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ABSTRACT

In biological dosimetry, a radiation dose is estimated using the average number of chromosomal
aberration per peripheral blood lymphocytes. To achieve an adequate precision in the estimation of
this average, hundreds of cells must be analyzed in 2D microscopy images. Currently, this analysis
is performed manually, as conventional computer vision techniques struggle with the wide variety
of shapes showcased by chromosomes. The false discovery rate of current automated detection
systems is high and variable, depending on small variations in data quality (chromosome spread,
illumination variations ...), which makes using it in a fully automated fashion impossible. Automating
chromosomal aberration is needed to reduce diagnosis time. Furthermore, an automated system
can process more images, which improves confidence intervals around the estimated radiation dose.
We build an object detection model to automate chromosomal aberration detection using recent
advances in deep convolutional neural networks and statistical learning. We formulated the problem
of rare aberration detection as a heatmap regression problem requiring the minimization of a sparsity-
promoting loss to reduce the false alarm rate. Our Unet-based approach is analoguous to a one-stage
object detector, and keeps the number of hyperparameters to a minimum. Finally, we demonstrate
large performance improvements using an ensemble of checkpoints collected during a single run of
training. A PCA-based strategy is used to provide cues for interpretation of our deep neural network-
based model. The methodology is demonstrated on real, large, and challenging datasets depicting
rare chromosomal aberrations and is favorably compared to a reference dosimetry technique.

Keywords biological dosimetry - keypoint regression - sparsity - model aggregation - sparse detection - convolutional
neural networks - object counting

1 Introduction

Because ionizing radiation causes chromosomal aberration in peripheral blood lymphocytes, the average number of
aberration per lymphocyte can be used to estimate a radiation dose after an exposure event. This is especially relevant
for accidental (or potentially criminal) exposures, where readings from a dosimeter may not be available. According
to the TAEA, the current gold standard for biological dosimetry is the counting of dicentric chromosomes []1]], i.e.,
chromosomes with two centromeres. To observe those aberrations, blood cells are grown for 48 hours, and Demelcocine
is used to stop cell division in the metaphase step of mitosis [3|]. Because of this, an image of a single cell undergoing
metaphase (where the 23 pairs of chromosomes are visible) is often called a metaphase. As chromosome are translucent
objects, Giemsa staining is used to increase contrast as the sample is spread on a glass slide for imaging. Figure
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a) metaphase acquisition b) aberration counting c) dose estimation with calibration curve
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Figure 1: Steps required to estimate a radiation dose in biological dosimetry: a) (automated) metaphase acquisition; b)
dicentric chromosomes (red circle), and fragments (greeen circle) counting; c¢) dose regression from aberration counts.

provides a chronological overview of the image acquisition process. A calibration curve links the aberration rate with an
ionizing radiation dose, as displayed in Figure[Ik). The rate of aberration for an individual who was not exposed to any
radiation is around 1 aberration every 1000 cells. Therefore, controlling the false discovery rate (FDR) of aberrations is
essential, to avoid over-diagnosing acute radiation exposition and overloading care facilities, especially in the case of a
large scale exposition.

While metaphase acquisition can be partially automated with current tools, dicentric chromosome counting still relies
on human expertise, mainly because a monocentric chromosome can be deformed in such a way that it looks like a
dicentric chromosome. Disambiguating between monocentric and dicentric chromosomes may be achieved by shifting
the focus plane of the microscope, as monocentric chromosomes with overlapping telomeres can be discriminated from
dicentric chromosomes based on variations in thickness (see Figure[Tp) for an example of dicentric chromosome, circled
in red). Unfortunately the images acquired by the microscope camera are 2D which makes this thickness information
unavailable.

1.1 Supervised learning and regression model ensemble for aberration counting

Aberration counting is routinely performed on 2D images but still remains a tedious task, even it assisted by semi-
automatic methods. To improve on the performance of current automated dicentric counting methods, we investigated
recent advanced methods in deep learning. Since the seminal ImageNet paper [18], convolutional neural networks
(ConvNets) trained with stochastic gradient descent (SGD) have brought significant advances to many common tasks in
computer vision, like image classification, object detection or image segmentation. Modern ConvNets are easy to train
thanks to batch normalization and skip connections. However, deep learning models have been shown to suffer from
over-confidence and mis-calibration. In other words, if a classification model predicts a class with a probability of 99%,
there is no guarantee that the error rate is close to 1%, see [|13].

To overcome this difficulty, we have investigated the human decision making process. For any specific slide, if one
asks several trained human experts to count chromosomal aberrations, the agreement between experts is not perfect,
even with the additional 3D shape information obtained by shifting the focus plane of the microscope. In case of
disagreement, experts discuss their disagreement and make a consensus decision. We can emulate this strategy using a
set (also called "ensemble") of models providing different predictions. Each artificial expert (i.e., model) "votes" for
any given object observed in the metaphase image. The model votes for a region of the image if its output exceeds a
pre-specified confidence threshold. Objects getting a minimal number of votes are considered to be plausible aberrations.
No architectural modification is needed, and significant performance improvements are achieved. During model training,
SGD samples the parameter space of the model. SGD samples are retrieved at the end of each epochs, and the ensemble
is built from a random sample of those checkpoints retrieved during training.

Because we exploit randomness to build a diverse ensemble, it is helpful to visualize training dynamics to better interpret
the relationships between training stochasticity and ensemble diversity. Moreover, visualizing training dynamics of
deep neural networks is known to be difficult, as this class of model is usually over-parameterized. A common solution
is to display the output of a network instead of its parameters. For tasks like image classification, this output is a
single vector which makes common dimensionality reduction techniques very effective so that one can easily visualize
class separation across training epochs. For dense tasks, a prediction is made for every single pixel of the input image
instead. Therefore, we consider this feature map as a set of independent vectors to emulate common approaches in
training visualization for classification models. This makes visualization of class separation during training possible,
and provides a visual explanation for the performance gains brought by our aggregation procedure.



1.2 Contributions

In this paper, we propose an aggregation-based method for rare chromosomal aberration detection. Aggregation solves
two key issues. First, it allows one to build a high-performing chromosomal aberration detector out of several instances
of a simple Unet model, without the need for extensive tweaks or architectural modifications. Second, it reduces
uncertainty around model performance. During the training of a single model, the stochasticity of SGD will lead to
variations in test performance. We show that the variation in test performance between ensembles of randomly sampled
checkpoints is low. In fact, over a set of randomly sampled ensembles, it is lower than between single checkpoints
collected during training. Finally, we show promising results on calibration curve estimation.

