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SOME NOTES ON ERGODIC THEOREM FOR U-STATISTICS OF ORDER m

FOR STATIONARY AND NOT NECESSARILY ERGODIC SEQUENCES

DAVIDE GIRAUDO

Abstract. In this note, we give sufficient conditions for the almost sure and the convergence in L
p of

a U -statistic of order m built on a strictly stationary but not necessarily ergodic sequence.

1. Introduction and main results

Hoeffding (1948) introduced the concept of U -statistics of order m ∈ N
∗, defined as follows: if (Xi)i>1

is strictly stationary sequence taking values in a measurable space (S,S) and h : Sm → R, the U -statistic

of kernel h is given by

(1.1) Um,n,h :=
1(m
n

)
∑

(iℓ)ℓ∈J1,mK∈Inc
m
n

h (Xi1 , . . . ,Xim) ,

where J1,mK = {k ∈ N, 1 6 k 6 m} and Incmn =
{
(iℓ)ℓ∈J1,mK , 1 6 i1 < i2 < · · · < im 6 n

}
. If (Xi)i>1

is i.i.d. and E [|h (X1, . . . ,Xm)|] is finite, then Um,n,h → E [h (X1, . . . ,Xm)] a.s. and in L
1. A natural

question is whether for a strictly stationary sequence (Xi)i>1, the sequence (Um,n,h)n>m converges

almost surely or in L
1 to some random variable. Assume first that (Xi)i>1 is ergodic. It is shown

in Aaronson et al. (1996) that if S = R, (Xi)i>1 has common distribution PX0 , h is bounded and

PX0 × · · · × PX0 almost everywhere continuous, then

(1.2) Um,n,h →

∫
h (x1, . . . , xm) dPX0 (x1) . . . dPX0 (xm) a.s..

Convergence in probability was also investigated in Borovkova et al. (2002). A proof of (1.2) in the con-

text of absolutely regular sequences has been given in Arcones (1998). Moreover, Marcinkievicz law of

large numbers for U -statistics of order two has been established in Dehling and Sharipov (2009) for ab-

solutely regular sequences and Giraudo (2021) for sequences expressable as functions of an independent

sequence.

It is worth pointing out that in general, the sequence (U2,n,h)n>2 may fail to converge. For instance,

Aaronson et al. (1996), Example 4.5, found a non-bounded kernel h and a strictly stationary sequence

such that lim supn→∞U2,n,h = ∞. Moreover, the example given in Proposition 3 of Dehling et al.

(2023) shows the existence of a bounded kernel h and a stationary ergodic sequence (Xi)i>1 such that

a subsequence of (U2,n,h)n>2 converges to 0 almost surely and an other subsequence of (U2,n,h)n>2

converges to 1 almost surely. Also, as Proposition 4 shows, boundedness in L
1 of (h (X1,Xj))j>2 plays

a key role, otherwise, we can find a kernel h and a strictly stationary sequence (Xi)i>1 for which the

sequence (U2,n,h − E [U2,n,h])n>2 converges to a non-degenerate normal distribution.

Some results have been established in Dehling et al. (2023), assuming that the strictly stationary

sequence (Xi)i>1 is ergodic.
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(1) If S is a separable metric space, h : S × S → R is a symmetric kernel that is bounded and

PX0 ×PX0-almost everywhere continuous, then, as n → ∞, U2,n,h →
∫
h (x, y) dPX0 (x) dPX0 (y)

almost surely.

(2) If S = R
d, the family {h (X1,Xj) , j > 1} is uniformly integrable, h is PX0 × · · · × PX0 almost

everywhere continuous and symmetric, then

(1.3) lim
n→∞

E

[∣∣∣∣U2,n,h −

∫

Rd

∫

Rd

h (x, y) dPX0 (x) dPX0 (y)

∣∣∣∣
]
= 0.

(3) If S = R
d, the family {h (X1,Xj) , j > 1} is uniformly integrable,

∫
Rd

∫
Rd |h (x, y)| dPX0 (x) dPX0 (y)

is finite, the random variable X0 has a bounded density with respect to the Lebesgue measure

on R
d and for each k > 1, the vector (X0,Xk) has a density fk with respect to the Lebesgue

measure of Rd × R
d and supk>1 sups,t∈Rd fk (s, t) is finite, then (1.3) holds.

Such results lead us to consider the following extensions. The case of U -statistics of order two has

been adressed and we may want to extend these results to U -statistics of arbitrary order, especially

because such mathematical object is widely used in statistics, for instance in Lyons (2013) for the

distance covariance and stochastic geometry (see Lachièze-Rey and Reitzner (2016)). Moreover, it is a

natural question to see what happens in the non-ergodic case. It is natural to consider a decomposition

of Ω into ergodic components and use the results of the ergodic case to each of them. However, the

multiple integral expression of the limit does not give a simple expression. Moreover, the assumptions of

the ergodic case for each ergodic component, namely, almost everywhere continuity (for the product law

of the marginal distribution) of the kernel and and assumption on density of the vector (Xi1 , . . . ,Xim)

does not seem to give a tractable condition. Instead, we will use the following approach: when h is

symmetric and bounded, the convergence of the considered U -statistic is viewed as the convergence of

random product measures toward a product of random measures (deterministic measures in the ergodic

case). When we make an assumption on the density of (Xi1 , . . . ,Xim), we approximate h by linear

combinations of products of indicator functions. This approach has similarities with the one used in

Denker and Gordin (2014). The case of products of indicators follows then from an application of the

usual ergodic theorem.

