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Abstract

Humans can successfully correct deviations of movements without conscious detection of such

deviations,  suggesting  limited  awareness  of  movement  details.  We  ask  whether  such  limited

awareness  impairs  confidence  (metacognition).  We  recorded  functional  magnetic  resonance

imaging data while 31 human female and male participants detected cursor deviations during a

visuomotor reaching task and rated their confidence retrospectively.  We show that participants

monitor a summary statistic  of  the unfolding visual  feedback (the peak cursor error)  to  detect

visuomotor deviations and adjust their confidence ratings, even when they report being unaware of

a deviation. Crucially, confidence ratings were as metacognitively efficient for aware and unaware

deviations. At the neural level, activity in the ventral striatum tracks high confidence, whereas a

broad network encodes cursor error but not confidence. These findings challenge the notion of

limited conscious action monitoring and uncover how humans monitor their movements as they

unfold, even when unaware of ongoing deviations.

34

36

38

40

42

44

46

4



Statement of relevance

We are unaware of the small corrections we apply to our movements as long as our goals are

achieved. Here, although we replicate the finding that participants deny perceiving small deviations

that they correct, we show that their confidence reliably reflects the presence or absence of a

deviation.  This  observation  shows  that  they  can  metacognitively  monitor  the  presence  of  a

deviation, even when they deny perceiving it. We also describe the hemodynamic correlates of

confidence ratings. Our study questions the extent to which humans are unaware of the details of

their movements and describes a plausible mechanism for metacognition in a visuomotor task,

along with its neural correlates and has important implications for the construction of the sense of

self.
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Introduction

Whether reaching for popcorn while viewing a movie or biking while enjoying the scenery, humans

rely on reciprocal intricate connections between vision and motor processing to perform efficient

behavior.  Such visuomotor loops seem to occur mostly in the absence of awareness.  Indeed,

seminal work from (Fourneret & Jeannerod, 1998) showed that participants are unaware of their

true hand position under imposed visuomotor deviations, although they appropriately correct their

movement trajectories. Humans also neglect small spatial incongruences in feedback about their

own movements (Farrer et al.,  2008) and can reach targets that they cannot consciously report

(Binsted et al.,  2007) or that are displaced without being noticed (Goodale et al.,  1986). These

findings support the notion that participants show limited awareness of the details of an ongoing

movement,  as long as their  goal  is achieved (Blakemore et  al.,  2002;  Custers & Aarts,  2010;

Gaveau et al., 2014; Tsay et al., 2020).

Rather than awareness of movement details, other studies tested whether humans can monitor the

accuracy of decisions based on movement details (Sinanaj et al.,  2015; Arbuzova et al., 2020;

Charles  et  al.,  2020;  Locke  et  al.,  2020).  This  ability  to  monitor  (and  control)  one’s  internal

processes is referred to as  metacognition (Flavell,  1979; Koriat, 2006). A standard measure of

metacognition in humans is to ask them to make a decision (about a stimulus or an action) and

subsequently rate their confidence in this decision (Rahnev et al., 2020). Together, these two lines

of research suggest that, although humans have limited awareness of their movement details, they

can metacognitively monitor decisions about these movements’ details. As the discrimination tasks

used  previously  (Arbuzova  et  al.,  2020;  Charles  et  al.,  2020;  Locke  et  al.,  2020)  were  not

specifically designed to contrast trials with and without awareness, it remains unknown whether

awareness is necessary for metacognitive monitoring during motor control.

Indeed, during perceptual decision-making, participants are better at using perceptual information

to scale their confidence about the presence of a stimulus than about the absence of a stimulus,

showing that metacognitive  efficiency is  impaired when perceptual information is insufficient  to

reach awareness (Kanai  et  al.,  2010;   Meuwese et  al.,  2014;  Mazor  et  al.,  2020).  It  remains

unresolved  whether  awareness  has  a  similar  effect  on  metacognitive  efficiency  in  visuomotor

decisions. In a previous study on metacognition of movement with a visuomotor  detection task,

participants  reported  being  aware  of  only  some  of  the  experimental  deviations  in  the  visual
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feedback of their movements. Individual differences in metacognitive efficiency were associated

with variability in brain gray matter volume in prefrontal cortex, insular, and visual areas (Sinanaj et

al.,  2015).  However,  the  degree to  which metacognitive  efficiency  is  related  to  awareness of

visuomotor  deviation  and to  specific  movement  parameters,  as  well  as  their  functional  neural

underpinning, were not examined in our first study.

Here, we sought to explain how confidence is computed in the presence or absence of reported

awareness  – measured using introspective subjective reports (Mudrik & Deouell, 2022) – of a

visuomotor deviation and unveil brain regions mediating this process using functional magnetic

resonance  imaging  (fMRI)  data.  We  could  thus  determine  how  visual  information  about

participants’ movements was integrated into their confidence ratings, while dissociating trials for

which they reported being aware of the deviation from those for which they reported not being

aware of it. Finally, we identified brain regions whose activity correlated with confidence, detection

response, and monitoring of performance during a visuomotor task.
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Method

Participants

We recruited 32 healthy right-handed participants based on convenience sampling. One participant did not

complete the experimental task, therefore, the final sample included 31 participants of either sex  (age: 26

years ± 4.7). Participants gave written informed consent prior to the experiment and received 20 Swiss

francs  per  hour  as  compensation.  They  had  normal  or  corrected-to-normal  vision  and  reported  no

neurological or psychiatric disorder. The study was approved by the Ethics Committee of the University of

Geneva and University Hospitals of Geneva (CER:11-214/NAC 11-077). All participants read and signed an

informed consent form, and were screened for contraindications to MRI with a standard safety questionnaire.