1.3 Organization

The remainder of the paper is organized as follows. In Section 2] we first describe the related works for automated
biological dosimetry. Second, we briefly summarize the main features of ConvNets and review the ensemble approaches
in deep learning. In Section [3] we present our training framework based on sparse representations and model ensemble.
In this section, we describe a novel visualization approach to explore the model building during training. Section[]is
devoted to data descriptions and evaluation metrics definition. We use two datasets: a training dataset where aberrations
are overrepresented, and a validation dataset for calibration curve estimation. In Section[5] we evaluate the performance
the single model and model ensemble and demonstrate the robustness of the method regarding the presence of debris
in metaphase images. Furthermore, we examine the performance our model given the distribution shift between our
imbalanced training dataset and a more representative testing dataset. Simple modifications on thresholding can be used
to handle this shift and estimate a realistic calibration curve in spite of the unbalanced training dataset. In Section[6] we
sum up our results and discuss perspectives and future work in biological dosimetry.

2 Related works

In this section, we present the related works that served as a starting points for developing our method.

2.1 Cytogenetic biological dosimetry

As chromosomes are a very common object of interest in cytogenetic biological dosimetry, characterizing the shape of
chromosomes with computer vision tools has been a longstanding area of research. Typically, one approach consists
in detecting chromosome centromeres [39]], as they are a reliable indicator to separate dicentrics from monocentrics.
Centromeres may be retrieved by locating minimas of the chromosome width along the centerline, as shown in [40} 37

Those classifiers have been used in pipelines tackling automated dose estimation in several different commercial
solutions. In Europe, Metafer (provided by MetaSystems) has the largest marketshare, and its performance have been
evaluated several years ago [41}[10]. In [24], Liu et al. showcased a software stack called ADCI which estimated a dose
from metaphase images, using conventional computer vision techniques and prior chromosome morphology. ADCI uses
a significant degree of prior knowledge to localize and classify dicentric chromosomes. For example, various degrees
of chromosome condensation are identified based on cell entry into metaphase, and late metaphases are rejected to
avoid chromosomes with excessively separated telomeres, which leads to spurious detections of dicentric chromosomes.
Chromosomes are segmented, and metaphases are accepted or rejected based on the number of objects they contain
[33]]. Centromeres are identified to discriminate dicentrics from monocentrics. While ADCI reaches a high level of
performance, it deals with the variations in image quality and chromosome morphology by using sophisticated image
selection models.

More recently, supervised deep learning has been used to tackle the DC detection problem. In [16], the authors
demonstrate that Faster R-CNN can be used to detect DCs in metaphases. This model is thoroughly evaluated in [[17]].

2.2 Key-point regression in deep learning

In key-point regression, Gaussian spots are predicted over specific landmarks of the image, like the eyes on a human
face or the joints of a skeleton. It is a subtask of a large number of computer vision tasks like facial recognition or pose
estimation [4, |5]. It can be solved with common image segmentation models by minimizing the Lo distance between a
predicted heatmap and the corresponding ground truth over a training dataset. While heatmap regression and object
detection are different tasks at first glance, and heatmap regression does not predict bounding box extent, several authors
have proposed a unified method that consists in predicting a center point and bounding box dimensions [44], or the
corners of a bounding box as key-points [21].



2.3 Object detection and counting

Object counting is a common computer vision task, and a wide variety of solutions have been suggested in the
literature. Density-based methods aim to predict counts by integrating a density map [22,|7]. This class of methods is
usually simple to implement and reaches a high level of performance. However, it does not fit bounding boxes, and
summary statistics like Precision and Recall cannot be computed. Alternatively, counting can be solved as a subtask
of object detection, by enumerating the bounding boxes belonging to a certain class. However, accurately predicting
bounding boxes is more difficult than predicting a density map, and detection-based methods usually perform worse
than density-based ones [6]]. In [20], the authors propose a detection-based method that relies on predicting a Gaussian
spot centered on the object, but does not predict bounding box extent. In [21], the author propose a model that uses the
same heatmap-based technique, but also predicts a (height, width) tuple for a bounding box.

2.4 Ensemble and approximate Bayesian deep learning
2.4.1 Model aggregation

A large number of papers have studied ensemble methods for neural networks, either to improve model calibration, for
uncertainty modeling or to improve performance. The authors focus either on sampling a diverse set of models to build
an ensemble, or on the properties of the aggregated prediction.

For classification models, Lakshminarayanan et al. [[19] showed that ensembles of neural networks improved on the
performance and calibration of single models. As an ensemble of M models requires M training runs, [[14]] showed
that a carefully chosen learning rate schedule could encourage loss landscape exploration to get a collection of models
with high diversity in a single training run by retrieving checkpoints. In [42], samples and checkpoints are re-weighted
according to their performance, like AdaBoost [|35].

In semantic segmentation, ensemble methods have received attention because they improve performance and provide
a localized measure of uncertainty, usually by computing the entropy of the ensemble average for every pixel in the
image. In [27]], an ensemble of fully convolutional neural networks is used to segment aerial images. In [36], a diverse
ensemble is built by training several Unets [34] with different encoders, and predictions are aggregated with a weighted
average. In [29]], the authors provide a review of ensemble methods for polyp segmentation.

For bounding-box based detection models, aggregation is required, as several boxes localizing the same object may
overlap. Non-Maximum Suppression (NMS) [30] is then used and consists in sorting the boxes with respect to their
confidence levels. Lower confidence boxes overlapping a high confidence box beyond a specific IoU (Jaccard index)
threshold are discarded. In [38], box merging algorithms are explicitly considered in a particular model aggregation
framework. The authors suggest computing an "average" box by weighting coordinates based on the box confidence.