We will assume that the strictly stationary sequence is such that Xi = X0 ◦ T i, where T : Ω → Ω

is a measure preserving map. By Breiman (1968), page 107, we know that we can find a random

variable X and a measure preserving map T on R
Z such that the sequences (Xi)i∈Z and

(
X ◦ T i

)
i∈Z

have the same distribution. We will study almost sure convergence and in L
p sequences of the form

(gn (X1, . . . ,Xn))n>1, where gn : S
n → R, which has the same distribution as

(
gn
(
X ◦ T 1, . . . ,X ◦ T n

))
n>1

.

Therefore, their almost sure convergence are equivalent, as well as their convergence in Lp. To ease the

notations, we will write X = X0.

We will study the almost sure convergence of (Um,n,h)n>m and the convergence in L
p. We will denote

by ‖Z‖p := (E [|Zp|])1/p the norm of a real-valued random variable Z.

It turns out that the limit will be expressed as an integral with respect to products of a random

measure defined as follows:

(1.4) µω (A) = E [1X0∈A | I] (ω) , A ∈ B (S) ,

where I denotes the σ-algebra of invariant sets, that is, the sets E such that T−1E = E. The limit of

U -statistics will be expressed as integral with respect to product measure of µω, which lead us to define

(1.5) Im (S, h, ω) :=

∫

Sm

h (x1, . . . , xm) dµω (x1) . . . dµω (xm) .
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We will also define as Im (S, h, ·) the random variable given by

(1.6) Im (S, h, ·) : ω 7→ Im (S, h, ω) .

Some assumption will be made on the set of discontinuity points of h, which will be denoted by D (h).

1.1. Almost sure convergence. Our first result deals with the almost sure convergence of a U -

statistic under the assumption of boundedness of the kernel and negligibility of the set of discontinuity

with respect to the product of the marginal law.

Theorem 1.1. Let (S, d) be a separable metric space, let (Xi)i∈Z =
(
X0 ◦ T

i
)
i∈Z

be a strictly stationary

sequence. Suppose that h : Sm → R satisfies the following assumptions:

(A.1.1) h is symmetric, that is, h
(
xσ(1), . . . , xσ(m)

)
= h (x1, . . . , xm) for each x1, . . . , xm ∈ S and each

bijective σ : J1,mK → J1,mK,

(A.1.2) h is bounded and

(A.1.3) for almost every ω ∈ Ω, Im
(
S,1D(h), ω

)
= 0, where D (h) denotes the set of discontinuity points

of h.

Then for almost every ω ∈ Ω, the following convergence holds:

(1.7) lim
n→∞

Um,n,h (ω) = Im (S, h, ω) ,

where Im (S, h, ω) is defined as in (1.5).

This result extends Theorem 1 in Dehling et al. (2023) in two directions: first, the case of U -statistics

of arbitrary order are considered. Second, we address here the not necessarity ergodic case.

When (Xi)i>1 is ergodic, the measure µω is simply the distribution of X0 hence the right hand side of

(1.7) can be simply expressed as E
[
h
(
X

(1)
1 , . . . ,X

(m)
1

)]
, where X

(1)
1 , . . . ,X

(m)
1 are independent copies

of X1.

The symmetry assumption is needed in order to relate Um,n,h to a sum over a rectangle and then see

the convergence in (1.7) as a convergence in distribution of product of random measures.

1.2. Convergence in L
p, p > 1. In this subsection, we present sufficient conditions for the convergence

in L
p of (Um,n,h)n>1.

We start by mentioning the following consequence of Theorem 1.1.

Corollary 1.2. Let(S, d) be a separable metric space, let (Xi)i∈Z =
(
X0 ◦ T

i
)
i∈Z

be a strictly stationary

sequence and let p > 1. Suppose that h : Sm → R satisfies the following assumptions:

(A.2.1) h is symmetric, that is, h
(
xσ(1), . . . , xσ(m)

)
= h (x1, . . . , xm) for each x1, . . . , xm ∈ S and each

bijective σ : J1,mK → J1,mK,

(A.2.2) the family {|h (Xi1 , . . . ,Xim)|
p , 1 6 i1 < · · · < im} is uniformly integrable.

(A.2.3) the following integral is finite:

(1.8)

∫

Ω

∫

Sm

|h (x1, . . . , xm)|p dµω (x1) . . . dµω (xm) dP (ω) .

(A.2.4) for almost every ω ∈ Ω, Im
(
S,1D(h), ω

)
= 0, where D (h) denotes the set of discontinuity points

of h.