Experimental procedure

We asked participants to perform a visuomotor reaching task  (Fourneret & Jeannerod, 1998; Farrer et al.,

2008). After a short preparation period (white triangle became red, duration 1-2 seconds, jittered) participants

had to reach a centrally-located target on the screen with a cursor moving at constant speed in a direction

controlled  by  the  joystick  (Figure  1A).  The  experimental  manipulation  (79%  of  the  trials)  consisted  in

introducing deviations in the mapping between the joystick and the cursor direction: the cursor direction was

deviated  by  a  certain  deviation  angle,  positive  for  right  (clockwise)  deviations  and  negative  for  left

(anticlockwise) deviations. These deviations were gradually applied (0.3 s ramp), starting after participants

reached a fixed distance from the starting point corresponding to 13% of the vertical distance between the

initial cursor error and the final target. Participants were informed that these externally originating deviations

would not occur all the time, however, when they occurred, participants had to correct for these deviations

using the joystick in order to reach the target. After reaching the target, participants reported whether they

noticed any externally originating deviations of their trajectory (”yes” detection responses) or whether they

did not (“no” responses), and subsequently rated their confidence in their own judgment on a scale ranging

from 1 = not certain to 5 = completely certain (Figure 1A). Participants did not receive feedback about the

accuracy  of  either  detection,  or  confidence  judgments.  We  encouraged  participants  to  use  the  whole

confidence scale. Participants selected “yes” or “no” responses as well as confidence ratings through joystick

handle movements on the right and left, respectively, then pressing a button on the joystick.

We  asked  participants  to  perform  a  training  run  outside  the  scanner,  consisting  of  30  non-deviated

trajectories  to  familiarize  them  with  the  joystick  and  experimental  environment.  For  each  experimental

session, we ran an adaptive staircase procedure that made the task more difficult  after two consecutive

correct responses by decreasing the next deviation by 2.64°, but made it easier after an incorrect response

by increasing the next  deviation by 1°.  After the training session,  participants entered the scanner and

performed a ‘threshold’ session of 80 trials in order to stabilize the staircase procedure. After the threshold
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session, participants completed two experimental runs. A structural T1 image was acquired between these

two runs. Overall, there were 208 trials (21% without experimental deviations). Each trial lasted 11.5 s and

was followed by a blank screen with a jittered duration (3 to 6 s).

Behavioral analyses

We defined a trial with an experimental deviation that was reported as such by participants as a hit and as a

miss in case it was not reported. A trial was a correct rejection when there was no deviation and participants

correctly reported no deviation and a false alarm if participants reported a deviation. We grouped hits and

false alarms into “yes” responses and misses and correct rejections into “no” responses. We computed the

sensitivity d’ and criterion c using signal detection theory. Cursor and joystick positions were defined every

10 ms.  Cursor error was defined as the horizontal distance between the cursor position and the midline

between the starting point (triangle at a lower central position on the screen) and the target (top central

position). For each trial, we defined peak cursor error as the peak value of this cursor error over time. Onset

error (onset err.) was defined as the cursor error at the onset of the deviation. We also defined the average

position (avg. pos.) as the absolute value of the average position of the cursor with respect to the sagittal line

(the latter can be negative) as well as the average cursor error (avg. err.) as the average of the distance

between the cursor and midline (always positive). A trial with a large deviation to the right followed by a large

deviation to the left would thus have an average position close to zero but a high average cursor error.

To build two-dimensional histograms of the cursor trajectories (Figure 1B), we mirrored trajectories when the

deviation was towards the right (only for hits and misses). We then computed two-dimensional histograms of

the position of the cursor in all trials of a signal detection theory category (hit, miss, correct rejection and

false alarms) and normalized the resulting histograms by the number of trials in that category. Finally, we

averaged across participants. Since the cursor at time k (c_k in the complex plane) can be defined knowing

cursor position at time k-1 and the angle of the joystick handle at time k (α_k)

ck=c k −1+ρ exp ( j (α k+δ ) )

with c_0 = 0 + j*0, ρ a small real constant defining the speed and δ the angle of the experimental deviation,

we  could  reconstruct  the  trajectories  of  the  cursor,  had  there  not  been  any  deviation  and  construct

histograms as described above for Figure 1B: 

ĉk=ĉ k −1+ρ exp ( j (α k ))

For statistics, we defined Binomial link mixed-effects models to analyze detection responses and cumulative

link  mixed-effects  models  for  confidence  ratings  using  the  ordinal  package  (Christensen,  2019)  in  R.

Inclusion  of  random effects  was  guided  by  regression  model  selection  based on  Bayesian  information

criterion and led to the inclusion of all factors and interactions as random effects. Since most models are
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multivariate,  we  ensured  that  variance  inflation  factors  that  measure  how  much  the  variance  of  one

coefficient  is  increased because  of  collinearity  were  under  3,  indicated  weak  collinearity  that  does  not

warrant any correction (Belsey et al., 1980). All statistical tests were two-tailed. For Figure 1E and 1F, we

performed similar analyses but including a factor either for cursor or for joystick position. As these factors are

defined every 10 ms time point, we fitted one mixed-effect model per time point and corrected p-values for

multiple  comparisons using the false-discovery rate.  To assess  the amount  of  information in  the visual

feedback  (e.g.  the  visual  trajectory  displayed as  subjects  performed the visuomotor  reaching task),  we

performed receiving operator characteristics analyses computing the true- and false-positive rate for a range

of criterion values, from 0 to its maximum by steps of 0.01. We then searched for the criterion leading to the

same false-positive (false-alarm) rate as found in the data and compared the corresponding true-positive rate

(hit rate) to the one observed in the data.