2.4.2 Approximate Bayesian deep learning

Common techniques used to sample the posterior distribution are intractable for modern neural networks given their
large parameter counts. In [26], Mandt & al demonstrate that SGD can be seen as an Orstein-Uhlenbeck process with
some limit Gaussian distribution. SGD can be seen as Langevin sampling of the posterior weight distribution, and SGD
samples can be used to estimate the mean and covariance of the Gaussian posterior distribution. This provides a cheap
and simple way to retrieve samples of this distribution during the training procedure.

in [11]], Garipov & al show that local minima are connected by low-loss paths, and that one could average weight
vectors along deterministic trajectories between those local minima to improve performance. In [15], Izmailov & al
confirm the theoretical analysis of [26] by showing that averaging SGD iterates leads to wider minima and improved
generalization in practice.

Using the theoretical insights explained in [26]], Maddox et al. [25] approximate the limit posterior weight distribution
with a Gaussian distribution, where the covariance matrix is defined as the covariance of the last gradient descent
iterates. New sets of weights can be sampled from this posterior distribution for ensemble and uncertainty estimation.
In [43]], the authors go further by sampling an ensemble from several modes of the posterior weight distribution to
increase ensemble diversity and therefore performance.

Finally, other approximations of the posterior weight distribution have been proposed. In [9], the authors use Kalman
filtering to derive a sequential estimate of the posterior distribution over the weights.
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Figure 2: Visual comparison between regularized and unregularized model. First image from the right: input image,
second: bottom right crop, third: gradient norm of the prediction for the unregularized model, fourth: gradient norm of
the prediction for the regularized model.

3 Methods

In this section, we first give a precise definition of the data and model, including the loss for training. Second, we
explain our aggregation procedure, going from a set of continuous heatmap predictions for a single image to a set of
binary decisions maps and finally, to an aggregated ensemble-level prediction. Finally, we explain the PCA-based
visualization techniques used to justify the performance gains of the ensemble and its robustness to the presence of
debris in metaphase images.

3.1 Keypoint regression with heatmap regression models

In Heatmap Regression Models (HRMs), objects of interest are represented as Gaussian spots. The model is trained
to predict spot positions in the image domain, with a labelled dataset D = {(z1,41), - , (Zn,¥yn)} comprised of
n realizations of a pair of random variables (X,Y"). For each image z;, we have z;(u,v) € [0, 1] at each location
(u,v) € §, where 2 denotes the image grid of size || = H x W.

3.1.1 Model design and sparsity promoting loss function

Our heatmap regression model is a convolutional neural network ¢g(z) : x € [0,1]*W — ¢ € [0,1]#*W. The
final output is constrained between 0 and 1 with a sigmoid layer. We use the Unet architecture [34] to predict a low
resolution heatmap. The image y, is of size (H/L,W/L) for some arbitrary downsampling factor L, as the location
accuracy provided by the highest resolution output is not useful. For Unet-based architectures, images are usually
downsampled (or upsampled, in the decoder) by a factor of 2 at each layer: at layer [ of the encoder, features have a
spatial size of H /2! x W/2!. For the sake of simplicity, notations are given in the single-channel case. Additional
classes of aberrations (like fragments) are modeled with additional channels, so that a third index is added. In the
remainder of the paper, we consider two aberration classes, dicentric chromosomes and fragments. The parameters 6
are learned by solving the following optimization problem:

0 = argmin Y £(0(r:), ) + A R(J (1), (1)
i=1
where A is an hyperparameter that balances the data fidelity term and the regularization term. In our modeling approach,
the data fidelity term £ has the following form:

L(¢o(x:),yi) = ll¢o (i) — will3 (2)

Because the number of aberrations is very low compared to the number of pixels in the image, the background is
expected to be 0, except in a small number of "hot" spots corresponding to locations containing aberrations. The Sparse
Variation (SV) regularizer (3) has been specifically considered here to encourage the emergence of a very small number
of "hot" spots as aberrations are rare events in GIEMSA images. This regularizer is defined as [32]:

R(go(zi)) = ) \/PQHVuma(xi)H%Jr(l*p)%e(%)Z(u,v)» )

(u,v)EN
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Figure 3: For each image, we compute the total variation of its prediction for the regularized and unregularized model,
as shown in Figure 2] This figure represents the Cumulative Distribution Function (cdf) of the total variation over all
images in the test set.

where p is a parameter that balances the sparsity and the smoothness terms in the predicted heatmap. The components
of the gradient vector are computed with respect to the image coordinate axes as follows:

\ _ [o(a) () = o) (u+1,0)
Vaw0(@) = | ) urv) — dolan) (w04 1)) @

As this is a simple linear transformation of the image, computational overhead is minimal.

The criterion (2)) is highly non-convex because of non-linearities in ¢¢. Therefore, finding a global minimum is hopeless.
Nevertheless, a good local minima may be found using iterative first order methods, usually some variant of SGD. The
exact gradient of the training criterion with respect to 6 is estimated on a random subset .7 of the complete dataset D,
because of memory constraints:

|71

Vo > L(o(xi), yi) + Rda(w:)) ~ Vo Y L(da(;), ) + R(do(z;)). ®)

i=1 j=1

In Figure[3] we reported two curves corresponding the cumulative distributions functions of the total variation images
computed over the prediction maps regularized with the sparse variation regularizer (blue curve) and without (red
curve). See[2]for an example of images on which this total variation is computed.

3.2 Implicit ensembling of neural networks

To reduce the number of false positives (i.e, improve Precision) at a fixed recall level, we investigated the ensemble
method introduced in [[19]]. Because training a deep neural network is a stochastic process, successive training runs
of the same model tend to explore different regions of the parameter space. Those local minimas are usually very
close in terms of validation loss, but their predictions are not identical. This behavior has received significant attention
in the literature [|14}|11]]. As shown in [14], it may not even be necessary to run several successive training runs. A
carefully chosen learning rate schedule may be enough to achieve enough parameter space exploration to build a diverse
ensemble from checkpoints of a single training run. In our case, we even find that the gradient noise introduced by
stochastic batch sampling leads to sufficient checkpoint diversity for agregation to be worthwile without any specific
learning rate schedule. Therefore, we do not have to deal with the training instability mentioned in [25].



predicted heatmaps binary maps / summed binary maps \

. dicentrics
Pl s / ‘

"\\‘ ‘ .. ==> .- ==>

j
o~"

fragments

¢1 l)7"7¢4wl A1ml Aqxl A](wz):Sz
0 6. 0 0. K XJ: 0 j

Figure 4: Vote-based aggregation of checkpoints. Dicentric chromosomes are plotted in red, and fragment predictions
are plotted in green. For every image x;, the heatmap prediction ¢y (x;) is binarized (giving Ag(z;)) with a confidence
threshold 7. Those maps are summed (giving S;), and regions of the image receiving more than 74 votes are
considered as detections. Darker shades of red and green indicates region of the images receiving more votes.