Then the following convergence takes place:

(1.9) lim
n→∞

‖Um,n,h − Im (S, h, ·)‖p = 0,

where Im (S, h, ·) is defined as in (1.6).



4 DAVIDE GIRAUDO

One can wonder what happens if we remove the symmetry assumption.

Theorem 1.3. Let (S, d) be a separable metric space, let (Xi)i∈Z =
(
X0 ◦ T

i
)
i∈Z

be a strictly stationary

sequence taking values in S and let p > 1. Suppose that h : S2 → R and
(
X0 ◦ T

i
)
i∈Z

satisfy the following

assumptions:

(A.3.1) the collection {|h (Xi,Xj)|
p , 1 6 i < j} is uniformly integrable.

(A.3.2) for almost every ω ∈ Ω, Im
(
S,1D(h), ω

)
= 0, where D (h) denotes the set of discontinuity points

of h.

(A.3.3) the following integral is finite:

(1.10)

∫

Ω

∫

S2

|h (x, y)|p dµω (x) dµω (y) dP (ω) .

Then the following convergence takes place:

(1.11) lim
n→∞

‖U2,n,h − I2 (S, h, ·)‖p = 0,

where I2 (S, h, ·) is defined as in (1.6).

This improves Theorem 2 in Dehling et al. (2023) under assumption (A.1) in the paper, since we do

not require symmetry of the kernel.

One may wonder why we do not present a similar result for U -statistics of order m. A first idea

would be an argument by induction on the dimension. In order to perform the induction step, say from

m = 2 to m = 3, we would need to show, after a use of the weighted ergodic theorem, the convergence

in L
p of

(n
2

)−1∑
16i<j6n h (X−j ,X−i,X0). Since we assume uniform integrability, it suffices to show

the almost sure convergence, which could be established by seeing this almost sure convergence as that

of a product of random measures. But without symmetry, we do not know whether the almost sure

convergence of the sequence of random measures
(
n
2

)−1∑
16i<j6n δ(X−j ,X−i) takes place.

Let us now state a result on the convergence in L
p without imposing any continuity of the kernel,

but making assumptions on the distribution of the vectors (Xi1 , . . . ,Xim) .

Theorem 1.4. Let (Xi)i∈Z =
(
X0 ◦ T

i
)
i∈Z

be a strictly stationary sequence taking values in R
d and let

p > 1. Suppose that h :
(
R
d
)m

→ R and
(
X0 ◦ T

i
)
i∈Z

satisfy the following assumptions:

(A.4.1) the collection {|h (Xi1 , . . . ,Xim)|
p , 1 6 i1 < · · · < im} is uniformly integrable.

(A.4.2) for each (iℓ)ℓ∈J1,mK such that 1 6 i1 < · · · < im, the vector (Xi1 , . . . ,Xim) has a density fi1,...,im
and there exists a q0 > 1 such that

(1.12) M1 := sup
(iℓ)ℓ∈J1,mK:16i1<···<im

∫

(Rd)
m
fi1,...,im (t1, . . . , tm)q0 dt1 . . . dtm < ∞.

(A.4.3) For almost every ω, the measure µω defined as in (1.4) admits a density fω with respect to the

Lebesgue measure and there exists a set Ω′ having probability one and q1 > 1 for which

(1.13) M2 := sup
ω∈Ω′

∫

Rd

fω (t)
q1 dt < ∞.

(A.4.4) the following integral is finite:

(1.14)

∫

Ω

∫

(Rd)
m
|h (x1, . . . , xm)|p dµω (x1) . . . dµω (xm) dP (ω) .

Then the following convergence hold:

(1.15) lim
n→∞

∥∥∥Um,n,h − Im

(
R
d, h, ·

)∥∥∥
p
= 0,
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where Im
(
R
d, h, ·

)
is defined as in (1.6).

Assumption (A.4.2) is needed in order to approximate h by a linear combination of indicator functions

of produts of Borel sets, uniformly with respect to the distribution of (Xi1 , . . . ,Xim).

Our Theorem 1.4 improves Theorem 2 in Dehling et al. (2023) under assumption (A.2) in the following

directions. First, we provide a result for U -statistics of arbitrary order. Second, the not necessarily

ergodic case is addressed. Third, even in the ergodic case, our assumption only require a uniform control

on the L
q1 norm of the densities instead of a uniform bound.

1.3. Examples. In this Subsection, we give Examples where the conditions of Corollary 1.2, Theo-

rems 1.1 and 1.4 are satisfied.

Corollary 1.5. Let h : R3 → R be the kernel defined as

(1.16) h (x1, x2, x3) = sgn (2x1 − x2 − x3) + sgn (2x2 − x1 − x3) + sgn (2x3 − x1 − x2) ,

where sgn (x) equals 1 if x > 0, −1 if x < 0 and sgn (0) = 0. Let (Xi)i∈Z =
(
X0 ◦ T

i
)
i∈Z

be a strictly

stationary sequence of real valued random variables such that for each x0 ∈ R, P (X0 = x0) = 0. Then

for almost every ω ∈ Ω, the convergence

(1.17) U3,n,h (ω) → I3 (R, h, ω)

takes place, where I3 (R, h, ω) is defined as in (1.5).