For  Figure  2D,  we  binned  the  peak  cursor  error  into  five  quantiles  computed  independently  for  each

participant but for all signal detection theory categories together. For Figure 2E, we plotted model predictions

of the cumulative link model’s fixed effects for each signal detection theory category and increasing values of

peak cursor error. To estimate metacognitive efficiency, or to what extent the information available to the

detection decision was used to scale their confidence, we used the M-ratio between meta-d’ (Maniscalco &

Lau, 2014) and d’ estimated in a response-specific version of the HMeta-d’ toolbox (Fleming, 2017). These

meta-d’ and d’ allow to compute the M-Ratio: a ratio between meta-d’ and d’, which quantifies metacognitive

efficiency, or how well information from first-order performance informs the metacognitive process. We used

the  default  parameters  of  three  chains  of  10’000  samples  with  1000  burn  in samples  for  the  MCMC

procedures with no thinning. Visual inspection of MCMC and Rhat values well under 1.1 indicated good

convergence. Of note, as the d’ does not vary according to the response, differences in the M-Ratio are

solely driven by differences in the meta-d’.

fMRI data collection, preprocessing and analyses

We acquired functional MRI images with a 3T whole-body scanner (Trio TIM, Siemens, Germany) with a 12-

channel head-coil. Functional images were acquired with a susceptibility weighted EPI sequence with the

following parameters: TR/TE = 2100/30 ms, flip angle = 80 degrees, PAT factor = 2, 64 × 64 voxel, 3.2 × 3.2 

mm, 36 slices, 3.2 mm slice thickness, 20% slice gap. We acquired structural images using a T1-weighted

3D sequence using the following parameters: MPRAGE, TR/TI/TE = 1900/900/2.32 ms, flip angle = 9°, voxel

dimensions: 0.9 mm isotropic, 256 × 256 × 192 voxels. We presented task stimuli on a back-projection screen

inside the scanner bore using an LCD projector (CP-SX1350, Hitachi, Japan). We recorded responses via

buttons placed on the joystick used for the visuomotor reaching task (HH-JOY-4, Current Designs Inc., USA
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We used the SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/) for statistical analyses of functional data with

a standard pipeline. We first corrected for head movements between scans by an affine registration and

realignment to the mean of all images. The anatomical image was spatially normalized on the T1 template.

The  functional  images were also normalized to  the  EPI  template,  which were thereby transformed into

standard stereotaxic  space and resampled with  a 3 × 3 × 3 mm voxel  size.  The normalized images were

spatially  smoothed  using  an  8 mm full-width  at  half-maximum (FWHM)  Gaussian  kernel.  We  used  the

general linear model (GLM) framework implemented in SPM to analyze our data. We modeled the convolved

standard hemodynamic response function with a delta (or “stick”) function at the onset of the preparatory

phase (appearance of white triangle – PREP regressor),  at the onset of the joystick movement (start  of

movement – MOV regressor), and at the onset of the response screen (“yes” vs. “no”, RESP regressor). To

examine  brain  regions  whose  activity  fluctuated  with  trial-by-trial  confidence,  we  took  a  parametric

modulation approach (e.g. Fleming et al., 2018; Pereira et al., 2020): the “MOV” regressor event regressors

were modulated by four additional parametric factors (Wood et al., 2008) representing in order, the trial-by-

trial values of the angle of the deviation, of the detection response “yes” vs. “no”, of the peak cursor error,

and of the confidence rating, leading to the following regression equation:

BOLD ~ deviation_angle + detection_response + peak_cursor_error + confidence

However, we also replicated our results using four single regressor models (BOLD ~ deviation_angle, BOLD

~ detection_response, BOLD ~ peak_cursor_error, BOLD ~ confidence). To account for head motion-related

variance,  we included the six  differential  parameters derived from the realignment  process [x,  y,  and z

translations (in millimeters) plus pitch, roll, and yaw rotations] as regressors of no interest. Low-frequency

signal drifts were filtered using a cut-off period of 128 s. Global scaling was applied, with each fMRI value

rescaled to a percentage value of the average whole-brain signal for that scan. 

Contrast  images from one-sample  t-tests  corresponding  to  each  event  (PREP,  MOV,  RESP)  and  their

parametric modulators,  were fed into a second-level  random-effect  analysis.  All  second-level  results are

reported at  a significance-level  of  p < 0.05 using cluster-extent family-wise error  (FWE) correction with a

voxel-height threshold of p < 0.001. In Figure 3, activations are displayed at a cluster-size threshold of 30

voxels, using MRIcroGL (http://www.cabiatl.com/mricrogl/). Data and analysis scripts from this study will be

made freely available upon acceptance.
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Results

Participants correct for deviations regardless of detection

For both detected (hits) and undetected (misses) deviations, all trajectories correctly ended on the

target  (Figure  1B)  showing  that  participants  always  adjusted  to  the  experimentally  induced

deviations. Reconstructions of what trajectories would be without deviation for hits and misses

confirmed that participants would have clearly missed the target, even for miss trials (Figure 1C),

showing that they corrected for deviations even when not reporting them. We also assessed the

relation between the lateral angle of the joystick (i.e. corrective motor command) and the cursor

position (i.e.  visual  feedback).  For  this,  we cross-correlated cursor  position  and joystick  angle

vectors across every trial, averaged over trials and participants, and observed that the strongest

correlation occurred with a lag of -0.45 s ± 0.01 s (mean ± 95% confidence interval; Figure 1D).

Furthermore, this correlation was significant for detected (t(30) = -41.30, p < 0.001) and undetected

(t(30) = -36.06, p < 0.001) deviations, showing that participants corrected deviations regardless of

whether they reported them or not.

Detection responses rely on cursor error

A one-up/two-down  staircase  procedure  was  used  throughout  the  experiment,  resulting  in  an

average deviation angle of 20.59° ± 2.03 overall. The detection performance was 67.71 % ± 1.74

correctly reported deviations (d’ = 1.69 ± 0.14), indicating that participants’ performance was well

above chance level. Participants were conservative in their response (c = 0.37 ± 0.08, t(30) = 4.63;

p < 0.001). For deviated trials, neither small variations in the imposed deviation angle due to the

staircase procedure (t(5160) = 0.91, p = 0.36), nor the index of the trial (t(5160) = -0.11; p = 0.91)

had an effect on detection responses. We therefore considered perceptual difficulty to be constant

over time, which is standard in perceptual metacognition (e.g. Fleming et al., 2010). 

