those that correspond to the
active site positions redesigned here. Of seven such mutations, five had
predicted vitality gains in the simulations. For the other two resistance
mutations, the simulations predicted a loss of vitality. Either errors in
the simulation model produced two false negatives, or the
experimental resistance was not due to a vitality gain. Overall, it

TABLE 1 Residue types excluded from the mutation space for singleton design.

Position Apo DHF TMP

5I RFW RFWY RFWY

7A FWY RHILKMFWY RHILKMFWYV

19A - - -

22W - - -

23N - - -

28L - - -

29A - - -

30W - - -

31F - I RIW

32K - - -

35T HFWY RHKMFWY RQHIKMFWY

36L - - -

49S RQIL RQILKW REHILKMFWYV

50I W FWY FWY

52R - - -

54L - W W

94I W RFWY RHLKFWY

100Y RW RW IWV

113T HFWY RHKFWY HWY

153F - - W

FIGURE 2
Box plots of vitalities (kcal/mol) from singleton redesign of 20 DHFR
positions. Each box encloses half the data; the thick line is the median.
Gray points are outliers more than 1.5 times the width of the second or
third quartile. Whiskers are delimited, on each side, by the last point
that is not an outlier.
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appears the simulations can help identify true positives, albeit not with
100% success.

To interpret the simulation results further, we focussed on four
positions that form a cluster near the ligand site: 23N, 28L, 29A, and
31F. A structural view is in Figure 3. Detailed results are in
Supplementary Table S3: stability, affinity and vitality values for
each type at each position. The vitality profile for each position is
represented by the logo in Figure 3. Based on vitality, position
23 prefers I, position 29 prefers K or H, position 28 prefers H,
while position 31 overwhelmingly prefers M. At positions 23 and
29, there were modest vitality gains for several types, arising from
small gains in DHF binding, by .4–.6 kcal/mol at most, associated with
somewhat larger losses of TMP binding, by .7–1.7 kcal/mol. At
positions 28 and 31, a few large side chain types produced much
larger losses of TMP binding, by 4–8 kcal/mol. There were also two
very large losses of TMP binding, for F31M and F31K, and one very
large loss of DHF binding, for L28I. We hypothesized that the largest
losses of TMP binding were largely due to the rigid backbone, discrete

rotamer approximations made in the simulations. This was confirmed
by MMGBLK binding calculations (Michael et al., 2017), detailed in
Supplementary Table S4.

3.2 Mutating pairs of positions

We now turn to the mutation, or redesign of pairs of residues in
the active site. During each MC simulation, two positions could
mutate simultaneously, giving each more flexibility to change its
type. We considered 51 pairs, formed by the 20 positions above,
such that the distance between the 2 Cβ atoms was below 10 Å. From
the 51 redesigns, 2657 sequences were predicted to cause a vitality
gain. 28 pairs, listed in Table 3, gave at least one hit with a vitality gain,
while 16 produced gains over 3 kcal/mol.

Also of interest are the couplings between pairs of positions I, J,
defined as

CIJ t, t′( ) � ΔGIJ t, t′( ) − ΔGI t( ) − ΔGJ t′( ), (9)
where t, t′ are the side chain types, the first free energy was from the
pair redesign, and the others from the two singleton redesigns. They
can be the folding free energies, binding free energies, or a DHF/TMP
binding free energy difference, in other words a vitality. To simplify
the analysis, we grouped amino acid types into 10 classes, and averaged
couplings within classes (see Methods). Figure 4 depicts histograms of
couplings for all 51 pairs and the four properties: folding, DHF
binding, TMP binding, and vitality. In all, there were 1149 pairs of
types and couplings for each property. Most values were less than
1 kcal/mol: 99.0% for DHF binding, 92.7% for TMP binding and
92.4% for vitality. The largest negative coupling overall was −9.1 kcal/
mol, for the TMP binding of IVL-IVL classes of the pair 30–153. The
largest positive coupling was 10.6 kcal/mol, for the vitality of the same
pair and classes. If we exclude those extreme cases, the other couplings
were less than 4 kcal/mol in absolute magnitude.