More formally, SGD can be seen as a Langevin sampling of the posterior weight distribution p(6| D) [26]. To avoid
excessive autocorrelation between samples, we store the vectors 6 at the end of each epoch, instead of every gradient
step. This can be interpreted as a variant of thinning, also used in Monte Carlo Markov Chain inference. For each image
x;, ¢ € {1,--- ,n} in the test set, we consider a set {¢g, (;),- - , ¢g,, (z;)} of predictions, where M is the number
of predictions (or models). Using a confidence threshold T, we build a set {Ag, (x;),- - , Ag,, (z;)} of M different
binary predictions for each test image z;, that we sum over all members of the ensemble at each location (u,v) € §2 as
follows:

M
v) =Y Ag, (z:)(u,0), (u,0) € Q. (6)

Finally, we set an agreement threshold 7’4 to compute the agreement between the artificial "experts". The setting of
thresholds T4 and T impact the final decision. If the confidence threshold Tt is high and the voting threshold T4 is
low, the decision will be made from a small set of experts. Otherwise, a small value of T~ but a high voting threshold
T4 means that low confidence predictions are considered, but a higher agreement between them is needed to confirm a
detection. In the end, we get a precision surface depending on 7> and T'4. Our aggregated decision for any image z; is
a binary image D, such that value at location (u, v) is 0 if no aberration is predicted, and 1 otherwise (See FigureE]for
illustration):

D;(u,v) = 1[Si(u,v) > Ta], (u,v) € Q. @)

The agreement threshold 74 can be adjusted by the end user to optimize either Precision or Recall scores, like the
confidence threshold T-. We discuss the effects of choosing a specific threshold in Section[4.2.2]

3.3 Setting of model parameters

We trained Unet for N, = 100 epochs epochs with Adam [8], with a constant learning rate of 3 x 10~%, a weight decay
parameter of 0.1 and a batch size of 12 on a single Tesla V100. The learning rate was unchanged during training to
ensure parameter space exploration, using an analoguous reasoning to the one provided in [[15]].

We did not use data augmentation for two reasons. First, we found that the wide variety of chromosome morphology and
orientations in our dataset was enough for our model to learn this invariance. We did not observe detection failures based
on object orientation. Second, more agressive data augmentation like noise or blurring quickly made monocentrics and
dicentrics indistinguishable. Training stability was very sensitive to the variance of the blurring kernel or the Gaussian
noise, because accurate chromosome classification relies on very small details.

We predict a lower resolution heatmap of size H' = 224, W' = 252, where height and width are downsampled by a
factor of 4. While batch sampling (and therefore parameter space exploration) is randomized, parameter initialization
is fixed between training runs. We ran a grid search with log,, spacing for A regularization parameter with 10
and 10~ as upper and lower bound of the search interval. Training was implemented in PyTorch [31], and uses
segmentation_models_pytorch implementation of Unet.
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Figure 5: Procedure used to display feature separation in the latent space of the last decoder block for a single epoch
(i.e a single weight vector 6. For all images =1, - - , z,, the feature maps produced by the last layer of the decoder
are retrieved and treated as a set of independent, C;-dimensional feature vectors. Using PCA dimension reduction, we
produce a 2D scatterplot that shows how the model separates the different classes (background, dicentrics, fragments)
across training epochs. Note that the eigenvectors used for this dimensionality reduction are computed over all epochs
of training.

3.4 Visualization of the training dynamics of single model

As an additional visual explanation for aggregation performance gain, it may be informative to display training
trajectories in feature space. Classification networks output a single classification vector per image, so that plotting
training dynamics over time using dimensionality reduction is relatively easy (see [23]]). A scatterplot of classification
vectors embedded in a lower dimension at each epoch provides a good view of how classes are progressively separated
during training. Usually, UMAP [28] is used, which requires a pairwise distance matrix between classification vectors.
However, this visualization does not work for models outputting a probability distribution for all locations u, v of the
input image, like Unet.

To address this issue, we adapt the approach [23]] to our context. We consider feature maps as bags of independent
feature vectors. Figure[5| provides a visual summary of our approach. We do not retain feature vectors for all locations
u, v in the feature map. Instead, we only select feature vectors corresponding to the locations of aberrations, and retrieve
some feature vectors at random “background’ (i.e., where there are no aberrations) locations. This bag of features is
projected on the 2D plane using its PCA decomposition. By retrieving the same locations across several training steps,
we can visualize how the both aberration classes and the background are separated during training. An SVM classifier
fitted on the embeddings retrieved for a single epoch is used to map regions of the latent space to a specific class, which
helps visualize the dynamics of training. The rest of this section gives a formal overview of our visualization technique.

Formally, for an input image z; of size H x W, the {-th layer of our Unet produces a feature volume f{ of size
H' x W' x Ny (see Section and Figure(a)). Here, we choose the second-to-last layer of the decoder and we drop
the superscript £ to improve readability, so that ff = f;. For the last layer, N, = 128 (see illustration in Figure
We retrieve the set of feature vectors that correspond to the spatial locations of aberrations (dicentrics and fragments)



in image ;. For a set of N} aberrations located at X} = {(u1,v1),-- -, (uyi,vy:)} in image x;, we build a set of
feature vectors fi = {f;(u1,v1), -, fi(u Ni,UNi)} € RNa*Ne We retrieve the feature vectors corresponding to all
aberrations in every image of the test set. We also sample an additional set of N} background pixels, denoted as f;
at locations A} = {(u},v}), -, (%vg , vg\,;)}. Those locations are randomly sampled, provided the locations do not
correspond to aberration pixels. Therefore, they correspond to background, monocentric or debris. Finally, we define

» v = foU f so that the total number of feature vectors in f; is IV, + Ny, as shown in Figure ). It is worth noting

that f! , is a subset of the complete feature map f;. This makes the visualizations described less cluttered, and reduces
computation time. Finally, this feature set f? , is retrieved for each image z; in the test set, to build a large feature set
Fe={f0, -+ f™,}, where e corresponds to the set of model parameters retrieved at epoch e.