When analyzing cursor  position  over  time,  we  computed  the  horizontal  distance between the

cursor and the midline as an (unsigned) measure of cursor error (Figure 1E). We then regressed

detection responses using cursor error and trial type (deviated vs. non-deviated) as fixed effects

(generalized mixed effect models for every time point). We found a significant interaction effect

during the first 0.85 s of the movement (p < 0.05; corrected), indicating that during this time, the

relation between detection responses and cursor error depended on whether the trial was actually

deviated or not. Furthermore, there was a main effect of cursor error without an interaction in a
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later time window up to 1.63 s after movement onset (p < 0.05) and a main effect of trial type

during the whole movement (p < 0.001), suggesting that during this part of the movement, cursor

error had similar influence on detection responses regardless of whether the trial was deviated or

not, with an additive bias due to trial type. We verified that cursor error also had an effect on

detection responses in deviated trials (p < 0.05 between 0.49 and 1.94 s) and for undeviated trials

(p < 0.05 between 0 and 1.61 s), confirming that the effect of cursor error on detection responses

was genuine. 

Figure 1. Experimental paradigm and detection responses.  A) Participants started every trial by using
the joystick to bring a visible cursor (red triangle) to a target (circle) on top of the screen. A deviation was
applied to the cursor in 79% of the trials, titrated so as to reach 71% of detection accuracy. Titrated detection
rates can be found in Figure 1-1. After reaching the target, participants reported whether the cursor was
deviated or not (detection) and how confident they were about their answer. B) Trajectories of the cursor for
correct rejections (green), false alarms (black), hits (blue) and misses (red). Note that deviations could be
towards the left  or the right,  but  right  deviation trials are mirrored and pooled with left  trials for display
purposes.  C)  Generated  trajectories  obtained  by  recomputing  the  cursor  position  had  there  been  no
deviation for hits (blue) and misses (red).  D) Cross-correlation between cursor error and joystick lateral
position. The vertical arrow indicates the time lag at which cross-correlation is strongest. E) Cursor error over
time for different signal detection theory categories: hits (blue), misses (red), correct rejections (green) and
false alarms (black). The significant (p < 0.05; FDR corrected) main effects of cursor error (respectively, of
deviation) over time is depicted by the purple (respectively, grey) line; and the significant interaction effects
between deviated trials and cursor error is depicted by the cyan line. Model comparison, peak cursor error
distributions and discriminability analyses can be found in Figures 1-2, 1-3, 1-4 and 1-5. F) Idem, for joystick
correction over time. In all panels, shaded areas indicate 95% confidence intervals.
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Our results are consistent with a threshold operation on the visual feedback, with higher cursor

error  leading  to  deviation  detection  (hit  and  false-alarms;  Figure  1E).  Therefore,  detection

responses  should  be  best  explained  by  the  peak  cursor  error  over  the  time  course  of  the

movement (i.e. deviations are detected if the cursor error reaches a threshold value at some point

during the trial). Indeed, this model had a better Bayesian Information Criterion (BIC) than models

with cursor error sampled at single time points (Figure 1-1A), as well as other measures of visual

feedback (Figure 1-1B).  Similarly,  models based on putative motor  or  proprioceptive feedback

yielded worse BIC (Figure 1-1C). The two main effects in this model were significant (peak cursor

error: t(6403) = 5.31; p < 0.001;  trial type: t(6403) = 7.47; p < 0.001) and there was no significant

interaction (t(6403) = -1.32; p = 0.19), confirming that the occurrence of deviations did not change

how visual information (quantified by peak cursor error) is integrated into detection responses, but

nevertheless influenced conscious detection (deviation was more frequently reported on deviated

than non-deviated trials overall).  Nonetheless, the information carried by the peak cursor error

would not have been sufficient for participants to have such performance (Figures 1-2 and 1-3),

showing that they must have relied on additional signals, whether those were based on visual,

motor or proprioceptive information. 

Confidence scales with peak cursor error

We then examined confidence ratings across signal detection theory categories (Figure 2A). To

understand how visual information is integrated into confidence ratings, we regressed confidence

using  various  summary  statistics  of  cursor  error  over  time  (Figure  2B).  Our  baseline  model

investigated the relation between detection responses and confidence, and thus included only a

predictor for trial type (deviated vs. non-deviated), as well as for detection response (to model the

fact that confidence is conditioned to the response; interaction effect: z = 8.98, p < 0.001). We then

determined the best model in terms of BIC, which was obtained by adding a predictor for peak

cursor error over time (peak err.). This model showed a lower BIC compared to the baseline model

with a single predictor for detection response (Figure 2C; ΔBIC = -313.80; p < 0.001). Alternative

models, such as including the cursor error at the onset of the deviation (onset err.), the average

(signed) cursor position (avg. pos.), or the average of the cursor error (avg. err.), yielded lower

improvements in BIC.

Using  the  winning  model,  we  found  an  interaction  between  peak  cursor  error  and  detection

responses (Figure 2D-E; z = 4.69, p < 0.001), showing that confidence ratings were influenced by
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the peak cursor error conditioned to the detection response (i.e. when the peak cursor error is high,

confidence in detected deviations is high but confidence in undetected deviations is low). There

was also an interaction between trial type and peak cursor error (z = 4.20, p < 0.001) and between

detection response and trial type (z = 7.087, p < 0.001) but no triple interaction between detection

response,  trial  type,  and  peak  cursor  error  (z  =  -1.38,  p  =  0.17).  These  results  show  that

participants  rated  their  confidence  by  conditioning  the  peak  cursor  error  to  their  conscious

detection, with a confidence bias for non-deviated trials that depended on their response (e.g.

more confident for correct rejections versus misses; less confident for false alarms vs. hits). 