TABLE 2 Known resistance mutations involving active site positions.

Mutation Exp. vitality
changes

Comp. vitality
changes

L28R + −

W30R + +

F153S + +

W30C + +

W30Y + −

F153V + +

F153L + +

Symbols +, − denote changes of magnitude ≤1 kcal/mol.

FIGURE 3
(Left) Closeup of four positions (pink sticks) in the DHFR complex with DHF (green sticks) and TMP (blue sticks). NADPH is shown as pink lines. (Right)
Vitality logo from singleton redesign of the four positions.
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As above, we considered in more detail the results for positions
23, 28, 29, and 31. Four pair redesigns were done for these positions.
Supplementary Table S5 lists the top 15 vitality variants for these
four pairs, along with the DHF and TMP binding free energies and
the apo-protein folding free energy. The only couplings greater
than .5 kcal/mol (in absolute magnitude) involved the pair 28–31,
and variants with F at position 28. We saw above that this residue
type led to an exaggerated steric repulsion with TMP in the
singleton design. Here, by mutating position 31 simultaneously,
the steric repulsion was alleviated somewhat. Other than these
cases, the pair designs recapitulated the singleton designs, described
above, and simply added together the contributions of each
residue in the pair (up to a very small coupling correction).
Disregarding the variants with L28F, vitality gains were in the
range 2–5 kcal/mol for the pairs 23–28, 28–31, and 29–31. The

28–29 pair was less effective, with vitality gains of 1.2 kcal/mol
at most.

3.3 Mutating the quartet 23–28–29–31

We chose the positions 23–28–29–31 to illustrate the mutation
of four positions at once, or quartet redesign. These positions are
close together in the active site (Figure 3) and might be expected to
have significant couplings. There are several ways to define couping
within a quartet, even for a single physical quantity such as vitality.
The simplest considers the quartet as a group of two pairs and
compares the quartet result to the sum of two pair results. Here,
since 28–31 have the strongest coupling, we considered the
two pairs 28–31 and 23–29. We denote the coupling by CQP (P
for pair).

From the redesign of the quartet, 20064 variants were predicted
to have improved vitality, compared to the native. We noted above
that variants with Y or W at position 28 or E, M, Y, H, K at position
31 displayed an exaggerated loss of TMP binding because of the
rigid backbone, discrete rotamer approximations. Excluding these
variants, there were 17369 variants with a predicted vitality gain.
Sequence logos with and without F at position 28 are shown in
Figure 5. Vitality, affinity, folding free energies, and couplings are
given in Table 4 for the top 10 variants (ranked by vitality). Fairly
large couplings are seen for variants with H at position 28, which
reflect a decrease in steric exclusion of TMP when position 28 is
mutated in combination with its closest neighbors. Aside from
these cases, the quartet redesign mostly recapitulates the pair and
singleton redesigns above. The favorable vitality effects seen at
positions 23, 28, and 31 are roughly additive.

4 Concluding discussion

Experimental methods to identify resistance mutations are
mostly low- or medium-throughput (Jackel et al., 2008;
Thompson et al., 2020), and do not usually reveal the
underlying resistance mechanism. Predicting them with
simulations is another goal, and one route was proposed here.
We focussed on the situation where an antibiotic inhibits an
enzyme, and resistance arises from changes in the inhibitor and
substrate binding. These changes were captured by the enzyme
“vitality”. Resistance mutations should also maintain transition
state binding, and indeed, the original definition of vitality was
based on the relative binding of the inhibitor and the transition
state (Gulnik et al., 1995; Ishikita and Warshel, 2008; Singh et al.,
2012; Jindal et al., 2017). However, substrate binding is much
simpler to model. It does not involve a determination of the
transition state, which might require a quantum mechanical
study of the entire reaction pathway. We can use substrate
binding as a proxy for activity, if we are willing to speculate that
many mutations that maintain ground state binding will also
maintain transition state binding.