The kernel h defined by (1.16) is used in order to test symmetry of a distribution.

The next example deals with the distance covariance, which is used in order to test independence

between two samples.

Corollary 1.6. Let (S, d) be a separable metric space and let p > 1. Define f : S4 → R by

(1.18) f (z1, z2, z3, z4) = d (z1, z2)− d (z1, z3)− d (z2, z4) + d (z3, z4) ,

the kernel g :
(
S2
)6

→ R by

(1.19) g ((x1, y1) , . . . , (x6, y6)) = f (x1, x2, x3, x4) f (y1, y2, y3, y4)

and its symmetrized version

(1.20) h ((x1, y1) , . . . , (x6, y6)) =
1

6!

∑

σ∈S6

g
((
xσ(1), yσ(1)

)
, . . . ,

(
xσ(6), yσ(6)

))
.

Let ((Xi,X
′
i))i∈Z =

(
(X0,X

′
0) ◦ T

i
)
i∈Z

be a strictly stationary sequence with values in S2, where
(
X0 ◦ T

i
)
i∈Z

is independent of
(
X ′

0 ◦ T
i
)
i∈Z

. Suppose that E [d (X0, x0)
p] + E [d (X ′

0, x0)
p] is finite for some (hence

all) x0 ∈ S. Then the following convergence takes place

(1.21) lim
n→∞

∥∥U6,n,h − I6
(
S2, h, ·

)∥∥
p
= 0,

where I6
(
S2, h, ·

)
is defined by

(1.22) I6
(
S2, h, ω

)
=

∫

S6

h ((x1, y1) , . . . , (x6, y6)) dµω (x1, y1) . . . dµω (x6, y6)

and for A ∈ B
(
S2
)
,

(1.23) µω (A) = E

[
1(X0,X′

0)∈A
| I
]
(ω) .

Finally, let us give a framework where Theorem 1.4 applies.
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Corollary 1.7. Let h : Rm → R be a measurable map and let p > 1. Let (Xi)i∈Z be a strictly stationary

Gaussian sequence. Denote by Σ (i1, . . . , im) the covariance matrix of the vector (Xi1 , . . . ,Xim). Suppose

that

(1.24) inf
16i1<···<im

det (Σ (i1, . . . , im)) > 0,

(1.25) lim
N→∞

1

N

N∑

i=1

|Cov (X0,Xi)| = 0 and

(1.26) E

[∣∣∣h
(
X

(1)
0 , . . . ,X

(m)
0

)∣∣∣
p]

< ∞,

where X
(1)
0 , . . . ,X

(m)
0 are independent copies of X0 and that (A.4.1) holds. Then (1.15) takes place.

2. Proofs

2.1. Proof of Theorem 1.1. The symmetry assumption guarantees the following decomposition

(2.1) Um,n,h =
1

m!
(
n
m

)
n∑

i1,...,im=1

h (Xi1 , . . . ,Xim)−
1

m!
(
n
m

)
∑

(iℓ)ℓ∈J1,mK∈Jn

h (Xi1 , . . . ,Xim) ,

where Jn denotes the set of elements (iℓ)ℓ∈J1,mK ∈ J1, nKm for which there exist at least two distinct

indexes ℓ and ℓ′ for which iℓ = iℓ′ . Since h is bounded and Card (Jn) /
(n
m

)
goes to 0 as n goes to infinity,

it suffices to prove that for almost every ω ∈ Ω,

(2.2) lim
n→∞

1

nm

n∑

i1,...,im=1

h (Xi1 (ω) , . . . ,Xim (ω)) =

∫

Sm

h (x1, . . . , xm) dµω (x1) . . . dµω (xm) ,

where µω is defined as in (1.4). Observe that for each ω ∈ Ω,

(2.3)
1

nm

n∑

i1,...,im=1

h (Xi1 (ω) , . . . ,Xim (ω)) =

∫

Sm

h (x1, . . . , xm) dνn,ω (x1) . . . dνn,ω (xm) ,

where

(2.4) νn,ω =
1

n

n∑

i=1

δXi(ω).

Separability of S guarantees the existence of a countable collection (fk)k>1 of continuous and bounded

functions from S to R such that a sequence (µn)n>1 of probability measures converges weakly to a

probability measure µ if and only if for each k > 1,
∫
fkdµn →

∫
fkdµ. By the ergodic theorem, we

know that for each k > 1, there exists a set Ωk having probability one for which the convergence

(2.5) lim
n→∞

∫
fk (x) dνn,ω = lim

n→∞

1

n

n∑

j=1

fk (Xj (ω)) = E [fk (X0) | I] (ω) =

∫
fk (x) dµω (x) .

holds for each ω ∈ Ωk. Therefore, for each ω belonging to the set of probability one Ω′ :=
⋂

k>1Ωk, the

sequence (νn,ω)n>1 converges weakly to µω.