To better understand the relation between confidence and peak cursor error, we fitted the data

independently for deviated and non-deviated trials. We confirmed the interaction of response and

peak cursor error for both trial types (deviated: z = 5.77, p < 0.001; non-deviated: z = 5.76, p <

0.001).  Importantly,  and  contrary  to  the  hypothesis  of  limited  monitoring,  we  also  found  that

confidence was significantly related to cursor error size for all trial categories (p < 0.01 for hits,

misses,  correct  rejections,  and  false  alarms).  Together,  these  results  show  that  confidence

increases with peak cursor error when participants report  a deviation but decreases with peak

cursor error when participants do not report a deviation, independently of whether the deviation

was actually due to an experimental manipulation (e.g. during misses) or to their own intrinsic

visuomotor variability (e.g. during correct rejections) (Figure 2D-E). 
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Figure 2. Confidence ratings and metacognition. A) Distribution of confidence ratings for hits (blue), misses (red) and
correct rejections (green). Each black dot represents the data of one participant. B) Schematic depiction of the four
regressors used for the four confidence regression models tested: peak err.: peak cursor error; onset. err: cursor error
at the onset of the deviation; avg. pos.: cursor position (signed) averaged along the trajectory; avg. err.: cursor error
(unsigned) averaged along the trajectory. C)  Improvement in BIC (compared to a model with no cursor information).
Note that the peak err. model shows the largest improvement (*). Additional model comparisons can be found in Figure
2-1. D) Confidence for different percentiles of peak cursor error (peak err.) for hits (blue), misses (red) and correct
rejections (green). E) Fixed effects predictions of confidence for comparable levels of peak error (normalized) for hits
(blue),  misses  (red),  correct  rejections  (green)  and  false-alarms  (black).  F)  Hierarchical  Bayesian  estimation  of
response-specific metacognitive efficiency using the M-Ratio. Left: posterior probability for “yes” (blue) and “no”
(red) responses Vertical lines show the mean M-Ratio and horizontal bars show the 95% confidence interval. Right:
Single participant values of the M-Ratio. In all panels, shaded areas and whiskers indicate 95% confidence intervals.

Preserved metacognitive efficiency for unreported deviations

Finally, to confirm that participants reliably monitored their visuomotor actions, we estimated their

(metacognitive) efficiency by measuring to what extent the information available to the detection

decision was used to scale their confidence. For this, we fitted a response-specific hierarchical

Bayesian model based on signal detection theory (Fleming, 2017) which estimates metacognitive

efficiency for "yes" and "no" responses while controlling for task performance (this model used all

"yes" and "no" trials in the fitting procedure).  Results from this analysis revealed a metacognitive

efficiency of 0.96 for the “no” responses (correct rejections and misses), indicating that participants

efficiently  used  all  information  available  for  the  decision  to  adjust  their  confidence  ratings.
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Metacognitive efficiency for “Yes” responses was similar (0.99; Figure 2F). These results show that

metacognitive efficiency was optimal in the sense that confidence ratings were as informative as

what  would  be  expected  based  on  detection  performance,  and  thus  confirm  that  reporting

deviations does not lead to better metacognitive efficiency.

Brain correlates of visuomotor performance

To investigate the neural substrate of the cognitive processes described above, we used trial-by-

trial  measures  (confidence,  response,  peak  cursor  error,  and  deviation  angle)  as  parametric

regressors to model the fMRI BOLD signal during each movement. These regressors showed only

limited correlation among themselves (maximal absolute mean R = 0.41; Figure 3-1). First, we

found positive relationships between the BOLD signal and detection responses in the right primary

visual cortex,  meaning that activity increases when participants detected the deviations (Figure

3A; Table 1). We found no significant negative relationships. We also found that larger peak cursor

error yielded widespread activity in visual, motor, and subthalamic regions, as well as in the left

insula, cingulate, and lateral prefrontal cortex (right inferior frontal gyrus and anterior prefrontal

cortex (aPFC); Figure 3B; Table 1). Smaller cursor error yielded no differential activity beyond the

statistical threshold and we did not find any neural correlate of deviation angle.

Figure 3. fMRI results.  Statistical maps of parametric modulation contrast for A) explicit detection (“yes”
responses), B) high peak cursor error, C) high confidence and D) low confidence. Note that colors represent
different  parametric  regressors  and are independent  from Figure 1.  Results  are  displayed at  p  < 0.001
uncorrected,  but  all  clusters  displayed were significant  after  FWE correction (p < 0.05).  aPFC:  anterior
prefrontal  cortex;  SMA: supplementary motor  area;  dACC: dorsal  anterior  cingulate cortex.  IFG: inferior
frontal gyrus. See text Tables 1 and 2 for other brain activations. Correlation between regressors  can be
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found in Figure 3-1. Figure 3-2 shows beta values averaged across participants for each level of confidence
are shown for each ventral striatum using MarsBar (Brett et al., 2002)..396
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Table 1. Summary of whole brain regions’ activation for response and peak cursor error

Brain region MNI Coordinates

mm (xyz)

Cluster

extent

(voxels)

Significance

“Yes” responses

Right primary visual cortex 9 -85 -8 602 T= 6.64, pFWEc < 0.001

High peak cursor error

Left primary motor cortex -18 -22 64 3563 T= 8.18, pFWEc < 0.001

Right inferior occipital gyrus 45 -67 1 927 T= 6.17, pFWEc < 0.001

Left anterior insula -30 20 7 632 T= 5.33, pFWEc < 0.001

Right subthalamic region 6 -19 -5 285 T= 5.26, pFWEc < 0.001

Right lateral anterior prefrontal cortex 33 38 22 229 T= 5.13, pFWEc < 0.001

Right mid-cingulate gyrus 15 -19 37 106 T= 4.98, pFWEc = 0.028

Right inferior frontal gyrus 48 29 1 279 T= 4.47, pFWEc < 0.001

Left calcarine cortex -12 -85 -8 147 T= 4.41, pFWEc = 0.008

Left superior occipital gyrus -21 -79 28 108 T= 4.16, pFWEc = 0.026

No surviving voxels for the contrasts: Low peak error, No responses; pFWEc  = p corrected for multiple

comparisons at the cluster level

Brain correlates of confidence

We then turned to confidence and found positive relationships with the BOLD signal, meaning that

higher confidence was related to increased bilateral ventral striatum activity, extending to the left

amygdala (Figure 3C; Table 2). Conversely, we found negative relationships, meaning that lower

confidence was associated with increased activity in the left  supplementary motor area (SMA),

extending to the dorsal anterior cingulate cortex (dACC), together with the left inferior and middle

frontal gyri, as well as the right posterior parietal cortex (Figure 3D; Table 2).
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Table 2. Summary of whole brain regions’ activation for confidence