The set of feature vector F. is retrieved for each epoch e € {1,---, N.}. These sets are concatenated in global set
F ={Fi, -+, Fn,} Although all the subsets of F correspond to the same locations, they are different at each epoch
e because of the stochasticity of gradient descent. PCA can be used to visualize those feature sets as 2D scatterplots,
and in particular to check how well aberrations are separated from the background at every epoch. The set F; is chosen
as a reference feature set and F., e € {2,--- , N.} is registered with respect to F; using the Procrustes method [[12]].
This guarantees that latent space scale shifts or rotations are removed for visualization. A PCA decomposition is
computed on F, and for each epoch e, each feature set in F. is projected on the first two principal components of this
decomposition. This provides a 2D visualization of the trajectory of each feature vectors during training.

Furthermore, we train a kernel SVM classifier p. on the 2D embeddings of F. to predict which aberration class
corresponds to a location in 2D embedding space. This classifier takes a 2D embedding (a vector of F.) as an input,
and outputs a probability distribution over three classes: background, dicentric chromosome and fragment. For all
epochs 1 < e < N, we train a different classifier, and predict a probability distribution over a grid that samples the 2D
aberration space uniformly. For all positions (u, v) of this grid, a probability distribution over the total number N,. of
aberration classes p.(u,v,7) € [0,1], r € {0,--- , N,.}, 27]«\21 pe(u,v,r) = 1is predicted at epoch e. As all the point
clouds are aligned and a single set of principal components is computed for all time steps, the changes in the decision
boundary from one epoch to the next can be solely attributed to the dynamics of training.

Finally, to visualize the displacement of class boundaries across training, we define the averaged classifier:

p(u,v) = — Zpe(u, v). 8)

Visualizing the spread of the distribution of p can be done by computing the entropy of the distribution predicted by the
averaged classifier:
NY‘
H(p)(u,v) = = plu,v,7)log p(u, v, 7). ©)

r=1

4 Materials

4.1 Data description

Our training dataset is composed of 5430 labelled images of size H = 888, W = 1008, padded to H = 896, W = 1008
to ensure that downscaling has an integer height and width. Labels are binary images with size H' = 202, W' = 252,
taking value 0 everywhere except at the center of chromosomal aberrations (roughly between the two centromeres for a
dicentric chromosome), where it takes value 1. There is one binary image per aberration classes for each image, so
that aberration classification is possible. Chromosomal aberrations are the only labelled objects, neither debris nor
monocentric chromosomes are labelled. We chose this labelling scheme instead of semantic segmentation or bounding
boxes as it lead to the lowest labelling time, which in turn meant a greater number of images could be labelled for the
same labelling budget. For the same reason, we did not label debris or monocentric chromosomes. This also prevented
the discovery of trivial models where chromosomes would be detected but always labelled as monocentric, as they
outnumber dicentric ones by an extremely large margin. As explained in Section[3.1] this binary image is blurred with a
Gaussian kernel, to reduce the underrepresentation of the labels against the background.

Images have been selected so that each images contains only the chromosomes corresponding to a single cell, i.e., no
image contains more than 46 chromosomes. The metaphases in the dataset do not have any missing chromosome, or an
excessive chromosome count. Our dataset contains 5021 dicentrics and 7540 fragments, Figure [6]shows the repartition
of images of images into aberration counts bins. Images with a high aberration count are much rarer than images with
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Figure 6: Repartition of images into aberration counts bins.

a low aberration count. On average, there is more than one aberration per image, which corresponds to a very high
ionizing radiation dose. As a normal metaphase contains 23 chromosome pairs, this means that even in this case, the
overwhelming majority of chromosomes are healthy (i.e monocentric) ones. In our evaluation setting, the training set
consists of 80% of those image. 10% of the images are retained for a validation set, used for hyperparameter selection.
Finally, 10% of the data is held as a test set for a fair performance evaluation.

As this training dataset is not representative of a real-world exposition, we use another dataset to estimate the calibration
curve of our model. This dataset was built by collecting metaphases from samples irradiated at specific, known doses.
The aberrations in this dataset are not labelled. It contains 21215 metaphases taken from samples irradiated at O Gy, 0.1
Gy, 0.2 Gy, 0.3 Gy, 0.5 Gy, 0.7 Gy, 0.9 Gy, 1 Gy, 1.5 Gy, 2 Gy, 3 Gy and 4 Gy.

4.2 Evaluation metrics
4.2.1 Performance of a single model

While our predicted heatmap ¢g(x;) can take any value between 0 and 1 at each spatial position (u,v) in the image,
ultimately a binary decision needs to be taken with regard to the presence or absence of aberration at location (u, v) € .
In the next step ¢g(z;) is used to build a binary map Ag(x;) given an arbitrary threshold T¢:

Ag(.’l?i)(u,’U) = 1[¢9(xi)(uvv) > TC]? (U,’U) € Qv T; € {.731, e 7xn}’ (10)

where 1[.] is the indicator function. As ¢y is trained to predict a Gaussian spot, thresholded predictions are binary
images comprised of approximately circular spots. Furthermore, the Gaussian spots in the ground truth heatmap are
also converted to binary circles with a fixed threshold 77, which is set to a small fixed value (e.g., 0.01).

Acr(yi)(u,v) = 1y (u,v) > Tar], (u,v) €Q, yi € {y1,"* Yn}- (1)

Once a binary decision for the presence of an object is made at each location in the image, we define True Positives,
false positives and false negatives. In object detection, True Positives are usually defined up to a small location error, as
matching the ground truth perfectly would be too stringent. In our case, the spots are small compared to the object
size so that the position error remains very small even in the cases where the intersection between the predicted and
ground truth spot is the smallest possible one (one pixel) (see Figure[7). Therefore, we consider any overlap between a
prediction and a ground truth spot to be a True Positive, as long as this ground truth spot has not been predicted before.
If this is the case, the prediction is considered to be a false positive. Predicted objects that do not overlap ground truth
spots are also considered to be false positives. Finally, objects in the ground truth heatmap that are not predicted by the
model are considered to be false negatives. True negatives are ill-defined in object detection, and are not considered.
With those three values, we can compute Precision and Recall.