We borrowed methodology from CPD. In particular, adaptive
landscape flattening (Villa et al., 2018) allows one to score hundreds
of thousands of sequences according to substrate and inhibitor
binding, and thus vitality. We used an established CPD model, with
a molecular mechanics energy, a continuum solvent, a fixed protein

TABLE 3 Free energies (kcal/mol) from the top hits at the top 28 pairs.

Pair Nat Seq ΔGVit ΔGDHF
Bind ΔGTMP

Bind ΔGApo
Fold

94 100 IY MN −11.8 1.4 13.2 −2.2

23 28 NL IF −9.4 1.4 10.8 0.7

7 153 AF AI −9.3 −0.8 8.5 −1.6

50 94 II MC −7.8 2.4 10.2 −0.1

52 54 RL CM −7.7 0.6 8.3 1.1

32 54 KL RM −7.1 0.1 7.2 1.1

36 54 LL IM −6.7 0.0 6.7 0.4

35 54 TL TM −6.6 0.1 6.7 1.6

49 50 SI CM −6.4 1.7 8.1 −0.1

5 100 IY VD −6.4 −1.5 4.9 0.6

50 52 IR MC −6.1 2.4 8.5 −1.0

29 31 AF KL −4.7 0.4 5.1 1.0

31 32 FK QR −4.2 −3.1 1.2 1.6

31 113 FT FV −4.1 0.2 4.3 2.0

31 36 FL QI −4.0 −3.3 0.7 1.0

7 31 AF AC −3.7 −4.1 −0.5 1.3

28 32 LK HR −1.7 1.1 2.9 1.3

29 32 AK HR −1.5 −0.5 1.0 1.1

19 49 AS AC −1.4 −0.1 1.3 0.3

7 28 AL AH −1.3 0.9 2.2 1.8

28 113 LT HT −1.2 1.0 2.2 1.8

28 29 LA HA −1.2 1.0 2.2 1.8

5 35 IT VT −0.6 −0.1 0.5 1.3

5 113 IT VT −0.6 −0.1 0.5 1.3

5 7 IA VA −0.5 0.0 0.5 1.3

32 36 KL RK −0.5 −0.2 0.3 0.8

35 36 TL TK −0.4 −0.3 0.1 1.2

32 35 KT RT −0.4 0.1 0.5 −0.4
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backbone and a discrete rotamer library (Mignon et al., 2020). It
gave good accuracy recently for several ligands binding to several
dozen variants of the methionyl-tRNA synthetase enzyme
(Opuu et al., 2020). However, the method could also be used
with other models or energy functions, such as knowledge-based
functions.

The DHFR simulation model included new DHF and TMP
force field parameters in several tautomers and protonation states,
and a rotamer library for each ligand, which are all available and of
general interest. We then considered mutations at 20 positions in
the DHFR active site, which span a vast mutation space of over 1026

possible variants. We did not attempt to mutate 20 positions at
once, since adaptive landscape flattening is effective for at most four
to five positions mutating together. Also, known DHFR resistance
mutations involve only one or a few positions at a time
(Supplementary Table S2). We adopted a stepwise, hierarchical
approach, where small groups of positions were studied first. Two
small groups can then be combined to form a larger group. If
couplings between the two subgroups are small, the mutation space
of the large group can be accurately represented by combining
mutations of the subgroups. Thus, we showed that mutations of the
quartet 23–28–29–31 were accurately described by combining

FIGURE 4
Histograms of coupling values for vitality, DHF binding, TMP binding, and stability of the 1149 class combinations that occurred in the redesign of 51 pairs.
Left: All couplings. Right: couplings in the range 1–3 kcal/mol.

FIGURE 5
Vitality logos from quartet redesign. Right: variants with F28 excluded.
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mutations of the 23–29 and 28–31 pairs. From 20 active site
positions, one can form 4845 quartets, which encompass over
one billion possible sequences. Once the pairs have been
redesigned, most of these quartets are well-described by
combining underlying pairs. Thus, our method can sample the
full space of quartet sequences, if one is willing to accept errors for a
tiny percentage of quartets that are not well-approximated by pairs.
The total computational time to explore this space is a few days on a
single desktop computer. The hierarchical sampling approach
could be of general interest for CPD.