Brain region MNI Coordinates

mm (xyz)

Cluster

extent

(voxels)

Significance

High confidence

Right ventral striatum 12 5 -11 103 T=5.85, pFWEc = 0.040

Left amygdala -21

 

-1 -17 96 T= 5.80, pFWEc =0.049

● Extending in the ventral striatum -15 8 -14 T=4.69

Low confidence

Left dACC/SMA -6

 

14 49 221 T=5.33, pFWEc = 0.002

Left inferior frontal gyrus -51

 

20 4 119 T=4.97, pFWEc = 0.024

Left middle frontal gyrus -33 8 37 134 T=4.51, pFWEc = 0.016

Right posterior parietal cortex/angular gyrus 36 -49 40 403 T=5.43, pFWEc < 0.001

Abbreviations: dACC = dorsal anterior cingulate cortex; SMA = supplementary motor area
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Discussion

We studied the behavioral  and neural  correlates of  detection and confidence in  a  visuomotor

reaching task with perturbations. We found that while participants often reported not being aware

of  deviations  applied  experimentally  to  the  trajectory  of  their  movement,  their  metacognitive

efficiency was not impaired by this reported lack of awareness. Thus, they adjusted confidence

judgments  to  the  accuracy  of  their  detection  responses  even  when  reporting  no  deviations.

Furthermore,  regression model selection revealed that  regardless of whether participants were

aware of the deviation or not, their judgment relied on a summary of visual feedback (i.e. peak

cursor error),  whose magnitude correlated with activity  in a specific visuomotor brain network.

Finally, we uncovered neural activity patterns associated with confidence, with high confidence

engaging subcortical areas in the ventral striatum, and low confidence engaging a cortical network

in medial and lateral frontal cortex as well as posterior parietal cortex. 

In terms of detection responses, we found that participants tended to report an experimentally

induced deviation when the visible cursor error was high, and conversely did not report one when

the cursor error  was low. We interpret  these detection  reports  as awareness of  the deviation

although as with any measure based on introspection, it is conceivable that participants had partial

awareness while reporting being unaware (Mudrik & Deouell, 2022). These findings are consistent

with awareness of a deviation occurring when cursor error exceeds a threshold: when the peak

cursor error  is  higher than this  threshold,  a deviation is  reported.  Other  regression models of

detection responses or confidence could not fit the data as well, whether they were based on other

measures of visual feedback, or on putative proprioceptive signals (indexed by joystick position).

Still, a part of the variance of participants’ performance was not explained by the peak cursor error,

suggesting that participants use other dimensions of the visual feedback not captured by the peak

cursor error,  or  other motor or  proprioceptive signals.  This  idea is in line with previous works

showing that participants at least partially rely on additional information, possibly stemming from

the  proprioceptive  inputs  (Farrer  et  al.,  2008)  and/or  the  comparison  of  the  perceived  cursor

position relative to a self-generated prediction, based on an efferent copy of their motor command

(Wolpert et al.,  1995). The later assumption agrees well with past research on motor control and

agency (Haggard, 2017). As the contribution of these different signals is still unclear in the context

of  motor control  (e.g.  Kasuga et  al.,  2022),  future studies will  be required to disentangle their

contribution to deviation detection and its associated confidence. 
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To  further  assess  how  well  participants  monitored  their  movements,  we  examined  their

metacognitive efficiency when they reported being unaware of deviations that they nonetheless

successfully  corrected.  Remarkably,  metacognitive  efficiency  was  similar  when  participants

reported deviations and when they did not, suggesting that even if the visuomotor information was

not enough to report a deviation, it could still be harnessed to rate confidence. Moreover, we found

that confidence increased with peak cursor error when participants reported the deviation, and

instead decreased with peak cursor  error  when participants  did  not  report  the  deviation.  This

behavior reveals a judicious use of visuomotor signals to guide confidence,  irrespective of the

reported  awareness  of  the  deviation.  We  therefore  surmise  that  participants  were  able  to

consciously  monitor  their  unfolding  movements  by  having  access  to  at  least  a  summary  of

visuomotor cues that  guided their  explicit  detection and confidence responses,  similar  to what

could occur  for  internally  accumulated sensory  signals  (Pereira et  al.,  2021).  The factors that

constitute  the  evidence  used  to  compute  confidence  are  still  unknown.  Since  metacognitive

efficiency was as good as expected considering detection performance, it  is possible that they

directly derive from the decisional signal used for detection responses. Therefore, our findings

question  the  notion  that  small  deviations  are  corrected  mostly  in  the  absence  of  awareness

(Blakemore & Frith, 2003; Custers & Aarts, 2010): people might be unaware of some deviations

that they correct, but they still have a calibrated ‘feel’ of their performance. 