Recall that Theorem 3.2 (page 21) of Billingsley (1968) shows that if µn → µ and µ′
n → µ′ in

distribution on metric spaces S1 and S2 respectively, then µn × µ′
n → µ× µ′ in distribution on S1 × S2.

Applying inductively this result and using assumptions (A.1.2) and (A.1.3) shows that for each ω ∈ Ω′,

(1.7) holds. Indeed, we know that if S′ is a separable metric space, (mn)n>1 is a sequence of probability

measures which converges weakly to m and g : S′ → R is bounded and m (D (g)) = 0, then
∫
gdmn →∫

gdm. We use this for each fixed ω ∈ Ω′ with Mn = νn,ω × · · · × νn,ω, S
′ = Sm and g = h.
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2.2. Proof of Corollary 1.2. Let hR be as in (2.13). Observe that assumption (A.2.3) guarantee that

Im (S, h, ·) defined as in (1.5) belongs to L
p. Moreover, the triangle inequality implies

‖Um,n,h − Im (S, h, ·)‖p 6 ‖Um,n,h − Um,n,hR
‖p+‖Um,n,hR

− Im (S, hR, ·)‖p+‖Im (S, h, ·) − Im (S, hR, ·)‖p .

Using assumption (A.2.2) combined with the triangle inequality, one gets

lim
R→∞

sup
n>m

‖Um,n,h − Um,n,hR
‖p = 0.

Moreover, assumption (A.2.3) combined with monotone convergence shows that

lim
R→∞

‖Im (S, h, ·) − Im (S, hR, ·)‖p = 0

hence it suffices to show that for each fixed R > 0, ‖Um,n,hR
− Im (S, hR, ·)‖p → 0 as n goes to infinity.

This follows from an application of Theorem 1.1 with h replaced by hR (note that continuity of φR

guarantees that D (hR) ⊂ D (h)), which gives that Um,n,hR
→ Im (S, hR, ·) almost surely and the

dominated convergence theorem allows to conclude.

2.3. Convergence of weighted averages. The proof of Theorems 1.3 and 1.4 rests on weighted

versions of the ergodic theorem, which read as follows.

Lemma 2.1. Let T be a measure preserving map on the probability space (Ω,F ,P) and let I be the σ-

algebra of T invariance sets. Let p > 1 and let (fj)j>1 be a sequence of functions such that ‖fj − f‖p → 0.

Then for each m > 0, the following convergence holds:

(2.6) lim
n→∞

∥∥∥∥∥∥
1( n

m+1

)
n∑

j=m+1

(
j − 1

m

)
fj ◦ T

j − E [f | I]

∥∥∥∥∥∥
p

= 0.

Proof. First observe that since T is measure preserving,

(2.7)

∥∥∥∥∥∥
1(
n

m+1

)
n∑

j=m+1

(
j − 1

m

)
fj ◦ T

j − E [f | I]

∥∥∥∥∥∥
p

6
1( n

m+1

)
n∑

j=m+1

(
j − 1

m

)
‖fj − f‖p +

∥∥∥∥∥∥
1( n

m+1

)
n∑

j=m+1

(
j − 1

m

)
f ◦ T j − E [f | I]

∥∥∥∥∥∥
p

.

The first term goes to zero as n goes to infinity from the elementary fact that
∑n

i=1 cixi/
(∑n

j=1 cj

)
→ 0

if cj > 0 and
∑n

j=1 cj → ∞. For the second term, we assume for without loss of generality that

E [f | I] = 0, otherwise, we replace f by f − E [f | I]. Let Sj :=
∑j

i=1 f ◦ T i. Then

(2.8)

n∑

j=m+1

(
j − 1

m

)
f ◦ T j =

n∑

j=m+1

(
j − 1

m

)
Sj −

n−1∑

j=m

(
j

m

)
Sj

and it follows that

(2.9)

∥∥∥∥∥∥
1( n

m+1

)
n∑

j=m+1

(
j − 1

m

)
f ◦ T j

∥∥∥∥∥∥
p

6

(
n−1
m

)
( n
m+1

) ‖Sn‖p +
1( n

m+1

)
n−1∑

j=m

((
j

m

)
−

(
j − 1

m

))
‖Sj‖p .
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Since ‖Sn‖p /n → 0, the first term of the right hand side of (2.9) goes to 0 as n goes to infinity. For the

second term, one has for each m 6 R 6 n− 1 that

(2.10)
1( n

m+1

)
n−1∑

j=m

((
j

m

)
−

(
j − 1

m

))
‖Sj‖p 6

1( n
m+1

)
R∑

j=m

((
j

m

)
−

(
j − 1

m

))
‖Sj‖p

+
1( n

m+1

)
n−1∑

j=R

j

((
j

m

)
−

(
j − 1

m

))
sup
k>R

‖Sk‖p
k

hence

(2.11) lim sup
n→∞

1( n
m+1

)
n−1∑

j=m

((
j

m

)
−

(
j − 1

m

))
‖Sj‖p 6 sup

k>R

‖Sk‖p
k

and we conclude using again that
‖Sk‖p

k → 0 as k goes to infinity. �

2.4. Proof of Theorem 1.3. The proofs will lead us to consider truncated versions of the kernel h.

Define for each fixed R > 0 the maps φR : R → R by

(2.12) φR (t) :=





−R if t < −R,

t if −R 6 t < R,

R if t > R

and hR : Sm → R by

(2.13) hR (x1, . . . , xm) := φR (h (x1, . . . , xm)) , x1, . . . , xm ∈ S.