10
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Figure 7: Sketch of model evaluation. The intersection I; between the binarized ground truth A (y;) and the binarized
prediction map Ay(z;) is computed. Objects appearing in both are True Positives, objects appearing only in Ay (z;) are
false positives, objects appearing only in Agr(y;) are false negatives. In this case, we have two True Positives, 1 False
negative and 1 False positive, so that Precision is TP/(TP + TP) = 2/3 and Recall is TP/(TP + FN) = 2/3

More formally, the intersection image I; between Ag(z;) and Agr(y;) is computed as the pixel-wise product of
ground truth and prediction

I (u,v) = Ap(z;)(u,v) X Agr(yi)(u,v), (u,v) €Q, i€ {l,--- ,n}. (12)

Finally, we compute the number of connected components Ne.(I;), Ne.(Ag(x;)) and Ne.(Agr(y:)) in I;, Ag(x;)
and At (y;), respectively. The number of True Positives, False positives and False Negatives are defined as follows:

TP = N.(I;),
FP =max(0, Nec(Ag(z;)) — TP), (13)
FN =max(0, Nec(Agr(y:)) — TP).

Hence, we compute Precision = qul% and Recall = TPZ% for a single (Ag(x;), y;) pair. Note that Precision and
Recall are functions of the chosen confidence level T(-; a higher confidence threshold increases Precision but decreases
Recall. In what follows, we will then report results for a set of confidence thresholds {T¢,, - - - , T¢,, } to analyze this
tradeoff. Moreover, we decided to report the Precision and Recall scores separately instead of providing an aggregated
metric like Average Precision (AP), as the tradeoff between those metrics in the context of biological dosimetry is
especially important.

Because training is a stochastic process, the maximum predicted probability over the test set is not exactly 1; different
models may get a different maximum confidence value. In other words, two sets of weights 6 and 6’ will give two
different maximum probabilities py and py/, so that for each model, the performance metrics are computed over different
confidence thresholds. Therefore, each performance metric curve is linearly interpolated over a common confidence
grid {0.1,0.2, - -- ,0.9}. For the set of confidence thresholds that exceed the maximum probability over the complete
test set, Precision is not defined. In this case, it is arbitrarily chosen to be 1 (and Recall is 0). To provide a metric
showcasing performance variation across training, we reported performance quantiles (5% and 95%) for each threshold.
This means that, for each threshold, 50 Precision and Recall values are computed (one for every considered epoch) and
the aforementioned quantiles of those values are reported.

11



4.2.2 Performance of model ensemble

For the ensemble, we use the same evaluation procedure as in the single model case (described in Section @,
but with the agregated binary decision map D; described in Section[3.2] However, as explained in Section [3.2] the
performance of the ensemble depends on an agreement threshold 7’4 and a confidence threshold T-. Therefore, instead
of a Precision curve, we get a Precision surface, which makes comparison with the single model case more difficult.
Instead, we set a specific vote threshold, and report the same Precision curve as in the single model case. Finally, to
evaluate the sensitivity of the performance to the sampling of the ensemble, we sampled 100 random ensembles, and
computed qo5 and qg5 for every confidence threshold in the grid mentioned in the Section@

5 Experimental results

In this section, we discuss model performance, both in term of object detection and calibration curve estimation. First,
we discuss the results of the single-model training and the impact of regularization term. We also show a visualization
which suggests that our model is robust to the presence of debris, without the need for specific labelling or architectural
choices. Finally, we discuss the performance improvements obtained with the ensemble approach, and we provide
PCA-based approach to visualize model feature trajectories during training.

5.1 Performance of single model

In Table 2] the single non-regularized model already achieves significant gain in terms of Precision and Recall when
compared to Metafer in the case of monocentric versus dicentric classification (Metafer is not designed to detect
fragments), although some performance variation is noticeable during training, as confirmed by the inter-quantile range
of performance. This variation suggests that there is sufficient parameter space exploration to get enough prediction
diversity for aggregation to be worthwhile.

Metafer relies on conventional computer vision techniques. The chromosome objects in the metaphase are first
segmented and then classified. Segmentation errors can lead to classification errors, for example when one chromosome
is split during segmentation. Overall, the performance of both tasks (segmentation and classification) is not very robust
to variations in image quality induced by variations in acquisition circumstances like illumation or staining quality. For
example, in the segmentation task, the Recall of Metafer lies between 35% and 75%. For the classification task, The
Recall is around 35%, and the Precision around 40%. Note that the performance figures given for Metafer in Table 2]
are not computed on the dataset mentioned in Section[d.1] but taken from [41] instead. Although the performance of
Metafer is uncertain, and we did not compute it on our dataset, we feel confident that our model brings a very significant
improvement in chromosomal aberration, as the uncertainty around the ensemble performance is low enough that even
in the worst case scenario, it achieves very significant performance improvements over Metafer.

model 1 (unregularized) model 2 (regularized) ensemble (3 votes, T = 0.5)
Precision (frags) 70.8% (62.0,77.4) 79.3% (71.8, 84.2) 81.0% (78.5, 83.3)
Recall (frags) 49.4% (37.8, 59.7) 55.0 % (46.0, 66.3) 65.5 % (62.4, 68.5)

Table 1: Comparison between model 1 (T = 0.6, A = 0), model 2 (T = 0.6, A = 0.2, p = 0.1) and ensemble (4
votes, Te = 0.5) for the fragment class. [g59, gos%] interval is reported in parenthesis. For model 1 and model 2, this
interval is computed over the last 50 epochs of training. For the ensemble, it is computed over a 100 randomly sampled
ensembles (ensembles are sampled from checkpoints during training). All performance metrics are computed on the
test set.

model 1 (unregularized) model 2 (regularized) ensemble (3 votes, T = 0.5) Metafer
Precision (dics) 76.6% (68.8, 84.7) 83.6% (75.4,92.2) 85.8% (83.7, 88.3) ~ 40%
Recall (dics) 45.2% (31.6, 56.4) 51.2% (37.0, 62.7) 61.7% (57.1, 65.8) ~ 35%