Our  finding  of  preserved  metacognition  for  “no”  responses  thus  sharply  contrasts  with  visual

metacognition studies describing lower metacognition for putatively unaware stimuli (Kanai et al.,

2010;  Mazor  et  al.,  2020;  Pereira  et  al.,  2021).  Considering  that  the  factors  responsible  for

metacognitive inefficiency are still unclear (Shekhar & Rahnev, 2021), we can only speculate on

why metacognitive performance does not decrease for unaware deviations in our task. Confidence

for unaware visual stimuli was proposed to depend on monitoring attention instead of perceptual

evidence (Kanai et al., 2010; Mazor et al., 2020). According to this view, confidence for aware and

unaware  stimuli  might  involve  different  mechanisms.  In  other  studies,  reduced  metacognitive

efficiency for unaware stimuli was accounted for by a single mechanism (Kellij et al., 2021; Pereira

et al., 2021), based on the fact that the variances for noise and stimuli differ. It is therefore possible

that, in our study, equal variance between the noise and the signal allowed metacognition to be

preserved  for  “no”  responses.  Indeed,  the  absence  of  response-specific  differences  in

metacognitive  sensitivity  suggests  that  neither  unequal  variance  nor  response-specific
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metacognition  are  good  candidates  to  explain  our  data.  It  is  therefore  possible  that  unequal

variance  occurs  only  in  perceptual  metacognition  studies  with  perceptual  uncertainty  on  the

stimulus  (which are  either  weak or  embedded in  noise).  In  our  study,  there  is  no perceptual

uncertainty on peak cursor error, it is simply smaller for unaware deviations, therefore not leading

to unequal variance nor lower metacognitive sensitivity for unaware deviations. 

Our  fMRI  results  showed  extended  activations  associated  with  increasing  peak  cursor  error,

involving sensorimotor regions, as well  as occipital areas, anterior prefrontal and mid-cingulate

cortex, insula, inferior frontal gyrus, and subthalamic regions. These results suggest the existence

of widespread action-monitoring processes (Limanowski et al., 2017), possibly responsible for the

integration of visual and proprioceptive feedback signals with motor action planning. Interestingly,

the aPFC – including  the frontal pole and posterior regions of Brodmann area 46 (Neubert et al.,

2014)  – has been extensively linked to perceptual  metacognition in studies using voxel-based

morphometry (Fleming et  al.,  2010),  TMS (Rahnev et  al.,  2016)  or  patients  with  focal  lesions

(Fleming et al., 2014). In our study, activity in the aPFC was  modulated by the peak cursor error,

and not by the confidence regressor, suggesting that the aPFC might not be involved in confidence

per se but rather in monitoring the performance of actions. Further in line with our interpretation,

patients  with  prefrontal  lesions  reported fewer  deviations  than healthy  controls  despite  similar

corrective  behavior  in  a  task  similar  to  ours  (Slachevsky  et  al.,  2001).  In  sum,  our  finding of

increased aPFC activity reflecting cursor errors and not confidence pleads in favor of a role of the

aPFC for monitoring action performance rather than the accuracy of decisions. 

Finally, we found that low confidence was associated with higher activity in a network of medial

frontal cortex, left inferior and middle frontal gyri, and right posterior parietal cortex, providing novel

support  for  a  role  of  fronto-parietal  regions in  metacognitive processes via graded confidence

computation  (Hebart et al., 2016; Vaccaro & Fleming, 2018), extending here to the motor rather

than purely perceptual domain. Conversely, high confidence engaged the ventral striatum, again

corroborating fMRI findings in the perceptual domain (Hebart et al., 2016; Guggenmos et al., 2016;

Mazor et al.,  2020). Apart from its well-known involvement in reward-based learning  (Daniel &

Pollmann, 2014), the ventral striatum also computes pseudo-reward prediction errors – defined as

reward predictions errors related to the subjectively perceived progress in a given task, rather than

merely driven by external (e.g. monetary) reward (Westbrook et al., 2016). Our results therefore

dovetail  with a broader putative role of the ventral striatum for valuation information predicting
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reward (Schultz et al., 1992; Daniel & Pollmann, 2014), whereby in the absence of feedback, the

valuation information corresponds to confidence (Daniel & Pollmann, 2014). Taken together, these

findings support a key role of the ventral striatum in monitoring decisional signals for confidence

(Daniel & Pollmann, 2014; Hebart et al., 2016; Vaccaro & Fleming, 2018) that can be used to adapt

subsequent behavior even in absence of external feedback (Guggenmos et al., 2016). 

To conclude, our study sheds new light on both cognitive and neural mechanisms that underpin the

monitoring of visuomotor behavior: participants base their detection and confidence reports on at

least some summary statistic of visual feedback. We also map these monitoring and correcting

processes to activity in an extended brain network including the aPFC, calling for a revision of its

role in tracking confidence only. Importantly, although participants did report not being aware of

some deviations, their confidence ratings were still calibrated to their actual performance on a trial-

by-trail basis and guided by the same summary statistics as detection responses. These results

may offer a plausible explanation for a paradox: that humans perform corrective actions in the

absence of awareness but are good at attributing actions to themselves or to an external agent (de

Vignemont & Fourneret, 2004). We argue that even if participants are unaware of their corrections,

they can still  accurately report  their confidence through an efficient summary statistic of action

parameters.  They  only  become  aware  that  something  is  wrong  when  that  summary  statistic

exceeds  what  could  be  expected  from  their  own  intrinsic  motor  variability.  Elucidating  these

mechanisms bears important clinical implications as deficits in the awareness of action have been

linked to psychiatric diseases (Blakemore & Frith, 2003) such as schizophrenia (Frith et al., 2000;

Voss et al., 2010). Our methodology should catalyze future research in the visuomotor domain to

uncover metacognitive deficit in schizophrenia, or more generally, psychosis spectrum (Rouy et al.,

2021), and what is the underlying defective process. It will be important to examine whether these

clinical populations employ the same mechanisms to compute confidence as we describe here,

and if so, how deficits in such mechanisms relate to specific pathophysiologic dimensions (positive

i.e. psychotic and negative i.e. amotivational symptoms) and to particular brain substrates.
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Extended data

Figure 1-1
Staircase convergence.  Immediate detection rate estimated using a 10-trial running average excluding
catch trials for the 62 trials titration run (80 trials in total) in green and the main experiment in blue. All
participants had a minimum of  8 reversals  missing a deviation in trial  n-1 and detecting it  in  trial  n or
detecting a deviation in trial n-1 and missing it in trial n) during the titration run showing good convergence.
There are not differences between the number of reversals in the first (36.13 ± 1.45) and second run (35.45
± 1.46) of the main experiment (z = 0.41, p = 0.68).