The small, predicted, direct pair couplings suggest that higher
order couplings are even smaller, and are well-approximated by
combinations of pairwise couplings. Indirect couplings can of
course exist, for example when two distant positions are both
involved in the binding of a large substrate. Nevertheless, the small
direct couplings suggest that over the course of evolution, resistance
mutations at multiple positions can often occur sequentially, and do
not need to appear simultaneusly.

There are seven known resistance mutations involving active
site positions. Five were recovered here, with large predicted vitality
gains. Another, L28R, was not highly ranked (Table 2), but the
homologous mutant L28H was among the top predictions
(Supplementary Table S3). Out of the 20 positions redesigned,
half gave mean vitality gains, in the range 1–4 kcal/mol. Analyzing a
small cluster of illustrative positions, we observed many vitality
gains produced by TMP binding losses, often due to steric exclusion
of the ligand. DHF binding gains were less common and smaller,
around .5–1 kcal/mol in favorable cases, relative to the wildtype
binding. As expected, the wildtype sequence is well-optimized for
substrate binding, and there are not many variants that do better.

Combining pair hits from Table 3, we obtain quartets with very
large vitality gains. Thus, there is a large reservoir of mutations that
can be tapped to increase vitality. Notice, however, that because
wildtype TMP binding (nanomolar) is much stronger than DHF
binding (micromolar), and TMP concentrations in vivo (mM) are
much larger than DHF concentrations (μM), large vitality gains
(around six log units, or 8 kcal/mol) are needed to reverse the
binding preference and fully reestablish enzyme function. Notice

also that many of the vitality gains are due to TMP exclusion.
However, once TMP binding has been reduced to a level that is
below DHF binding, further losses may not impact the actual
bacterial fitness. Thus, vitality gains much greater than six log
units are probably not useful in practice.

In conclusion, we have proposed a new, computational method to
predict a simple class of resistance mutations. For DHFR, we have
recovered most of the known active site resistance mutants and
predicted others. We used a powerful adaptive landscape flattening
and a hierarchical sampling of positions in the active site to overcome
the combinatorial complexity of the problem. The method can be
extended in several ways; for example, transition state binding could
be considered instead of substrate binding. While more experimental
validation is needed, we expect the method can already make
predictions and help guide experimental exploration of enzyme
fitness and resistance.
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TABLE 4 Top variants from quartet design of positions 23–28–29–31.

Seq ΔGVit ΔGDHF
Bind ΔGTMP

Bind ΔGapo
Fold

IHKQ −9.4 (−.2) −2.5 (.4) 6.9 (.6) 3.0 (−.7)

IHSQ −9.2 (−.5) −2.1 (.3) 7.1 (.8) 3.3 (−.6)

IHTQ −9.0 (−.1) −2.0 (.3) 7.0 (.4) 2.9 (−.4)

IHRC −9.0 (−1.0) −3.8 (.0) 5.2 (1.1) 2.7 (−.4)

IHRQ −8.9 (−.7) −2.9 (.0) 6.0 (.6) 4.0 (.1)

IHHQ −8.8 (.2) −1.6 (1.4) 7.2 (1.1) 3.8 (−.6)

IHHC −8.8 (−.1) −3.7 (.2) 5.1 (.2) 3.8 (.1)

IHAQ −8.8 (−.7) −1.9 (.6) 6.9 (1.3) 2.0 (−1.0)

IHKS −8.7 (−.2) −4.0 (.4) 4.7 (.6) 3.8 (−.2)

IHHA −8.6 (−.1) −4.3 (.1) 4.3 (.2) 3.5 (−.1)

Top vitalities, with DHF, and TMP, binding free energies and apo-protein folding free energies (kcal/mol). Couplings in parentheses. Variants with WYF, at position 28 omitted.
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