Table 2: Comparison between model 1 (T = 0.6, A = 0), model 2 (T, = 0.6, A = 0.2, p = 0.1), ensemble (4 votes,
Tc = 0.5), and Metafer for the dicentric class (where Metafer performance is available). All performance metrics are
computed on a separate test set. Metafer performance is retrieved from previous work, and was not evaluated on the
dataset used in this paper. Metafer performance should only be taken as a rough point of reference, see Section[5.1]for
additional discussion of this point.
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Figure 8: Precision, recall and False Discovery Rate (FDR) as functions of confidence for dicentrics (left) and fragments
(right). Top: performance summary for the unregularized model (i.e A = 0 for the sparse variation term). Middle:
performance summary for A\ = 0.2, p = 0.1. Bottom: performance summary for the ensemble of checkpoints from
the training of the regularized model for a threshold of 2 votes. Shaded area indicates the [go.05, go.95] inter-quantile
interval, computed respectively over the last 50 checkpoints for single models, and over a 100 random samples of 10
checkpoints for the bottom plot (ensemble).
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Figure 9: Prediction diversity for a set of four different models. The first model does not predict the fragment in the
bottom left corner (a very low confidence threshold would be required to consider it as a detection), but the three next
model do. All four models predict the dicentric chromosome near the center of the image correctly.

Finally, training with a loss that promotes sparsity improves Precision and Recall for fragments and dicentrics, as seen
in Figure[§] this improvement in precision is especially relevant for automated use, as keeping the number of false
positives low is required to avoid overloading care facilities. Because all chromosomes may not be correctly retrieved
(Recall is less than 1), this model tends to underestimate doses.

5.2 Performance of model ensemble

In this section, we report the results obtained with the ensemble procedure. The parameter space of the model is
explored through SGD. Although the selected checkpoints reach a similar validation performance, the predictions they
yield vary, as shown by Figure[9] As mentioned earlier, this can be used to filter spurious predictions, as those are less
likely to be present in all models of the ensemble.

Precision is a monotonously increasing function of voting and confidence thresholds, while Recall decreases with higher
confidence and higher voting thresholds. End-users may fine-tune the balance between both of those metrics depending
on their goal by choosing a specific (T, T4) pair. To estimate the sensitivity of Precision and Recall to the sampling of
the checkpoints, we evaluate those metrics for 100 samples ensembles and report the qgs5, go5 interval for Precision and
Recall in Figure[g).

To ensure that ensemble results are easily readable, we do not report surfaces for Precision and Recall. Instead, we
select a single voting threshold and report the results over all agreement thresholds, like with the single model results.
The ensemble provides a significant performance improvement over the single-model baseline; aggregation does help to
filter out spurious detections and improves Precision and Recall, as reported in Tables and We chose the (T, Ta)
parameters to keep Precision broadly similar across all models, for dicentrics and fragments. This makes Recall
improvements more salient, but one could choose other values for confidence and vote thresholds. Overall, there is a
wide set of threshold combinations that yield large performance improvements over the Metafer baseline. Furthermore,
ensembling also reduces performance variation: the performance is closer between different ensembles than between
single checkpoints. This suggests that our results are not dependent on a specific sampling or selection of the ensemble.

5.3 Robustness to non-chromosome objects in metaphase images

An automated dosimetry system should always distinguish between chromosome and non-chromosome (nuclei, debris)
objects. Current automated methods reject non-chromosome objects using explicit shape analysis. For example, a
nuclei can be rejected using the fact that it is broadly circular and has a uniform texture. However, the shape of debris is
usually more complex, which makes metaphase selection more difficult in most dosimetry systems.

In our approach, we do not detect debris and nucleis explicitely, as they are not annotated in our dataset. Instead, Unet
learns to reject debris from the training data, without the need for specific annotations or handcrafted object detection
algorithms. In the rest of this section, we propose a simple visualization of this fact, using PCA.

For an image «x; and a set of parameters 0, the activation volume provided by the ¢-th layer of the neural network is
defined as:

671 ’ !
Fi=o(Ouf{" + b, ff € RTXWX, (14)
where N, the number of convolution filters in layer /, i.e the number of channels of the output of this convolution layer.
For a set of n images {x1,--- ,x, }, the corresponding activation volume is of size R"*# xW'>Ne This volume can
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Figure 10: Rejection of nuclei depending on model layer. First image from the left shows the input image and ground
truth Gaussian heatmap. Second image shows PCA embedding of features at the output of the first encoder layer. Third
image shows PCA embeddings of features at the last encoder layer. Rightmost image shows embeddings of features at
the first decoder layer. The embedded feature maps are resized from H', W’ to H, W so that every image has the same
size.

be flattened in a matrix E, € R(m<H "XW')xNe containing n x H' x W’ samples (rows) of a random vector of size N,.
Once E) is centered and standardized, the eigenvectors of E;;FE@ form the usual PCA orthogonal basis Q; € RNexNe,
so that E,QL (with QI € RNe*E) projects each pixel of the activation volume (IN;-sized vectors) onto the first K
components (columns) of this basis.

By choosing K = 3 and normalizing the projected vectors to sum to one, we can plot a visualization of the activations
in RGB space (Figure [I0). Note that a different @), is computed for each layer considered in Figure[TI0} Therefore,
the colors do not have any specific meaning. The second image of Figure [T0|from the left shows that the projection
of feature vectors (retrieved at the first encoder layer) belonging to chromosomes and nuclei on the PC basis are
highly similar, as the color of those regions is identical. The main reason is that the convolution filters in early layers
have a small receptive field (see [2]]) and mostly capture texture and edge information, which is close for subsets of
chromosomes and nuclei. In the early stages of the encoder, non-chromosome objects are not differentiated from
chromosomal objects.

The third and last images of Figure [I0]from the left show that in the deepest layer of the encoder, the feature vectors
belonging to nuclei and chromosomes are mapped to different principal components, corresponding respectively to
blue and red pixels. By stacking convolutions the model aggregates information from a larger subset of the image (the
receptive field increases), which is suitable to distinguish chromosomes from nuclei on the basis of their differences in
shape. This is a first indication that our model learned to reject debris and nuclei without domain knowledge, which is
further confirmed by our performance results.