Then |hR| is bounded by R and since D (hR) ⊂ D (h), the equality PX0 × PX0 (D (hR)) = 0 holds. We

claim that it suffices to prove that (1.11) holds for each R with h replaced by hR. Indeed, by the triangle

inequality,

(2.14) sup
n>2

‖U2,n,h − U2,n,hR
‖p 6 sup

16i<j

∥∥∥h (Xi,Xj)1|h(Xi,Xj)|>R

∥∥∥
p

and

(2.15)

∫

Ω

∣∣∣∣
∫

S2

h (x, y) dµω (x) dµω (y)−

∫

S2

hR (x, y) dµω (x) dµω (y)

∣∣∣∣
p

dP (ω)

6

∫

Ω

∫

S2

|h (x, y)|p 1|h(x,y)|>Rdµω (x) dµω (y) dP (ω) ,

hence assumptions (A.3.1) and (A.3.3) allows us to choose R making the previous quantities as small

as we wish. Defining

(2.16) dj,R :=
1

j

j−1∑

i=1

hR (X−i,X0) ,

we get that

(2.17) U2,n,hR
=

1(n
2

)
n∑

j=2

jdj,R ◦ T j.

We first show that there exists a set of probability one Ω′ such that for each ω ∈ Ω′,

(2.18) dj,R (ω) →

∫

S2

hR (x, y) dµω (x) dδX0(ω) =: YR (ω) .
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First, separability of S guarantees the existence of a countable collection (fk)k>1 of continuous and

bounded functions from S to R such that a sequence (µn)n>1 of probability measures converges weakly

to a probability measure µ if and only if for each k > 1,
∫
fkdµn → inf fkdµ.

Taking µn,ω := n−1
∑n

i=1 δX−i(ω), the ergodic theorem furnishes for each k > 1 a set Ωk having

probability one for which the convergence

(2.19) lim
n→∞

∫
fk (x) dµn,ω = lim

n→∞

1

n

n∑

j=1

fk (Xj (ω)) = E [fk (X0) | I] (ω) =

∫
fk (x) dµω (x) .

holds for each ω ∈ Ωk. Consequently, for each ω ∈ Ω′ :=
⋂

k>1Ωk, one has µn,ω → µω weakly in S and

by Theorem 3.2 (page 21) of Billingsley (1968), we get that µn,ω × δX0(ω) → µω × δX0(ω) weakly in S2.

Since hR is bounded and for almost every ω ∈ Ω, µω × δX0(ω) (D (hR)) = 0, we get (2.18). Moreover,

|dj,R| 6 R hence by dominated convergence,

(2.20) lim
j→∞

∥∥∥∥dj,R −

∫

S2

hR (x, y) dµω (x) dδX0(ω)

∥∥∥∥
p

= 0.

By (2.17) and the fact that T is measure preserving, we infer that

(2.21) ‖U2,n,hR
− E [YR | I]‖p 6

1(
n
2

)
n∑

j=2

j ‖dj,R − YR‖p +

∥∥∥∥∥∥
1(
n
2

)
n∑

j=2

jYR ◦ T j − E [YR | I]

∥∥∥∥∥∥
p

.

An application of (2.18) combined with the dominated convergence theorem shows that the first term

of the right hand side of (2.21) goes to 0 as n goes to infinity. Then Lemma 2.1 with m = 1 shows that

‖U2,n,hR
− E [YR | I]‖p → 0. It remains to check that

(2.22) E [YR | I] (ω) =

∫

S2

h (x, y) dµω (x) dµω (y) .

Observe that by the ergodic theorem, E [YR | I] (ω) = limn→∞ n−1
∑n

k=1 YR

(
T kω

)
. Since µT kω = µω,

it follows that

(2.23) E [YR | I] (ω) = lim
n→∞

1

n

n∑

k=1

∫

S2

hR (x, y) dµω (x) dδXk(ω) (y) .

Using similar arguments as before gives that for almost every ω, µω ×
(
n−1

∑n
k=1 δXk(ω)

)
converges in

distribution to µω × µω. This ends the proof of Theorem 1.3.

2.5. Proof of Theorem 1.4. We start by proving Theorem 1.4 in the case where h (x1, . . . , xm) =∏m
ℓ=1 1xℓ∈Aℓ

. We show by induction over m that if Aℓ, ℓ ∈ J1,mK are Borel subsets of Rd and
(
X ◦ T i

)
i∈Z

a stationary sequence with invariance σ-algebra I, then

(2.24) lim
n→∞

∥∥∥∥∥∥
1(n
m

)
∑

(iℓ)ℓ∈J1,mK∈Inc
m
n

m∏

ℓ=1

1Xiℓ
∈Aℓ

−
m∏

ℓ=1

E [1X0∈Aℓ
| I]

∥∥∥∥∥∥
p

= 0.