Figure 1 – 2
Regression model comparison
Bayesian information criteria (BIC) difference of different models compared to a model with only trial type
(deviated or non deviated) as fixed effect.  The lower the BIC, the better the model.  A) BIC differences
compared to the baseline model with no cursor error for models using the cursor error (solid trace) or the
joystick correction (absolute value of the lateral position of the joystick; dashed line) at different times from
movement onset. The horizontal purple dashed shows the BIC difference when using the peak cursor error,
which is consistently lower. B) BIC differences for different measures of cursor position: peak err.: maximal
cursor  error;  onset.  err:  cursor  error  at  the  onset  of  the  deviation;  avg.  pos.:  cursor  position  (signed)
averaged along the trajectory; avg. err.: cursor error (unsigned) averaged along the trajectory. The asterisk
shows the best model (peak cursor error; peak err.) C)  BIC differences for different measures of joystick
position:  peak joy.:  peak joystick horizontal  position,  avg.  joy.:  joystick horizontal  position averaged the
trajectory,  peak joy. vel.: peak joystick horizontal velocity, avg. joy. vel.: joystick horizontal velocity averaged
the trajectory. The horizontal purple dashed line shows the BIC difference when using the peak cursor error
(peak err.), which is consistently lower.
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Figure 1 - 3
Distribution of maximal cursor error
A)  For  deviated  (light  blue)  and  non-deviated  (dashed  black)  trials  for  every  participant.  The  average
deviation angle (i.e. easiness of the task) obtained through the staircase procedure is displayed in the title of
each panel. Only participants who failed to reach a low average deviation angle showed highly separable
distributions (e.g. s13, s18, s42). B) Idem, but averaged across participants. Shaded area represents the
95% confidence interval.
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Figure 1 - 4
Receiving operating curve (ROC) analysis for detection.
A) To compare individual participants’ performances against the information contained in the maximal cursor
error, we estimated the ROC curve (black trace) by sliding the criterion along the horizontal axis in Figure 1 -
2 while computing true positive rate (estimated TPR) and false positive rate (estimated FPR). The dashed
black  trace  represents  the  theoretical  ROC  curve  for  random  performance  (i.e.  for  non-separable
distributions of  maximal  cursor  error  between deviated and non-deviated trials).  We then displayed the
actual performance from each participant in terms of TPR and FPR (red cross). If participants would rely only
on the maximal cursor error to detect deviations, we would expect their performance to be under (or close to)
the estimated ROC curve. This was the case only for a few participants (e.g. s30, s36, s40). These results
indicate that most participants used additional information to detect deviations. We obtained very similar
results using other indices (see Figure 2B) such as cursor error at deviation onset, averaged cursor position,
and averaged cursor error, suggesting that participants did not use another more integrative strategy either,
even  based  on  other  visual  cues  from  the  cursor.  B)  Across  participants,  this  theoretical  hit-rate,
corresponding to the theoretical performance that could be achieved using peak cursor error alone, was
much lower (th.; 42 % ± 4) than the observed hit-rate (obs.; 67% ± 2; t(30) = 5.16; p < 0.001. Similar results
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were obtained using other summary statistics of cursor error over time (Figure 2B), such as cursor error at
the onset of the deviation (onset err.), the average (signed) cursor position (avg. pos.), or the average of the
cursor error (avg. err.). These result suggest that participants could not have reached the observed detection
performance relying on the peak cursor error information alone. C) Between-participant correlation between
the estimated area under the ROC curve (AUROC) quantifying the information contained in the maximal
cursor error and the average deviation angle achieved by the staircase procedure. This relation shows that
the less good participants were at the task (high deviation angle), the more information they could use from
the maximal cursor error.

Figure 1 – 5. 
Receiving operating curve (ROC) analysis for confidence. A. Simulated AUROC (vertical axis) compared
to AUROCs in the data (horizontal axis) for yes (detected ; left) and no (undetected ; right) responses. Each
point represents one of the 10 participants for which we had enough false alarms. Red lines represent the
regression line with shaded 95 % confidence intervals.  B.  Differences of  AUROC in the data (top)  and
simulated from the peak cursor error (bottom) between yes and no responses for each participant confirming
the absence of evidence for an increase in metacognitive sensitivity for detected deviations (Yes responses).

Figure 2 – 1
Additional model comparison: BIC differences for different (unsigned) measures of joystick position: peak
joy.: peak joystick horizontal position, avg. joy.: joystick horizontal position averaged the trajectory,  peak joy.
vel.: peak joystick horizontal velocity, avg. joy. vel.: joystick horizontal velocity averaged the trajectory. The
horizontal purple dashed shows the BIC difference when using the peak cursor error, which is consistently
lower.
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CORRELATION Angle Detection Peak error Confidence

Angle 1.00

Detection 0.41 ± 0.02 1.00

Peak error 0.30 ± 0.03 0.37 ± 0.04 1.00

Confidence -0.11 ± 0.03 0.02 ± 0.03 -0.04 ± 0.04 1.00

Figure 3 – 1
Correlation table of the four parametric regressors used in our fMRI. 

Figure 3 – 2
Beta values averaged across participants for each level of confidence. For each subject, we
modeled each level of confidence as an individual condition. Thus each subject had 5 regressors,
one regressor for condition. Using MarsBar (Brett et al., 2002), we then extracted BOLD estimates
for each confidence level with a sphere (radius of 3 mm) around the peak voxel for the left (MNI:
12, 5, -11) and right ventral striatum (MNI: -15, 8, -14) of each participant.
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