5.4 Visualization of training trajectories

In this section, we discuss the visualizations produced by the method described in Section[3.4] In Figure[TT] we see
the latent space of Unet at 6 different epochs. Red points on the scatterplot represent locations containing dicentric
chromosomes, blue points fragments and gray points are background locations. Because those snapshot are taken
at regular intervals at the end of training, classes are well separated. We see that the decision boundary of the SVM
classifier changes from timestep to timestep. Some locations remain well separated in latent space from others, but this
is not true for all samples. Regions in the latent space where classes overlap correspond to areas of uncertainty.
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Figure 11: Snapshot of the training trajectory in feature space. Each point of every scatterplot represents a fixed location
in an image (dicentric, fragment or background). Because of the stochasticity of training, the corresponding feature
vector moves in feature space. By aligning the feature sets produced by the model at different epochs and computing a
PCA dimension reduction, we can visualize the displacement of those feature vectors in feature space during training.
The contour map showcases the decision boundary of a kernel SVM classifier trained to predict the type of feature
vector depending on its location in feature space. While some regions of feature space remain ambiguous during
training, classes tend to stay clustered together during training.
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While locations with high prediction uncertainty are hard to detect because neural networks tend to be overconfident
[13], an ensemble of models can be used to retrieve this information. This fact is also visible in the latent space of
Unet, as shown by Figure[T2] In this Figure, we performed K-Means classification on our bag of features in the latent
space for the last considered epoch in Figure[IT} Once this is done, we plot the trajectories of the barycenters of those
clusters over training epochs. As we see, most cluster centers are well separated across epochs. This is reflected by the
fact that if we consider the average SVM decision boundary across training epochs (as described in Section [3.4), most
feature vectors are in low-entropy regions. Feature vectors belonging to high-entropy regions correspond to uncertain
detections can be filtered as described in Section 3.2
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Figure 12: Training trajectories of feature barycenters. The scatterplots displayed in Figure [IT] are clustered with
k-means to simplify visualization. The trajectories of barycenters during training are displayed in this figure. The
thickness of the trajectory shows the number of feature points in the barycenter.

5.5 Transfer between training and calibration curve datasets

As explained in Section [T} most images routinely analyzed by biologists do not contain any aberration, even for high
doses. Our annotated training dataset is a subset of a much larger archive of patient data. This annotated dataset contains
5,430 images depicting at least one aberration over ~80k images. This reduces training time considerably, and prevents
the discovery of trivial models where no object is ever predicted. However, this also means that our training dataset is
not an accurate representation of real-world metaphase images as metaphases containing aberrations are considerably
over-represented. In the previous section, we saw that the model described in this paper performs very well in terms of
object detection metrics. However, we still need to investigate wether a model trained on this unbalanced dataset can
accurately estimate aberration counts on a realistic dataset.

Initial calibration curve estimates were unsatisfying: our ensemble would overestimate low doses, and underestimate
high doses. Two additional details were needed to improve performance. First, we investigated the Cumulative
Distribution Function (CDF) of the maximum probabilities predicted by the members of the ensemble for the dicentric
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Figure 13: Cumulative Distribution Functions (CDF) of the maximum probabilities predicted by every member of
the ensemble for the dicentric (left) and fragment (right) class over all images corresponding to a 4 Gy dose in the
calibration curve dataset.
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Figure 14: Calibration curves estimated by the ensemble. Left: calibration curve before setting a threshold per model
and using domain knowledge. Right: calibration curve after model-adaptive thresholding and using domain knowledge.
To improve readability, we show the 4 curves closest to the manual calibration curve displayed in black. Metafer curve
is displayed in red.

and fragment class. Those CDFs were estimated using the 4 Gy subset of the calibration curve dataset, and are shown in
Figure[I3] Instead of setting a single threshold for all model, we picked a quantile, and retrieved the corresponding CDF
value for each model. Furthermore, we used domain knowledge to reject spurious dicentric detection. We considered
dicentric detections if and only if at least one fragment was present in the same image. As usual in biological dosimetry,
we fitted a linear-quadratic model to the point cloud of average dicentric count retrieved on the calibration curve dataset.
This led to a large improvement in our calibration curve estimation, as shown in Figure[T4] Furthermore, the Metafer
calibration curve is semi-automated: dicentric chromosomes undergo a manual review, because of the very high FPR of
the algorithm, as described in Section[5.1} On the contrary, our calibration curve is obtained in a fully automated setting.

6 Discussion and future works

In biological dosimetry, estimating the average number of chromosomal aberrations per peripheral blood lymphocyte is
necessary to estimate an ionizing radiation dose. However, human expertise is required and is therefore a bottleneck to
scale chromosome counting beyond a few hundred images per patient.
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In this paper, we evaluated Unet as an aberration detection model for biological dosimetry. Unet outperformed Metafer
(a current commercial solution) in terms of Precision and Recall by a wide margin. Our approach is learning-based
and differs significantly from the current state of the art in terms of how much domain knowledge of chromosome
morphology is incorporated. We demonstrated a high level of performance without the need for significant shape
modeling. Feature visualization suggests that the model learns to reject debris and nuclei in an unsupervised manner,
without the need for object-specific annotations for monocentric chromosomes or debris. Furthermore, a simple
regularization term modeling the intrinsic heatmap sparsity helps performance.

We pushed this performance further by ensembling several checkpoints collected during training. We proposed a
visualization of the latent features of Unet during training to explore the relationship between the dynamics of training
and this performance improvement. Furthermore, we showed that the variation in performance between different
(randomly sampled) ensembles is lower than between single checkpoints of a training run. This is especially relevant
in the context of the deployment of a deep learning model in an automated fashion in a medical setting. Those
improvements can be achieved without the need for any architectural modifications or extensive hyperparameter
calibration.

Our database is very imbalanced: the average number of aberration per cell is over 1, which corresponds to an
extremely high dose of ionizing radiation. It is very likely that some of the spurious detections can be attributed to this
training set imbalance. We evaluated our ensemble of Unet in a realistic setting, on a calibration curve dataset. Using
model-adaptive thresholding and the domain knowledge of co-occurence of dicentrics and fragments, we reach a very
competitive calibration curve, widely outperforming the Metafer baseline. Furthermore, our ensemble can be used in a
fully automated fashion, while the Metafer solution requires manual review to reduce the number of false positives. It is
therefore possible to build a competitive aberration detection system even with a large distribution gap between training
and inference images.
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