The case m = 1 is a direct consequence of the ergodic theorem. Let us show the case m = 2. We start

from

(2.25)
1(
n
2

)
∑

16i<j6n

1Xi∈A11Xj∈A2 =
1(
n
2

)
n∑

j=2

j

(
1

j

j−1∑

k=1

1X−k∈A11X0∈A2

)
◦ T j,

where the change of index k = j − i for a fixed j has been done. Let fj :=
1
j

∑j−1
k=1 1X−k∈A11X0∈A2 . By

the ergodic theorem, fj → E [1X0∈A1 | I]1X0∈A2 , which gives (2.24) for m = 2.
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Suppose now that (2.24) holds for each Borel subset A1, . . . , Am of Rd and each strictly stationary

sequence
(
X0 ◦ T

i
)
i∈Z

. Let A1, . . . , Am+1 be Borel subsets of R
d and let

(
X0 ◦ T

i
)
i∈Z

be a strictly

stationary sequence. We start from

(2.26)
1( n

m+1

)
∑

(iℓ)ℓ∈J1,m+1K∈Inc
m+1
n

∏

ℓ∈J1,m+1K

1Xiℓ
∈Aℓ

=
1( n

m+1

)
n∑

j=m+1


1X0∈Am+1

∑

(iℓ)ℓ∈J1,mK∈Inc
m
j−1

∏

ℓ∈J1,mK

1Xiℓ−j∈Aℓ


 ◦ T j .

Define

(2.27) fj :=
1(j−1
m

)1X0∈Am+1

∑

(iℓ)ℓ∈J1,mK∈Inc
m
j−1

∏

ℓ∈J1,mK

1Xiℓ−j∈Aℓ
.

Doing the changes of index k1 = j − im, . . . , km = j − i1, the previous expression can be rewritten as

(2.28) fj = 1X0∈Am+1

1(
j−1
m

)
∑

(kℓ)ℓ∈J1,mK∈Inc
m
j−1

∏

ℓ∈J1,mK

1X−kℓ
∈Am−ℓ+1

and using the induction assumption, we derive that

(2.29) lim
j→∞

∥∥∥∥∥∥
fj − 1X0∈Am+1

∏

ℓ∈J1,mK

E
[
1X0∈Am−ℓ+1

| I
]
∥∥∥∥∥∥
p

.

Then we conclude by (2.6).

We now show (1.15) in the general case. Fix a positive ε and define for a positive K

(2.30) h(K) (x1, . . . , xm) = h (x1, . . . , xm)1|h(x1,...,xm)|6K

m∏

ℓ=1

1|xℓ|d6K ,

where |·|d denotes the Euclidean norm on R
d. Observe that by the triangle inequality,

(2.31)
∥∥∥Um,n,h − Um,n,h(K)

∥∥∥
p
6 sup

16i1<···<im

∥∥∥h (Xi1 , . . . ,Xim) 1|h(Xi1
,...,Xim)|>K

∥∥∥
p

+

m∑

ℓ=1

sup
16i1<···<im

∥∥∥h (Xi1 , . . . ,Xim) 1|xℓ|d>K

∥∥∥
p
,

hence by assumption (A.4.1), we can find K ′ such that for each K > K ′,

(2.32) sup
n>m

∥∥∥Um,n,h − Um,n,h(K)

∥∥∥
p
6 ε.

Moreover, by assumption (A.4.4), we can choose K ′′ such that for each K > K ′′,

(2.33)

∫

Ω
Im

(
R
d,
∣∣∣h− h(K)

∣∣∣
p
, ω
)
dP (ω) 6 εp.

Let K0 = max {K ′,K ′′}. Observe that in assumptions (A.4.2) and (A.4.3) , we can assume without loss

of generality that q0 = q1. By standard results in measure theory, we know that we can find an integer

J , constants c1, . . . , cJ and Borel subsets Aℓ,j , ℓ ∈ J1,mK, j ∈ J1, JK such that

(2.34)

∫

(Rd)
m

∣∣∣h(K0) (x1, . . . , xm)− h̃(K0) (x1, . . . , xm)
∣∣∣
p

q0
q0−1

dx1 . . . dxm < (M1 +M2)
p ε

p
q0

q0−1 ,
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where

(2.35) h̃(K0) (x1, . . . , xm) =

J∑

j=1

cj

m∏

ℓ=1

1xℓ∈Aℓ,j
.

Notice that for each 1 6 i1 < · · · < im,

(2.36)
∥∥∥h(K0) (Xi1 , . . . ,Xim)− h̃(K0) (Xi1 , . . . ,Xim)

∥∥∥
p

p

=

∫

(Rd)
m

∣∣∣h(K0) (x1, . . . , xm)− h̃(K0) (x1, . . . , xm)
∣∣∣
p
fi1,...,im (x1, . . . , xm) dx1 . . . dxm

hence using Hölder’s inequality, (2.34) and assumption (A.4.2), we derive that

(2.37) sup
16i1<···<im

∥∥∥h(K0) (Xi1 , . . . ,Xim)− h̃(K0) (Xi1 , . . . ,Xim)
∥∥∥
p
6 ε

and by the triangle inequality,

(2.38) sup
N>m

∥∥∥Um,N,h(K0) − U
m,N,h̃(K0)

∥∥∥
p
6 ε.

Moreover, using Hölder’s inequality, we find that

(2.39)

∫

Ω
Im

(
R
d,
∣∣∣h(K0) − h̃(K0)

∣∣∣
p
, ω
)
dP (ω) 6 εp.

As a consequence,
∥∥∥Um,n,h − Im

(
R
d, h, ·

)∥∥∥
p
6 sup

N>m

∥∥∥Um,N,h − Um,N,h(K0)

∥∥∥
p
+ sup

N>m

∥∥∥Um,N,h(K0) − U
m,N,h̃(K0)

∥∥∥
p

+
∥∥∥Um,n,h̃(K0)

− Im

(
R
d, h̃(K0), ·

)∥∥∥
p
+
∥∥∥Im

(
R
d, h̃(K0), ·

)
− Im

(
R
d, h(K0), ·

)∥∥∥
p

+
∥∥∥Im

(
R
d, h(K0), ·

)
− Im

(
R
d, h, ·

)∥∥∥
p
.

By (2.24) and (2.35), we can find n0 such that for each n > n0,
∥∥∥Um,n,h̃(K0)

− Im

(
R
d, h̃(K0), ·

)∥∥∥
p
6 ε

hence we derive that for such n’s,
∥∥Um,n,h − Im

(
R
d, h, ·

)∥∥
p
6 4ε. This ends the proof of Theorem 1.4.

2.6. Proof of the results of Subsection 1.3.

Proof of Corollary 1.5. This is an application of Theorem 1.1. Assumption (A.1.1) and (A.1.2) are

clear. In order to check Assumption (A.1.3), we notice that

(2.40) D (h) ⊂
{
(x1, x2, x3) ∈ R

3, 2x1 = x2 + x3
}
∪
{
(x1, x2, x3) ∈ R

3, 2x2 = x1 + x3
}

∪
{
(x1, x2, x3) ∈ R

3, 2x3 = x1 + x2
}
.

It suffices to show that for almost every ω,
∫
R3 12x1=x2+x3dµω (x1) dµω (x2) dµω (x3) = 0, since the treat-

ment of the other terms is completely similar. Observe that
∫
12x1=x2+x3dµω (x3) = E [1X0=2x1−x2 | I] (ω),

and the expectation of E [1X0=2x1−x2 | I] = 0 is zero hence this random variable equals 0 almost

surely. �

Proof of Corollary 1.6. This is an application of Corollary 1.2. Assumption (A.2.1) is by definition

satisfied. Let us check assumption (A.2.2). By definition of h, it suffices to check that the family{∣∣f (Xi1 ,Xi2 ,Xi3 ,Xi4) f
(
X ′

i1
,X ′

i2
,X ′

i5
,X ′

i6

)∣∣p , 1 6 i1 < · · · < i6
}
is uniformly integrable. Using the ele-

mentary fact that if (Yj)j>1 is independent of
(
Y ′
j

)
j>1

and both sequences are uniformly integrable, then
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so is
(
YjY

′
j

)
j>1

, it suffices to prove that {|f (Xi1 ,Xi2 ,Xi3 ,Xi4)|
p , 1 6 i1 < · · · < i4} is uniformly inte-

grable, since the argument for the other term is completely similar. By definition of f and the triangle

inequality, |f (Xi1 ,Xi2 ,Xi3 ,Xi4)| 6 2 (d (Xi1 , x0) + d (Xi2 , x0) + d (Xi3 , x0) + d (Xi4 , x0)) and uniform

integrability follows from finiteness of E [d (X0, x0)
p]. Let us check (A.2.3). Using the definition of h and

f and the triangle inequality, it suffices to prove that
∫
S2×S2 d (x1, x0)

p d (y2, x0)
p dµω (x1, y1) dµω (x2, y2)

and
∫
S2 d (x1, x0)

p d (y1, x0)
p dµω (x1, y1) are finite. This follows from the fact that

∫
u (x) v (y) dµω (x, y) =

E [u (X0) v (X
′
0) | I] (ω) and integrability of d (X0, x)

p d (X ′
0, x)

p. Continuity of h guarantees (A.2.4). �

Proof of Corollary 1.7. Condition (1.24) shows that the density of the vector (Xi1 , . . . ,Xim) is bounded

over R
m and the bound is uniform with respect to (i1, . . . , im). Therefore, Assumption (A.4.2) is

satisfied. By (1.25), the sequence
(
X0 ◦ T

i
)
i∈Z

is ergodic (see Maruyama (1970)). (A.4.3) holds because

fω is the density of X0 and (A.4.4) follows from (1.26). �
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